1,182 research outputs found

    Dexterous Soft Hands Linearize Feedback-Control for In-Hand Manipulation

    Full text link
    This paper presents a feedback-control framework for in-hand manipulation (IHM) with dexterous soft hands that enables the acquisition of manipulation skills in the real-world within minutes. We choose the deformation state of the soft hand as the control variable. To control for a desired deformation state, we use coarsely approximated Jacobians of the actuation-deformation dynamics. These Jacobian are obtained via explorative actions. This is enabled by the self-stabilizing properties of compliant hands, which allow us to use linear feedback control in the presence of complex contact dynamics. To evaluate the effectiveness of our approach, we show the generalization capabilities for a learned manipulation skill to variations in object size by 100 %, 360 degree changes in palm inclination and to disabling up to 50 % of the involved actuators. In addition, complex manipulations can be obtained by sequencing such feedback-skills.Comment: Accepted at 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Haptic Exploration of Unknown Objects for Robust in-hand Manipulation.

    Get PDF
    Human-like robot hands provide the flexibility to manipulate a variety of objects that are found in unstructured environments. Knowledge of object properties and motion trajectory is required, but often not available in real-world manipulation tasks. Although it is possible to grasp and manipulate unknown objects, an uninformed grasp leads to inferior stability, accuracy, and repeatability of the manipulation. Therefore, a central challenge of in-hand manipulation in unstructured environments is to acquire this information safely and efficiently. We propose an in-hand manipulation framework that does not assume any prior information about the object and the motion, but instead extracts the object properties through a novel haptic exploration procedure and learns the motion from demonstration using dynamical movement primitives. We evaluate our approach by unknown object manipulation experiments using a human-like robot hand. The results show that haptic exploration improves the manipulation robustness and accuracy significantly, compared to the virtual spring framework baseline method that is widely used for grasping unknown objects

    Learning Adaptive Grasping From Human Demonstrations

    Get PDF

    Dexterous grasping of novel objects from a single view

    Get PDF
    In this thesis, a novel generative-evaluative method was proposed to solve the problem of dexterous grasping of the novel object with a single view. The generative model is learned from human demonstration. The grasps generated by the generative model are used to train the evaluative model. Two novel evaluative network architectures are proposed. The evaluative model is a deep evaluative network that is trained in the simulation. The generative-evaluative method is tested in a real grasp data set with 49 previously unseen challenging objects. The generative-evaluative method achieves a success rate of 78% that outperforms the purely generative method, that has a success rate of 57%. The thesis provides insights into the strengths and weaknesses of the generative-evaluative method by comparing different deep network architectures
    • …
    corecore