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Learning Adaptive Grasping From Human
Demonstrations

Shuaijun Wang, Wenbin Hu, Lining Sun, Xin Wang, Zhibin Li

Abstract—This work studied a learning-based approach to
learn grasping policies from teleoperated human demonstrations
which can achieve adaptive grasping using three different neural
network (NN) structures. To transfer human grasping skills
effectively, we used multi-sensing state within a sliding time
window to learn the state-action mapping. By teleoperating
an anthropomorphic robotic hand using human hand tracking,
we collected training datasets from representative grasping of
various objects, which were used to train grasping policies with
three proposed NN structures. The learned policies can grasp
objects with varying sizes, shapes, and stiffness. We benchmarked
the grasping performance of all policies, and experimental
validations showed significant advantages of using the sequential
history states, compared to the instantaneous feedback. Based on
the benchmark, we further validated the best NN structure to
conduct extensive experiments of grasping hundreds of unseen
objects with adaptive motions and grasping forces.

I. INTRODUCTION

With limited prior-knowledge of the objects, humans can
grasp objects with diverse shapes and stiffness and adapt
grasping forces during the interaction. In contrast, for robotic
grasping, despite the significant progress in object recogni-
tion [1] and grasp synthesis [2] [3] [4], generating adaptive
grasping forces to various objects remains an open problem.
Most object grasping uses manually designed rules that apply
constant joint torques or fix a threshold of motor current,
which is practical for most rigid objects but not suitable
or adaptive for various deformable and fragile items, and
therefore such simple control policies limit the performance,
and can potentially damage the objects.

Robotic grasping is an integrated task of object recognition,
motion planning and reactive grasp control. Visual information
can be used for selecting contact points and pre-grasp poses,
but unknown physical properties such as stiffness cannot be
inferred from vision. Therefore, during physical interactions,
proprioceptive, force, and/or tactile information is needed to
generate appropriate adaptive grasping motions and forces,
which are crucial for handling a large variety of daily objects
with different stiffness.

Conventionally, separate controllers are designed for objects
with different physical properties [5], [6], which requires prior-
knowledge of target objects, and lacks the adaptability to
various object properties. The scope of this paper is to study
effective learning to extract policies based on limited real
demonstration data, and to achieve local feedback control
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Fig. 1: Learning from human demonstrations using small real-world
data to transfer skills for robotic grasping of various objects.

policies of robotic fingers that can adapt grasping forces to
various daily objects.

Learning based methods such as deep reinforcement learn-
ing (DRL) have promising performances in dexterous manipu-
lation. However, learning from scratch without demonstrations
requires large training data and long training hours [7], which
is not a problem in simulation but problematic with real
hardware in the loop. Moreover, the unpredictable emergent
behaviours can be unnatural or unsafe on real robots [8].
Unlike the traditional problems that can be modeled by rigid
body dynamics, for complex physical interactions such as
grasping soft deformable objects, there is no high-fidelity and
yet computationally efficient simulations to support the trial-
error approach of learning in simulation that can be deployed
on real systems directly.

Real experimental data is very scarce for grasping var-
ious assorted daily objects that are soft, irregular-shaped,
deformable, or rigid. To attain sample-efficiency in the cases
where only real experimental data are available, an effective
approach for the control design is to learn from demonstrations
and capture the policies of human grasping skills. Methods
for providing human demonstrations include motion capture
[9], customized tools [10] [11] or human signals detection
device [12] [13]. With appropriate learning frameworks, the
real grasping data can be used to train deep neural networks
to map multi-modality sensory feedback to the control actions.

Compared to the aforementioned human-robot motion trans-
fer, gesture recognition requires only one depth camera to map
human-robot motions, alleviating the complexity in experiment
setup and dependency on extra devices. In this paper, to
collect demonstration data, we used the vision-based human
hand tracking to teleoperate a robotic hand to grasp objects
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with distinct physical properties, as shown in Fig. 1. The
proprioceptive data from the demonstrations are recorded and
used to extract the underlying human state-action mapping.

The proposed learned-based grasping can produce adaptive
grasping forces solely based on the measured proprioceptive
data (joint positions and forces), which can be integrated with
many existing motion planning algorithms that generate pre-
grasp poses, or used for prosthetic hand control. Given guided
hand poses, the learned controller can produce fine motor
skills with adaptive grasp motions. In contrast to the analytical
approaches, learning-based controllers encode the grasping
policies into the weights and biases of neural networks, which
are efficient to store and easy to update when new policies are
learned by augmenting better demonstrations.

To compare the effectiveness of learning from demonstra-
tions, we studied different combinations of the sensory data
feedback and different neural network designs. Specifically,
spatiotemporal data with history information and instantaneous
data without history information are compared and evaluated.
We realized effective learning of reactive motor control of
the anthropomorphic robotic fingers from few representative
demonstrations, with adaptive grasping motions and forces.

The contributions of this paper are as follows:

• A framework of learning adaptive robotic grasping from
human demonstrations using an anthropomorphic robotic
hand;

• Study and evaluation of the effectiveness of different state
feedback for learning the state-action mapping;

• Comparison study of three neural network structures with
and without the history input, and their performance valida-
tion by grasping objects with various shapes and stiffness.

The paper is organized as follows. Section II introduces the
related works. Section III presents the teleoperation system and
the collection of human grasping demonstrations. Section IV
presents the methodology, including the state combination
analysis, controller design, policy learning and the policy eval-
uation. The experimental results are presented in Section V.
The discussion is given in Section VI. Finally, we draw the
conclusion and discuss future work in Section VII.

II. RELATED WORK

A. Analytic methods

Conventional grasping controllers are designed using ana-
lytic models based on the feedback of actuator torques and
positions [14]–[17], but subject to limited adaptive ability,
especially in grasping objects with various physical properties.

Pfanne et al. proposed an object-level impedance controller
for dexterous in-hand manipulation capable of handling dy-
namic changes in the grasp configuration [14]. The proposed
algorithm in [18] switches between force and position control
according to the external force. Romano et al. introduced a
framework which divided the grasping process into discrete
phases based on the tactile information [19]. Most of this
paradigm of solutions are based on human ingenuity and
handcraft of control rules [20].

Fig. 2: Dataset collection for teleoperated learning from demonstra-
tions.

B. Learning-based methods

Many recent work on autonomous grasping used learning-
based approaches [21]–[24]. Lee et al. used multimodal sen-
sory fusion, including visual, kinesthetic and ontological in-
formation, to achieve decision making and continuous control
based on self-supervised learning [25]. Shahid et al. [26]
leveraged deep reinforcement learning to train a unified policy
for reaching, grasping, and lifting the objects in the simulation.
The work in [27] used spatio-temporal information and an long
short-term memory (LSTM) network to learn the classification
of object materials and grasping phases. The high-dimensional
saptio-temporal human grasping data can be embedded into
a lower-dimensional space for modeling and recognition of
grasping actions [28], which demonstrated the effectiveness
of saptio-temporal data in learning grasping policies. Also,
the history data is effective in slippage detection [27], [29].

C. Learning from demonstration for robotic grasping

Learning the robotic grasping from human demonstrations
has been widely researched recently [30], [31]. Misimi et al.
used the support vector regression (SVR) to formulate the
grasping controller with both vision and tactile feedback, in
order to grasp the compliant food objects [32]. In [33], the
researchers used sequential grasping data to achieve grasp
recognition, which shows the potential of history proprio-
ceptive data to realize autonomous grasping. Most of the
prior works using human demonstrations focused on the grasp
planning that generates the pre-grasp pose and contact points
for the target object [10], [32], [34]. While little attention has
been paid to the finger control and the grasp execution. In this
paper, we utilize the history data of multi-sensing feedback
in the framework of learning from human demonstrations, to
directly learn the policy of continuous, adaptive grasping of a
wide range of objects.

III. COLLECTION OF HUMAN DEMONSTRATION DATA

This section presents the tele-operation system and the
collection of human demonstration data, and the composition
of the dataset that used for training.
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1) Teleoperation and data collection: We use the leap
motion hand tracking device to detect real-time human fin-
gers motion, and teleoperate the robotic hand via kinematics
mapping from human fingers to robotic actuators, as shown in
Fig. 2. Then the robot proprioception data including actuators
forces, positions and their first order derivatives are recorded
as the training data. In this work, the thumb, index and middle
fingers are used for grasping a single object.

At the beginning of each demonstration, given a randomly
placed object, the robot hand is held and placed at a proper pre-
grasp pose by the human operator. During the grasp, the pose
of the robotic hand remains fixed. Then, the robotic fingers
are teleoperated by the demonstrator to grasp the object, with
adaptation to the object’s physical properties. Note that the
human hand is merely providing the grasping motion, without
grasping any real object.

The teleoperation approach of providing demonstrations can
mitigate the discrepancies between robot hand and human
hand, because the operator can learn to adapt motor skills
such that the reflected skills at the robot side are feasible and
suitable for the robot itself, so as to ensure successful grasping.
Though the robot hand has less degrees of freedom compared
to human hand, our trials show that the robotic three-finger
grasping motion is very similar to that of humans, since the
robot hand has a similar size and morphology to the human
hand.

2) Composition of dataset: The training data consists of
the forces and positions of the linear actuators that drive the
fingers during the grasping motion. 38 objects with variations
in shape, size and stiffness are used to provide the grasp
demonstrations. To fully take advantage of the data, the K-
fold cross-validation method is applied in the training. We
randomly choose 5 objects as the validation dataset and the
rest is the training dataset.

We define q and f as the measurements of positions and
forces of the linear actuators, and hereby their computed
derivatives are q̇, ḟ respectively. The linear actuator drives
the intermediate linkage mechanism, which then enables the
revolute finger joint to rotate. Note that the force sensor is
placed outside of the drive chain so the measured forces are
directly applied to the finger joints via the linkage mechanism.

During the online grasping, the q and f are recorded at
50Hz and post-processed by lowpass filters (first-order with
cutoff frequency of 10 Hz).

IV. METHOD

A. Description of proprioceptive policies

The policy of adaptive grasping which maps the robot
proprioception to the control signals, can be represented as

q̇d = π(st), (1)

where q̇d is the desired velocities of the finger linear actuators,
which are monotonic with the finger joint velocities. st denotes
the vector of the state feedback at t time (see more in Sec-
tion IV-C); π denotes the policy that maps the state feedback to
the desired actions, which is represented by a neural network
trained from human demonstration data.

(a) Grasping phases: different colors represent different phases.

(b) Grasping of objects of different stiffness.

Fig. 3: Normalized feedback states from the index finger during the
grasping of three representative objects.

B. Framework of learning from grasping demonstrations

Fig. 4 demonstrates the algorithm framework which con-
sists of three modules: data generation, offline training, and
online grasping. The training dataset is obtained from human
demonstrations in the data generation module. Given the
training data, the grasping skills from human demonstrations
are transferred to the NN-based controllers via supervised
learning in the offline training module.

We propose and evaluate three controllers with different
structures (see more in Section IV-D). Once trained, the
learned NN-based policies are used in the online grasping
module as a feedback controller, where the measured robot
proprioceptive data are post-processed and fed as input. As
shown in Fig. 4, the outputs are the desired velocity commands
for the finger actuators.

C. Analysis of grasping data and state combination selection

In this section, we analyse the characteristics of robot pro-
prioceptive data during grasping, in order to provide theoretical
support for the selection of effective input states combination
for learning the policy.

1) Data analysis of the grasping process: During the
grasping, the state vector [q̇, f , ḟ ] can be used to distinguish
grasping phases. The actuator position q is less indicative,
because it can not demonstrate the phase of establishing
contact, and the equilibrium of q depends on the shape/size
of the object which is unnecessary for our controller. When a
grasp reaches the equilibrium, q̇ and ḟ converge to zero, and f
converges to a settled value. q̇, ḟ can encode the information
of object stiffness during the early stage of contact. f indicates
the grasping force, and f, ḟ can reflect the contact transitions.
Therefore, the tuple of state vector [q̇, f , ḟ ] is used for the
policy learning.

Fig. 3 shows representative trajectories of [q̇, f , ḟ ] from
the index finger during the grasping of different objects. In
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TABLE I: Clustering analysis on different feedback states.

NO. of clusters f, ḟ q̇, f q̇, ḟ q̇, f, ḟ q, q̇, f, ḟ
10 0.0058 0.0060 0.0049 0.0061 0.0051
12 0.0058 0.0086 0.0112 0.0115 0.0051

Fig. 4: The proposed framework include three parts: data generation
module, offline training module and online grasping module.

this state space, grasping different objects shows different
trajectories, where the process can be categorized into 3
sequential phases as: approaching, establishing contact, and
settling down.
• Approaching: ḟ , f are around 0, and q̇ becomes non-zero

due to the movement.
• Establishing contact: ḟ , q̇, f are evolving during this transi-

tion. ḟ and q̇ will rise from 0, reach peaks and then drop to 0.
f will rise and reach a constant. Objects with different sizes
and stiffness will result in distinct and different trajectories
in the state space.

• Settling down: f maintains at a constant value, while ḟ , q̇
settles around 0.
2) Clustering analysis of feedback states: To select the

most effective combination of input states that can differentiate
different physical interaction phases with different objects,
the complete training dataset is partitioned into a number
of clusters (10 and 12 are used here based on the scale of
the dataset) by the unsupervised clustering method K-means
[35]. Every data-point for clustering is the temporal state
feedback within a fixed time-window st−H:t, here H refers to
the size of time window. The clustering results are evaluated
by Dunn index [36], i.e. a larger number indicates the more
distinguishable clusters. Table I shows that the state vector
st = [q̇, f, ḟ ] has the highest Dunn indexes and captures
at least 10 to 12 most distinct phases in temporal sensory
measurements.

3) Selection of state input: Based on the grasping data
analysis and clustering analysis above, the state combination
st = [q̇, f , ḟ ] can differentiate object properties and character-
ize the grasping phases. To further evaluate the effectiveness of
history data, we designed two types of state input for policy
learning: (1) the instantaneous state vector st at the current
timestep, and (2) the temporal state tuple st−H:t using history
data within a fixed time window.

D. Design of grasping controllers

As for the effective skill transfer, we used supervised learn-
ing, which is computationally efficient to train the grasping
policy π directly with the demonstration data. To focus on

Sensory 
Feedback

H
N × Fdim

B LSTM

hDNN

iDNN

Output 
action

B × (N × Fdim × H)

B×(N × Fdim)

Control ActionCombinatorial State Network Policy

Output 
action

Output 
action

𝑓 buffer

ሶ𝑞 buffer

ሶ𝑓 buffer

LSTM controller

hDNN controller

iDNN controller

Fig. 5: Three network structures and their feedback states.

the evaluation of history information, and to alleviate any
influence to the results introduced by the network structures,
we used the simplest network structure – fully connected
neural network – as the structure of iDNN (DNN with instan-
taneous information) using st, and hDNN (DNN with history
information) using st−H:t. LSTM network is widely used in
processing sequential data. Hence we also designed an LSTM-
based controller using history input st−H:t. The time window
used in this work is 0.4s, which can cover the transition
phase of contact in most robotic grasping. Moreover, an over-
long history will include unneeded information and increase
computation, while a too-short history is not enough to distin-
guish different grasping phases. Empirically, we choose this
parameter based on the empirical knowledge of the average
contact phase during most tasks. The detailed structures and
state inputs of three controllers are shown in Fig. 5.

1) iDNN: The input is the instantaneous state st = [q̇, f, ḟ ],
with dimension I1 = B × (N × Fdim), where B denotes the
batch size. N denotes the degree of freedom and Fdim denotes
the feature dimension. The output is the finger action vector
with dimension N × 1. The network has two fully connected
hidden layers.

2) hDNN: The input is the temporal state tuple st−H:t in-
cluding the history state within a time window, with dimension
I2 = B× (N ×Fdim×H), where H denotes the size of time
window. Except the input size, the rest of the network structure
is the same with iDNN, with two fully connected hidden layers
and one output layer.

3) LSTM: Recurrent neural network (RNN) is applied to
construct the LSTM grasping controller. The input state with
dimension I3 = B × (N × Fdim)×H is fed into two LSTM
layers and one fully connected output layer.

E. Policy learning

With the collected training dataset, the aforementioned con-
trollers are trained via supervised learning. The loss function
is defined as mean squared errors between the ground truth
and the output of control actions (q̇d) plus L2 regularization:

loss =

n∑
i=1

(yi − ydi )
2/n+ λ

k∑
i=1

ω2
i , (2)
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Fig. 6: Unseen objects with various physical properties for testing.

where yi is the ground truth of finger actions at timestep i,
and ydi denote the network’s output actions. n is the number
of samples. ωi is the weight of the network, and λ is 0.001.

F. Evaluation of robustness

To evaluate the robustness of successful grasps against
perturbations, we define γ as the force metric which is the
resultant force generated by all the actuators of the fingers:

γ =

√√√√ n∑
i=1

f2i , (3)

where fi is the measured force of each actuator, n is the
number of fingers. In this paper, we only consider the grasping
of general daily objects, excluding fragile objects like empty
egg shells. Hence as long as the grasping forces do not damage
the object, this metric can indicate the resistance against
external disturbances. In the following experiments, the force
metric γ is used to measure the robustness of each grasp of
different objects.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Hardware setup

An anthropomorphic multi-fingered hand, Inspire Robot
Hand, is used for experiments. The hand has six degrees of
freedom, two for the thumb and one for each of the remaining
fingers. Each degree of freedom is driven by a linear actuator
with a one-dimensional force sensor and a position sensor
mounted at the output of the drive chain, detecting the real-
time force and position of the motor. We have a customized
control loop running at 50Hz to update the position references
of an internal position-control loop to achieve velocity control.

B. Grasping experiments with unseen objects

TABLE II: Success rates for grasping experiments and effective state
combinations for policy learning.

iDNN hDNN LSTM
Success rates 93% 94% 88%

Valid
combinations None q̇, f+q̇, ḟ+q̇,

f+ḟ+q̇
f , f+ḟ , f+q̇,

f+ḟ+q̇

Fig. 7: Distribution of grasping forces from different controllers over
the testing objects, including the mean and standard deviation.

(a) Small toy (b) Plastic model (c) Bottle

(d) Soft toy (e) Peeled boiled egg (f) Pepper bottle

Fig. 8: Grasping objects with increasing sizes (top row) and increas-
ing stiffness (bottom row).

To evaluate the robustness and generalization of the learned
controllers, we conducted grasping experiments on 100 unseen
objects with various sizes, shapes and stiffness, as shown in
Fig. 6. The wrist of robotic hand is positioned by an operator,
who selects the grasping pose, and the rest of in-hand grasping
is executed by the learned controllers. The success rates of
three controllers are in Table II, and hDNN controller has the
best performance with the success rate of 94%.

Fig. 7 shows the distribution of force metric γ over the
grasping experiments of unseen objects with three proposed
controllers. Despite of a high success rate, the iDNN controller
has a smaller standard deviation of γ values, indicating a
smaller range of adaptation of forces to different objects.
LSTM controller has higher standard deviation and better
adaptability to objects with different stiffness, but has the
lowest average γ value, which is less robust against uncertain-
ties. Compared with iDNN and LSTM controllers, the hDNN
controller is more versatile – on average, it generates larger
grasping forces and also has a wide range of force adaptation.

C. Comparison study between three controllers

This section presents the results from grasping 6 distinct
and representative objects to demonstrate the performances of
learned controllers, as shown in Fig. 8.

1) Grasping objects with similar stiffness and different
sizes: As shown in Fig. 9 (a), hDNN and LSTM controllers
generate distinct output actions at different grasping phases,
but iDNN controller generates relatively constant output dur-
ing the grasping. As shown in Fig. 9 (b), compared with iDNN,
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Fig. 9: Comparison of three controllers. (a) Output actions (actuator
velocity of index finger) for grasping a small toy, a plastic model,
and a bottle respectively (top to bottom); (b) The same data sorted
by iDNN, hDNN, LSTM controllers respectively (top to bottom).

Fig. 10: Comparison of three controllers. (a) Grasping forces during
grasping a soft toy, a peeled boiled egg, and a pepper bottle
respectively (top to bottom). (b) The same data sorted by iDNN,
hDNN, and LSTM controllers respectively (top to bottom), and the
transitions are in yellow highlight.

the time-series action curves of hDNN and LSTM are more
distinct for different objects shown in Fig. 8(a) - (c), indicating
that the history data contributes to the disambiguation of object
sizes, and can potentially lead to better adaptability.

2) Grasping objects with similar sizes and different stiff-
ness: For grasping objects shown in Fig. 8(d) - (f), though the
finger joint configuration is similar once settled, the dynamic
transitions are very different during the contact. With st−H:t =
[q̇, f , ḟ ] capturing such transitional features within a time
window, Fig. 10 (b) shows that hDNN and LSTM controllers
have distinct force adaptations, e.g. 3 different stable grasping
forces for 3 different objects. The LSTM controller has smaller
grasping forces γ than the other two controllers in general as
can be seen in Fig. 10 (a), resulting in softer grasps, which is
consistent with the statistical results in Fig. 7.

D. Ablation study

To evaluate the effect of each feedback as the controller
input, the ablation study has been conducted. Fig. 11 shows
the profiles of output actions during grasping the pepper
bottle using the three proposed controllers trained with all the
possible state combinations. Empirically, the controllers that
generate distinct output actions at different grasping stages are
regarded as adaptive and reactive, and the corresponding state
combinations are effective. As demonstrated in the Fig. 11(a),

Fig. 11: Output velocity of index finger during grasping the pepper
bottle using three controllers trained with different state inputs.

Fig. 12: Settled grasping force using different state feedback from
the hDNN (left) and LSTM (right) controller respectively. The
combination in the left bar filled with slash has the best performance.

none of the iDNN controllers are adaptive, generating rela-
tively constant actions during the grasping; While in Fig. 11(b)
and (c), some state combinations are effective in training
adaptive hDNN and LSTM controllers. The effective state
combinations for three controllers are listed in Table II.

The iDNN controller using instantaneous feedback st with-
out the history data merely generated constant finger actions,
which suggests that st does not capture sufficient information
for encoding human grasp skills. Contrarily, with history
information st−H:t, both hDNN and LSTM controllers achieve
more human-like grasping, though the effective input combi-
nations vary as shown in Table II.

Further, Fig. 12 compares grasping forces over rigid and
deformable objects, suggesting that the combination of multi-
sensory data is more effective in learning adaptive grasping.
For hDNN and LSTM controllers, the learned policies using
the complete state combination [q̇, f, ḟ ] can generate the most
distinct grasping forces for rigid and soft objects.

E. Comparison with the baseline controller

To evaluate the effectiveness and adaptiveness of the learned
controllers, we compared them with a pre-programmed base-
line controller, which generates constant joint velocities and
has a threshold on the grasping force computed as in Eq. (3).
Once the grasping force exceeds the threshold, fingers will
stop moving and maintain the current joint positions. The force
threshold is pre-defined and fixed during the experiments. A
paper card is chosen as the target object so that its deformation
can be visually observed to evaluate the grasping performance.
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Fig. 13: Comparison by grasping the unseen card: (a-b) Baseline
controller with a high and low force thresholds, respectively; (c)
iDNN controller; (d) hDNN controller; (e) LSTM controller.

Fig. 13 (a) and (b) show the grasping motion of the baseline
controller with a high (4N) and low (2N) force threshold
respectively. The difference in the performances shows the
importance of a proper force threshold, which requires the
prior-knowledge of the object. The iDNN controller generated
excessive forces and bent the card, leading to a failure and poor
adaptation to low object stiffness during the interaction. In
contrast, hDNN and LSTM controllers can hold the card stably
without prior-knowledge of the card’s physical properties,
indicating that they have certain adaptability to the unknown
object stiffness and can generate different grasping forces
while interacting with different objects. On contrary, the iDNN
controllers can only apply constant grasp forces with no self-
adaptation, and the baseline controller requires a properly
tuned force threshold.

F. Similarities of human and robot policies

The aforementioned results indicate that the history states
play an important role in distinguishing the robot grasping
phases, and encoding latent information of object shape and
stiffness, which enables adaptive grasping of various objects.

Though hDNN and LSTM controllers have comparable
performance, the former is better because it has a simpler
network structure, larger grasping force and better adaptability
to various objects. We constructed the nearest sample neigh-
bours by t-distributed stochastic neighbor embedding (t-SNE)
as shown in Fig. 15, using actuator measurements from human
tele-operated demonstrations and hDNN-based grasping. The
visualisation of large overlapping areas suggest the underlying
similarities between the human and learned policies, as well as
the effectiveness of history states in representing and extracting
the state-action mapping from human grasp policies.

G. Investigation of failure cases

The success of grasping an object depends on the selection
of contact points by the user, especially for the positioning the
fingertips. Fig. 14 and Fig. 16 demonstrate both the success
and failed grasping of representative objects using hDNN

controller. Fig. 16(a) and (b) show the failures caused by un-
balanced and unstable contact points. Due to the characteristics
of point contact, it is also difficult to grasp heavy and slippery
objects, as shown in Fig. 16(c).

VI. DISCUSSION

In this paper, we focused on the dexterous grasping and
adaptive control of the robotic fingers, which is important
while lacking of the prior-knowledge of the object’s mate-
rial and stiffness. With human demonstrations, the proposed
hDNN grasping controller is capable of generating adaptive
forces to grasp objects with various sizes and stiffness, solely
based on the robot proprioception data.

The proposed grasping controller requires the minimum user
input: merely a 0-1 activation to start and stop the grasp
motion. Therefore the controller can be implemented in many
scenarios, e.g. teleoperation system or prosthesis system where
the arm motion is controlled by the user and the grasping
motion is executed by the proposed controller, which alleviates
the operator’s mental load from complex grasping control.
Also, the grasping controller can be integrated with any off-
the-shelf grasp planning algorithms.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a learning-based approach of
adaptive grasping with an anthropomorphic robotic hand based
on few real human demonstrations. We studied different
multi-sensing state combinations to encode the state-action
mapping of human grasping skills. Three different neural
network structures are designed to compare the effectiveness
of using the instantaneous and history states in the policy
learning. The ablation study and data analysis showed the
importance of history data in differentiating grasping phases
and generating more robust and adaptive grasping actions.
Finally, we extensively tested the learned hDNN controller
with 100 unseen objects. The experimental results showed that
the learned controller was capable of grasping objects with
different shapes and stiffness, based on the transferred state-
action mapping.

One future extension is to integrate the adaptive grasping
controller with grasp planning algorithms which generate
suitable pre-grasp poses given vision-guided object semantics.
Therefore, more automatic “reach and grasp” motion can be
integrated. Furthermore, we will study the usage of more sen-
sory feedback, e.g. tactile and visual information, to improve
environmental perception and enable the learning of more
intelligent and versatile grasping policies.
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Fig. 14: Grasping a variety of objects with different physical properties using the trained hDNN controller (see accompanying video).

Fig. 15: T-SNE analysis map of human and robotic grasping policies.

(a)

(b)

(c)

Fig. 16: Representative failures of grasp attempts.
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