
1

Haptic exploration of unknown objects for robust
in-hand manipulation
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Abstract—Human-like robot hands provide the flexibility to
manipulate a variety of objects that are found in unstructured
environments. Knowledge of object properties and motion
trajectory is required, but often not available in real-world ma-
nipulation tasks. Although it is possible to grasp and manipulate
unknown objects, an uninformed grasp leads to inferior stability,
accuracy, and repeatability of the manipulation. Therefore, a
central challenge of in-hand manipulation in unstructured en-
vironments is to acquire this information safely and efficiently.
We propose an in-hand manipulation framework that does not
assume any prior information about the object and the motion,
but instead extracts the object properties through a novel haptic
exploration procedure and learns the motion from demonstration
using dynamical movement primitives. We evaluate our approach
by unknown object manipulation experiments using a human-like
robot hand. The results show that haptic exploration improves the
manipulation robustness and accuracy significantly, compared to
the virtual spring framework baseline method that is widely used
for grasping unknown objects.

Index Terms—Haptic exploration, Dexterous manipulation,
Grasping force optimisation, Learning from demonstration

I. INTRODUCTION

The future of robotics lies in unstructured environments.
Robots are expected to operate in environments that are not
specifically designed for them, such as daily human environ-
ments [1] or even hostile environments [2]. Unlike industrial
settings, robots in these contexts need to deal with previously
unknown objects and tasks [1], [3]. Coping with such variety
of objects and tasks can be facilitated using robot hands that
are similar to human hands: in fact, anthropomorphic hands
have the obvious advantage of fitting the environments and
tools which are designed for humans [4].

Robots operating in an unstructured environment are re-
quired to carry out novel tasks on novel objects. We proposed
a solution for learning object-centric in-hand manipulation
tasks from demonstration [5]. Our solution uses dynamical
movement primitives (DMPs) [6] to learn a generalizable
and robust representation of the desired motion. The system
was able to execute these motions using the virtual spring
framework (VSF) [7], an object-agnostic grasping method.
However, being object-agnostic comes at the cost of manip-
ulation robustness. The forces that are directed towards the
centre of the contact points may generate slips, as shown in
Fig. 1. Contact slips perturb the grasp in an uncontrolled way,
reducing the in-hand stability of the object.
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Fig. 1. (a) When the robot fingertips are connected to the object frame O
with virtual springs, the spring force (red) may become tangential to the object
surface, fall outside the friction cone (green) and cause a contact slip. Ideally,
all grasping forces must remain in the friction cone. (b) An illustration of the
classical virtual springs and friction cones (green) on different object shapes.
Below, finger slips occur as the spring forces are outside the friction cones,
while above the springs do not cause a slip.

In this work, we propose a novel haptic exploration method
for extracting necessary object properties to improve the in-
hand manipulation robustness and accuracy [8], [9]. Some of
the object properties (shape, pose, colour) can be obtained
by vision; however, some (friction, centre of mass, inertia
parameters) require tactile interaction with the object. For
shape and pose, touch sensing is still useful in scenarios where
vision modalities are not available or the object is occluded
[8]. In this work, we use only the touch interaction to extract
the surface normal and friction information at contact points.
These properties are chosen as they are required to calculate
and satisfy the friction constraints and prevent unwanted slips.

Our exploration method is designed to be safe and efficient,
which are the requirements of operating in an unstructured
environment. In this context, safety is related to the manip-
ulated object. Losing or damaging the object at hand means
a failure of the task, and it may have further consequences
depending on the application. Efficiency is the requirement that
the exploration concludes in a short time without interruption.

When an object shape is fully known, the motion can be
constrained to prevent unsafe interactions [10]. However, the
shape assumption is not realistic in unstructured environments.
The safety problem is often avoided by fixing the object pose
physically [11], [12], however, methods that work in the wild
cannot impose such constraints. Some methods depend on
unsafe actions such as gravity-induced object slips to observe
the object properties [13], [14]. We apply the exploratory
actions while the object is lying on a supporting plane to avoid
dropping it unsafely. Our multi-fingered setup allows inducing
slips without depending on external forces, such as gravity-
induced forces. As a consequence, we continuously balance
the grasping forces during exploration so that the object is not
moved or lost (Sec. IV-B4).
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With the combination of haptic exploration and learning
from demonstration, an in-hand manipulation framework for
unknown objects is formed. This framework aims to obtain
the two components of missing information in unstructured
environments. Motion information is learned from demonstra-
tion of a human user and object information is extracted by
autonomous haptic exploration as illustrated in Fig. 2. We use
the extracted object information to define a grasping force
optimisation (GFO) problem which is solved to determine the
fingertip forces that satisfy the friction constraints (Sec. IV-D).

We evaluate the effect of haptic exploration directly on the
performance of in-hand manipulation tasks on unknown ob-
jects. We execute the tasks that are learned from demonstration
using a four-finger anthropomorphic robot hand, on objects
of different shapes and surface materials. We compare our
exploration-based approach to our baseline, the VSF, which is
widely used for object-agnostic grasp and manipulation [7],
[15]–[18], including our previous work [5]. Our current work
differs from [5] as we add a haptic exploration step before the
manipulation and apply GFO to maintain a better grasp. The
results show that haptic exploration improves the manipulation
robustness and accuracy significantly.

Our contributions are summarised as follows:
• We propose a novel haptic exploration method that caters

to work safely and efficiently in real-world scenarios, that
is, without damaging or losing the object, and concluding
in a short time.

• We evaluate the effect of haptic exploration directly on
in-hand manipulation of unknown objects, through real-
world robot experiments. We publish the data collected
in these experiments [19].

We begin with the discussion of the related work in Sec. II.
Then we give the overview of our framework in Sec. III and
the details of its modules in Sec. IV. Lastly, in Sec. V & VI
we report our experiments and conclusions.

II. RELATED WORK

A. Haptic exploration

Tactile perception is a vital skill for a wide range of robotic
applications such as grasping, locomotion, human-robot inter-
action and manipulation [9]. Tactile perception methods can be
categorised by being online or offline, data-driven or analytic,
and by the object properties they target [8], [9].

Tactile perception may happen during task execution [13],
[14], [20] or in a dedicated exploration phase [21]–[23]. As
an exception [24] integrates the exploration strategy into task
execution to discover the object shape while rotating it. We
use an exploration strategy because we try to gain object
properties information and the exploration requires visiting
possibly unstable states that are not safe for task execution.

The exploration approaches can also be categorised as data-
driven or analytical [9]. Our approach is analytical which has
the advantages of not depending on data collection and being
human-interpretable. However, data-driven approaches enable
working with the elements for which precise modelling is
difficult such as soft robots [25], deformable objects [26],
and complex sensor inputs [27]. As shown recently [28], they

can also be used for decision-making during the exploration
process.

Haptic exploration applications target different object prop-
erties [8] such as: the global object shape [21], [29]; the local
object geometry [30], [31]; the surface texture [11], [12]; the
stiffness [14], [22]; the centre of mass [10], [22]; or the friction
coefficient [32], [33]. In this work, we aim to extract the
local surface normals and the friction coefficient information
as required by our grasp optimisation approach. Hence, we
discuss the works on the friction property more in detail below.

The friction properties of an object are mainly useful in
avoiding contact slips and improving grasp stability [32].
Therefore, some approaches rely on online slip detection, with-
out estimating the friction, to apply reactive control actions
when an incipient slip is detected [14], [20]. The online slip
detection approaches can be built on data-driven models in
systems that are hard to model, such as soft hands [25]. Other
approaches estimate the static friction coefficient µs which
indicates the shear/normal force ratio when the slip occurs.
Estimation of µs is done either on the initial contact or by
letting a gross slip occur [32]. The former is achieved using
specially designed tactile sensors that measure strain [34] or
make multiple contacts with the object at different angles [35].
Another specific sensor encourages incipient slips to measure
µs before a gross slip occurs [36]. However, having an ad-
hoc friction sensor is costly and the presented sensors are
large in size. The methods that let a gross slip happen usually
use gravity to cause slips while lifting the object [13], [14].
This approach carries a risk of dropping the object, which
is undesired when the object is fragile or it contains liquids.
Also, it is harder to induce gravity-based slips when the object
is lightweight. If the exact object shape is known, the fingers
can be commanded to slip tangentially to the surface while
measuring the friction coefficient [10]. However, we do not
assume a known object model. Some works fix the object
pose physically [11], [12], however, this is not possible in
autonomous scenarios.

Our method depends on slip detection to identify the
friction cone at a contact point. Without prior knowledge of
the friction model, slips can be detected by analyzing the
vibration frequencies [37], [38], comparing the normal and
tangential force ratio [13], detecting contact displacements
with a camera-based sensor [39], modelling the uncertainty
in time-series data [40] or training a classifier on tactile
arrays [20], [41]. Vibration-based approaches can be applied
with affordable sensors, however, they may suffer from the
vibration noise from other sources [33], [42]. Initially, we tried
to use a vibration-based approach for slip detection. However,
it generated a high false-positive rate due to the noise. In the
current version, we are using a position-based approach for
slip detection, but it could be replaced with a tactile-based
approach if better sensors were available, e.g. more sensitive
[43], [44] and distributed over a larger surface [45], [46].

In summary, our haptic exploration method is a novel way
of estimating friction, using simple sensing modalities, without
object shape knowledge and without relying on gravity. Our
experiments are novel in the sense that we show the effect
of haptic exploration directly on in-hand object manipulation
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performance, while the existing works focus on grasp stability
without motion.

B. In-hand manipulation

In-hand manipulation (or in earlier literature, dexterous
manipulation) is the problem of manipulating an object w.r.t.
the hand frame [47]. The methods dealing with this problem
have to determine the actuator forces/torques that achieve
the desired object motion [48]. In this work, we focus on
manipulation using high-DoF multi-fingered robot hands, as
opposed to under-actuated grippers that exploit the environ-
ment constraints [49] or specific hand dynamics [50] to achieve
in-hand manipulation.

The in-hand manipulation problem can be divided into
motion planning, which determines the desired trajectory of
the object; and control, which executes the manipulation safely
and accurately [51]. For motion planning, we use the learning
from demonstration (LfD) approach that we proposed earlier
[5], for its data efficiency and generalisation capabilities.

An in-hand manipulation controller must deal with both
keeping the object in grasp and performing the object motion
simultaneously [51], unlike the classical manipulation problem
where the object is held tightly by a single manipulator. An-
swering these requirements is possible by careful modelling of
the robot, object, and motion [52]. However, such information
is often not available in real-world manipulation scenarios [1].

One way to deal with the missing object knowledge is in-
creasing sensing capabilities, such as tactile sensing [53] or in-
hand object tracking [54]. However, when such sensing is not
available, it is possible to mitigate the uncertainties in object
information by adding active or passive compliance to the
system. Recent works emphasise the importance of physical
compliance by achieving complex in-hand manipulation using
soft hands [55], [56]. Where such hardware is not available, a
common way to manipulate unknown objects is the VSF, that
is, creating a virtual coupling between the robot fingers to ap-
ply the grasping forces [7], [16]–[18]. In grasping, it is shown
to increase robustness under uncertainty [18]. A common
aspect of these works is to define the object frame w.r.t. the
robot fingertips [57]. [7], [18] assign a constant stiffness for the
virtual springs. However, [16] learns the impedance parameters
from demonstration and [17] learns a probabilistic model of
stable grasps which allows online adaptation of spring stiffness
and rest length parameters. We also adopted the VSF in our
previous work [5]. Another approach to active compliance
regulates the common grasp stiffness instead of individual
fingers to achieve a task-dependent stiffness ellipsoid [58]. In
the past VSF works, the grasping forces are directed towards
the virtual object frame, which may cause large contact slips
with non-round objects as explained in Fig. 1. Our work
differs as we extract object information by haptic exploration
to optimise the grasp.

Given an already stable grasp, non-compliant in-hand ma-
nipulation control can also be formulated without an object
model. [59] excludes all sensing except the onboard sensors to
achieve stable blind-grasping, however, it requires the friction
coefficient and local surface normals to be available. Our hap-
tic exploration method could be integrated with this controller

to provide this information. [60] proposes a purely kinematic
trajectory optimiser that minimises the displacement of the
contact positions from the initial grasping points, rather than
keeping fixed contact points, for improved manipulation accu-
racy. This could be an alternative over our no-slip assumption
in manipulation control too. However, the difference of our
method is that the motion plan is learned from demonstration,
for the added value of the trajectory shape, while in [60]
only the final pose matters. Additionally, we report the contact
stability using fingertip force sensing in our experiments.

In another related work [54], online optimisation adapts
the grasping forces, instead of directing them towards the
object centre. The surface friction coefficient is assumed to be
known, and the surface normals needed for the optimisation
are estimated using vision-based in-hand object localisation.
The main differences with our work are that: we do not assume
friction to be known; we use haptic exploration (instead of
vision) to estimate the normals.

Notably, some recent reinforcement learning methods use
a single model to answer both motion planning and low-
level control problems [61]–[63]. These methods learn highly
dexterous behaviour through trial and error. However, they
were only applied to manipulation scenarios that facilitate safe
repetition [62], [64] since they require long training times.

For control, we use a hybrid force/position controller in
which the internal forces are determined by the GFO. GFO
aims to balance the internal forces acting on the object
while satisfying the grasping constraints. Definition of the
grasping constraints requires the local surface normals and
friction information which we obtain through haptic explo-
ration. The expression of the optimisation problem is important
for the computation complexity and solution quality [65]. The
source of complexity in these problems is the non-linearity
of the objective and constraint functions. For this reason,
early works solved a linear approximation of the problem
using linear programming [66]. Different formulations such
as convex optimisation or second-order cone problems were
used alongside specific algorithms to increase the efficiency
[67]. A comparison shows the accuracy advantage of the non-
linear optimisation approach with a speed trade-off against the
linearised approaches [65]. We adopt a non-linear approach in
this paper, as our experiments show that it is sufficiently fast
for our requirements.

In this work, we focus on manipulations within the
workspace of the fingers (coordinated manipulation [47]) and
proceed to evaluate our haptic exploration contribution on in-
hand manipulation. Answering the other types of dexterous
manipulation problems where the contact points relocate (fin-
ger gaiting [47]) requires object shape information, of which
our method remains uninformed.

III. FRAMEWORK

In this section, we describe the overall structure of our
in-hand manipulation of unknown objects framework, and
dependencies between the modules. The details of the modules
are described later in Sec. IV. We can examine the framework
in two sections as depicted in Fig. 2: Knowledge acquisition
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Fig. 2. Our in-hand manipulation framework aims to acquire the missing
information of both the motion and the object efficiently before manipulation.
The motion is learned from demonstration of a human user and the object
information is extracted by autonomous haptic exploration. This information is
used during manipulation to achieve the task robustly. The object information
is used to adapt the grasp during manipulation and the learned movement
primitives are parametrised for the specific task goals. The manipulation is
achieved by a hybrid force/position controller. This paper focuses on the haptic
exploration and grasp adaptation components, highlighted by yellow.

(Sec. III-A), which happens before manipulation; and in-
hand manipulation (Sec. III-B), which achieves control during
manipulation.

A. Knowledge acquisition

Our system includes two modes of knowledge acquisition:
extracting the object information by haptic exploration (Sec.
IV-B) and learning the task by LfD (Sec. IV-C). The knowl-
edge of the task and of the object are then used by the in-
hand manipulation controller to realize the task robustly with
a given object. This paper focuses on the haptic exploration
component. The LfD component is presented in a previous
work [5].

The two components are separate from each other, and
do not happen simultaneously. The LfD component is used
when a new task has to be learned; the haptic exploration
is used when a known task is applied to a new object.
Both components acquire the required information efficiently,
i.e. without requiring long training times: LfD achieves this
using DMPs, which learn a motion primitive from a single
demonstration [6], and the haptic exploration achieves this
by a short interaction procedure (described extensively in this
paper).

Our implementation of the haptic exploration does not
require any tactile sensing; however, additional tactile sensing
could improve the slip detection, which is part of our haptic
exploration, and the opposing thumb assumption that we
discuss in Sec. IV-B3 might be relaxed.

B. In-hand manipulation

Our in-hand manipulation method combines a force con-
troller for grasping and a position controller for manipulation
(Sec. IV-E). The force controller is modulated by the desired
forces that are calculated by the GFO (Sec. IV-D). The GFO
needs the surface normal and friction information that are
extracted by haptic exploration (Sec. IV-B). On the other hand,
the position controller needs the desired object trajectory,
which is obtained by parametrisation of the DMPs which are
learned from demonstration (Sec. IV-C).

IV. METHODOLOGY

In this section, we present the details of the modules of
our framework. We begin with the definition of the virtual

fingertips mean mid-range

Fig. 3. Virtual object position calculated using different centre measures with
asymmetrical (left) and symmetrical (right) hand designs. When the fingertips
are asymmetrically distributed, the mean centre is biased towards the side that
has more fingers. We want the object position to be close to the geometrical
centre of the object, regardless of the hand design. As seen in the figures,
the mid-range measure gives a good approximation in both designs while the
mean is biased by finger density.

object frame that is central to our method (Sec. IV-A). Then
we describe the modules of the knowledge acquisition system:
haptic exploration (Sec. IV-B) and LfD (Sec. IV-C); and the
in-hand manipulation modules: the GFO (Sec. IV-D) and the
manipulation controller (Sec. IV-E). Lastly, we describe our
baseline method in Sec. IV-F.

A. Virtual Object Frame

We use a virtual object frame as the frame of manipulation
as we assume no object information. We use the virtual object
frame for multiple purposes in our framework. Firstly, we use
it as the object pose when recording and reproducing DMPs.
Secondly, we use it to track the expected contact points during
the exploration so that a slip can be distinguished from object
movement (Sec. IV-B3). Lastly, we use it during manipulation
to track the object pose and the relative contact poses, so that
the forces can be calculated in the object frame of reference.

The virtual frame is calculated only using the fingertip
positions pci, without any visual information. We follow the
existing literature in estimating the position and the rotation of
the object frame [57]. The virtual object frame xo = (po,Ro)
denotes the approximate pose of the object:

po = 1
n

∑n
i=1 pci (1a)

Ro = [r̂x, r̂y, r̂z] ∈ SO(3) (1b)

rx = pc1−pc3

∥pc1−pc3∥ + pc2−pc4

∥pc2−pc4∥

rz = (pc1 − pc3)× (pc1 − pc3)

ry = rz × rx

In the calculation of the frame orientation Ro, each axis is
normalised as v̂ = v/ ∥v∥. We use the hat operator to indicate
unit vectors and double vertical columns ∥.∥ to indicate the
L2-norm in this paper. n is the number of contact points.

This definition of frame orientation (1b) is specific to 4
contact points, however, it is possible to derive it for different
number of contacts.

In this work, we modify the position equation (1a) to use
the mid-range instead of the mean centre of the fingertips.
Because, for asymmetrical hand designs the mean centre is
biased towards the side that contains more fingers, as explained
in Fig. 3. In the case of the human-inspired Allegro Hand, one
thumb opposes three fingers, hence the mean is closer to the
fingers, instead of being close to the geometrical centre of



5

(a) (b)

Fig. 4. (a) In stage 1, the object is grasped initially with forces towards the centre and the contact shift vector vsi is observed. Using this information, the
approximate surface normal vni is calculated. (b) Snapshots of stage 1, on object 3. Green arrows illustrate the applied forces and red arrows illustrate the
slips. The robot applies a central grasp and observes the slip. Then, the object is regrasped with grasping forces along the normals, causing no slip. The initial
object pose and contact locations are preserved.

Algorithm 1 Stage 1 procedure
1: Initial grasp at points pci

2: Set fci towards po

3: slipi := 0
4: t := time in seconds
5: repeat
6: Apply balanced grasping forces (6)
7: slipi := Check for slip (5)
8: until slipi = 1 or time() > t+ 3 ▷ slip or 3s passed
9: if slipi = 1 then

10: Estimate contact normal vni (2)
11: else
12: vni ← fci

the object. The mid-range approach works reliably with both
symmetrical and asymmetrical designs as seen in Fig. 3.

The mid-range centre is calculated as follows: po,j =
(maxi pci,j+mini pci,j)/2. Each entry of the centre point po

is calculated as the average of the maximum and the minimum
values of its dimension over all contact points pci, eliminating
n, the number of fingers; where po = (po,1,po,2,po,3) ∈
R3,pci = (pci,1,pci,2,pci,3) ∈ R3.

B. Haptic exploration

We use haptic exploration to gain useful information about
the object to enhance the grasp robustness. The exploration
is done after the initial grasp, before lifting the object for
manipulation. The objective of the exploration is to estimate
the local surface normals and friction cones. This information
is then used in the GFO to set the constraints.

We propose an exploration procedure that consists of two
stages. The exploration begins with Stage 1 when the initial
contact with the object is made. Stage 1 uses the information
of the initial grasp to estimate the surface normals vni (Alg. 1).
Then, the object is re-grasped at the same pose, applying
forces alongside the surface normals, and the next stage is
executed. Stage 2 performs a more detailed search to estimate
the friction cone which is characterised by the tangent plane
orientation and the friction coefficient between contacting
materials (Alg. 2). We present the detailed descriptions of the
exploration stages in the following subsections.

1) Stage 1: Given a set of grasping points on the object,
without knowing the local surface normals and the friction

coefficient, a common way to grasp the object is by applying
forces towards the geometric centre (po) of the grasping
points. This grasp may cause contact slips if the object does
not have a round shape. Thus, we use this approach only for
the initial grasp and we observe whether a slip occurs (Alg. 1).
If the initial grasp does not cause a slip, then the object can
be handled without any exploration. If a slip occurs, the slip
vector vsi lies approximately on the plane that is tangential
to the object surface at the initial contact point as shown
in Fig. 4.a. We calculate the normal vector vni using this
information as follows:

vsi = p′
ci − pci

vf ||s = (fci · v̂si)v̂si (2)
vni = fci − vf ||s

In summary, vni is the vector that is perpendicular to vsi

and coplanar with fci. After calculating the surface normal,
the object is regrasped to restore the initial grasp point pci.
Snapshots of a stage 1 exploration is shown in Fig. 4.b.

2) Stage 2: In this stage, our aim is to determine the friction
cone at the contact. We assume that the object has a uniform
surface texture, hence the friction coefficient is the same for
all contacts.

Because the friction cone is normal to the surface and
symmetrical about the normal, it is sufficient to explore one
section of the friction cone. We explore the section that
contains both the surface normal and the initial grasping force
vector as shown in Fig. 5. This way, the explored forces stay
between the initial force and the surface normal of that contact.

The exploration procedure consists of regrasping the object
multiple times, applying a different grasping force at each
iteration. Depending on whether or not a slip occurs with that
force, we update the minimum slipping angle αµ, that is, the
smallest force/normal angle that caused a slip. αµ also defines
the edge of the approximate friction cone.

A move step rotates the contact force about an axis vR that
is orthogonal to the plane of search: vR = vni× fci. The next
force to explore f ′ci is generated as:

f ′ci = R(vR, θ)× fci. (3)

R(vR, θ) is a rotation matrix, equivalent to a rotation of angle
θ about the axis vR. The choice of θ is crucial for the speed
of the exploration. Scanning an arc of 60° linearly in steps of
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1° requires 30 steps on average. This would be impractical in
means of time. Therefore, we follow a binary search approach
to explore the cone section.

The binary search observes the middle point of the unex-
plored space at each iteration. Depending on the outcome of
the grasp, it chooses one of the two half-spaces to continue, as
illustrated in Fig. 5. Let θt be the rotation angle at step t. In the
beginning, θ0 is the angle between the centre-bound force fci
and the normal vni. Given that the finger slipped at the initial
grasp, we rotate halfway towards the normal: θ1 = −θ0/2. At
the next step, the rotation angle is halved again, however, the
sign of the rotation depends on whether a slip occurs:

θt+1 =

{
−|θt|/2 , slip
|θt|/2 , otherwise

(4)

The move step is repeated until the desired accuracy is
established. We terminate the search after 5 steps. Scanning
an arc of 60° in 5 steps decreases the unexplored space to
60/25 = 1.875°. We find it sufficient in this study. In the end,
the friction coefficient is determined as: µ = arctan(αµ).

The stage 2 procedure is applied only on the fingers that
slip at the initial grasp. The absence of slip indicates that the
initial force is good for this contact, hence no improvement is
required. In the example of Fig. 4.b, the thumb and the middle
finger do not slip, thus they are not involved in the rest of the
exploration. They maintain a force towards the centre during
exploration and manipulation.

The rotation of contact forces during the exploration may
break the constraint of zero net force and move the object.
This is undesired as it may lead to the loss of the object or
misleading slips during the search. To avoid this, the forces
are balanced during the exploration as described in Sec. IV-B4.
The balancing optimises the magnitudes of the forces in order
that the total wrench acting on the object is minimised.

An important building block of our haptic exploration
method is slip detection. It is used to direct the search and
mark the cases where the friction cone is violated.

3) Slip Detection: In our work, we use fingertip dis-
placement as the indicator of gross slips. Gross slips create
observable changes in the contact positions, hence after each
search step, the object must be regrasped.

A slip is detected when the distance between the contact
positions before (pci) and after (p′

ci) the grasp exceeds a
threshold aslip (H is the Heaviside function):

slipi = H(∥p′
ci − pci∥ > aslip). (5)

We determined aslip as 1.3 mm considering the encoder sensi-
tivity and slip performance in our setup.

This approach to slip detection has the advantage of not
requiring a tactile sensor, however, it is sensitive to the contact
positions. Although we balance the forces as described in the
next subsection, the object can move and rotate slightly during
the exploration. When detecting slips, we must disregard the
displacements due to the object movement, i.e., when all
contacts move together without slipping.

We use the virtual frame estimation as described in
Sec. IV-A to calculate the expected position of each contact

Algorithm 2 Stage 2 procedure
1: θi ← fci∠vni ▷ v1∠v2: angle between v1 and v2

2: loop(5 times)
3: Regrasp at pci

4: Apply balanced grasping forces (6)
5: slipi := Check for slip (5)
6: if slipi = 1 then
7: αµ ← fci∠vni

8: Update θi (4)
9: Rotate fci by θi (3)

10: Calculate µ = arctan(αµ)

Fig. 5. Stage 2 searches the local space of forces until finding the minimum
slipping angle. The force takes different orientations between the initial force
fci and the estimated normal vni on the plane that contains these two vectors.
The force is rotated to divide the space between the minimum slipping angle
and the maximum no-slip angle in half, as in a binary search. The next half-
space to search is determined by the slip status at the current angle.

point, i.e. the contact position if the initial grasp is preserved
(no slip occurred). However, the position of the virtual frame
shifts when a contact point slips, creating the delusion that
the object moved. For this reason, instead of using the virtual
object position, we use the thumb position as the reference
point. Since our robot hand has an opposing thumb design, the
thumb is unlikely to slip without moving the object. Following
this observation, we calculate the expected contact points
by their relative position to the thumb. Thus, slip detection
without tactile sensing requires the assumption of a robot hand
with an opposing thumb design. This assumption could be
relaxed using a more advanced tactile sensor for detecting slips
[33].

4) Balancing forces: We model this step as a bound-
constrained linear least-squares optimisation problem, to find
the coefficients ci that scale the unit grasping forces f̂ci, so
that, the total object wrench is minimised. The coefficients
are bounded between the lower and upper bounds (clow, cup):

minimise
ci

1

2
∥0−Ghc∥2 (6a)

subject to clow ≤ ci ≤ cup (6b)

G is the grasp matrix that maps the contact forces
(hc= [fc1fc2 . . . fcn]

T) to the object wrench. Each contact force
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is determined as the unit contact force scaled by its optimal
coefficient: fci = cif̂ci.

Please note, this is an underdetermined problem, that does
not always have an optimal solution. As a result, the object
wrench may become non-zero during the exploration, but it is
still minimised as much as possible. The supplemental material
shows the outcomes of force balancing during exploration.

The lower bound must be greater than zero (clow > 0) to
avoid the trivial solution of all zeros. We also choose an upper
bound for safety.

Compared with the GFO during the manipulation
(Sec. IV-D), this optimisation problem does not change the
directions of the forces, only adjusts their magnitudes. There-
fore, it has a lower dimensionality.

C. Learning from demonstration

We follow the LfD approach that is proposed in previous
work [5]. This method uses DMPs [6] to learn an in-hand
object motion from demonstration. The learning method is
object-centric, i.e., the learned DMPs encode the object tra-
jectory. The movement primitives can be parametrised to meet
the task requirements without losing the trajectory shape.

Task demonstration is delivered kinesthetically, by physi-
cally holding the robot and moving it to perform the desired
task. The controller applies grasping forces via the VSF
and compensates gravity during demonstration, however, the
position control is deactivated. The robot records the motion
of its fingertips and calculates the virtual object frame as
explained in Sec. IV-A.

The recorded object trajectory is used to learn a set of
DMPs. Each DMP describes an independent dimension of the
object pose. We store 3 DMPs for the position and 6 DMPs
for the first two unit axes of the rotation matrix. The third axis
is calculated later as a cross product of the first two. Please
note, since the rotation matrix representation is redundant,
i.e., members of the rotation matrix are not independent,
the learned DMPs may break the orthogonality of the axes.
Better treatment of Cartesian space orientation with DMPs is
proposed in [68].

When the task reproduction is requested, the learned
DMPs are modulated with the user-specified task conditions:
the initial object pose, the duration, and the final object pose.
These parameters are enough to create an object trajectory that
retains the shape of the learned motion. The object trajectory is
executed by the position controller as described in Sec. IV-E.
The details of the DMPs are omitted in this paper as we follow
the same DMP formulation as in the previous work [5].

D. Grasping Force Optimisation

We solve a nonlinearly constrained optimisation problem
to find the set of minimal contact forces hc that satisfies the
constraints of a robust grasp:

minimise
hc

∑n
i=1 ∥fci∥ (7a)

subject to Ghc = 0 (7b)
∥f tci∥/∥fnci∥ < µ (7c)

blow ≤ ∥fci∥ ≤ bup (7d)

We impose 3 types of constraints:
• Zero object wrench: The net wrench applied on the object

frame is null, so that the object pose is not perturbed by
the grasp controller (7b).

• Friction cone: Each contact force fci satisfies the Cou-
lomb friction equation where µ is the friction coefficient,
fnci and f tci are the normal and tangential components of
the contact force (7c). These components are calculated
using the surface normal vector v̂ni at that contact point.

• Force limits: We enforce lower and higher bounds on the
contact force magnitudes (7d). The lower boundary blow
is to apply sufficient force to lift the object, the upper
boundary bup is to keep the robot and the object safe.

This problem requires the friction coefficient µ, the normal
vectors v̂ni and the boundary constraints (blow, bup) to be
specified. Boundary constraints are set by the user, and the
normals and the friction coefficient are estimated by the
haptic exploration method (Sec. IV-B). We assumed hard
point contacts with friction (PCWF) when forming the grasp
matrix. In comparison to balancing the forces during haptic
exploration (Sec. IV-B4), the force directions are also variable
in this problem. Hence it is more flexible, but also more
complex.

E. Manipulation controller
The controller combines the force control signal uf for

grasping, the position control signal up for manipulation, and
the gravity compensation signal ug:

uc = uf + up + ug (8)

uc,uf ,up,ug ∈ Rm are vectors of torque commands for
the dexterous hand actuators. m is the total degrees of freedom
of the robot hand. ug is the set of actuator torques that cancel
the gravity effect on the robot fingers without any object.
Note the potential conflict between the force (uf ) and the
position (up) control signals, i.e., the grasping force signal
may perturb the object motion. For this reason, the GFO
constrains the grasping forces to induce zero wrench on the
object, as expressed in (7a).

The grasp torques are computed as uf = JT
hhc using the

desired contact forces hc from the GFO (Sec. IV-D), and the
hand Jacobian Jh [47].

We use PID control to produce up to follow a desired
object trajectory that is produced using the learned DMPs. We
first compute the fingertip trajectories by applying the current
relative transform from the object frame to the fingertips on the
whole object trajectory, adhering to our no slipping and rolling
assumption. Then, we apply inverse kinematics to create a joint
trajectory for each finger. These joint trajectories are used as
targets of the joint position controller.

We compare our haptic exploration method to the baseline
of the VSF. The baseline manipulation controller is the same
except that the grasping forces are generated by the VSF
instead of the GFO, without any object knowledge.

F. Baseline
The VSF generates the desired forces using virtual springs

that apply force towards the object frame. The force applied
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by each spring is calculated individually using Hooke’s law.
The grasping force for finger i:

fci = Kci(∥vfi∥ − Li) (9)

vfi = po − pci is the vector between the ith contact point
pci and the virtual object position po. Li is the rest length of
the spring connecting ith fingertip to the virtual frame origin.
We initialise the rest length proportionally to the measured
distance of the contact to the object centre when the fingers
are in touch with the object (Li = 0.9 ∥vfi∥). As a result, the
springs start applying the base grasping forces.

Kci is the stiffness of the ith spring determining the strength
of the coupling between the ends of the spring. We assign a
hand-tuned value to Kci depending on the object weight.

V. EXPERIMENTS

We evaluate our contribution by teaching the robot hand dif-
ferent tasks by demonstration and reproducing these tasks on
different objects. We evaluate the effect of haptic exploration
by comparing it to the baseline grasp with the virtual springs.
We run in-hand manipulation tasks with both approaches
and compare their performances. The results show that the
haptic exploration procedure improves contact stability and
manipulation accuracy significantly.

We first define our problem and performance measures in
Sec. V-A. Then, we present our setup (Sec. V-B) and dataset
(Sec. V-C). In Sec. V-D, we give the details of the grasp and
manipulation sequence that is used to collect the data. The
results are presented in Sec. V-E and discussed in Sec. V-F.

A. In-hand manipulation problem

The problem we focus on is robust in-hand manipulation
of unknown objects. In-hand implies that the object pose is
transformed w.r.t. the hand frame. Thus, the robot arm that
carries the hand does not move during manipulations. We
measure robustness by two criteria: stability of the finger
contacts on the object, namely the contact stability; similarity
of the executed motion to the learned motion, namely the
accuracy.

The haptic exploration works in the literature often use a
grasp quality metric to show improvement, however, in our
work the grasp does not change kinematically. Thus, we report
the contact stability as the direct outcome of more stable
grasps. This metric is also affected by the dynamics of in-hand
manipulation, thus highlighting the importance of friction-
aware force modulation. On the other hand, related works
generally present accuracy of the final object pose, however,
we report the accuracy through the entire trajectory as our
goal is to reproduce the desired motion as a whole.

1) Contact stability: We evaluate the contact stability dur-
ing manipulation by the persistence of the touch signal on
the fingertips. The absence of touch means that contact with
the object is temporarily lost. In a robust grasp, the contacts
should be maintained throughout the manipulation. This metric
is quantified as the ratio of time in touch to the total time T ,
for all n fingers:∑n

i=0

∑T
t=0 H(∥fsi(t)∥ − af )/nT (10)

(a) (b)

Fig. 6. (a) Illustration of the objects that are used in the experiments,
their dimension sizes (mm) and expected contact locations (orange). The size
differences are the result of manual object production process. (b) We apply
the learned object motions on different objects to validate the method. In task
1 (above), the object follows an arc in the right-up direction, and in task 2
(below), the object is pulled upwards and rotated.

fsi(t) is the measured force for finger i at time t, H is the
Heaviside function and af is the threshold of touch.

2) Accuracy: We calculate the accuracy of manipulation
as the Euclidian distance of the actual object pose xo to the
desired object pose xdes

o , averaged over total time T :∑T
t=0 ∥xdes

o (t)− xo(t)∥/T (11)

We are reporting the position error epos in cm and the
orientation error erot in degrees, separately. We calculate the
orientation error as the angle between the unit x-axes of the
actual and the desired rotation matrices of the object frame.

B. Experiment setup

We test the method on a real robot setup consisting of a 16-
DoF Allegro robot hand mounted on a 6-DoF UR5 robot arm.
The arm is used only for carrying the hand, it is not involved
in the evaluated manipulation task. All 4 fingers of the robot
are used for manipulation.

Fingertips of the robot hand are equipped with the Opto-
force OMD 40 N force sensors. These sensors have 1000 hz
frequency and a flexible structure. The sensors are used to
detect contact pressures during grasping and manipulation.
This information is used for safety during grasp and the
calculation of the contact stability metric during manipulation.

All objects and the Allegro hand have ARUCO markers [69]
on their front face (Fig. 6.b). These markers are tracked using a
Kinect 2 camera that is facing the table where the experiments
are carried out. We do not use any visual feedback in control,
but we rely on ARUCO markers to acquire the object poses
for the accuracy evaluation. The marker on the robot acts as
a reference frame so that the object rotation is independent of
the camera position. Our method is implemented as a set of
robot operating system (ROS) packages. The codebase and the
data of our experiments are available online1. The UR5 arm is
controlled using MoveIt! library (moveit.ros.org). The Allegro
hand inverse kinematics and manipulator Jacobian are calcu-
lated using Orocos KDL library (www.orocos.org). We use
DMPBBO library for the implementation of the DMPs [70].

1https://gokhansolak.github.io/haptic-exploration-for-dexterous-
manipulation
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TABLE I
EXPERIMENT RESULTS: CONTACT LOSS AND TRACKING ERRORS ARE CALCULATED AS DESCRIBED IN SEC. V-A1 AND V-A2.

contact loss (%) orientation error erot (°) position error epos (cm) failures

obj. task baseline exploration baseline exploration baseline exploration base. expl.

1
1 3.752± 4.726 0.000± 0.000 6.126± 1.195 5.301± 0.505 0.561± 0.069 0.581± 0.087 0 0
2 11.554± 8.469 2.789± 5.673 16.108± 2.249 10.873± 0.792 0.649± 0.074 0.645± 0.103 1 0

2
1 3.791± 9.135 0.006± 0.020 7.140± 3.623 5.558± 0.756 0.570± 0.075 0.590± 0.061 0 0
2 13.935± 5.089 2.725± 4.462 17.494± 2.282 10.263± 0.778 0.760± 0.078 0.726± 0.087 2 0

3
1 1.176± 1.606 0.000± 0.000 6.839± 1.546 4.950± 0.884 0.598± 0.063 0.593± 0.099 0 0
2 17.869± 9.100 5.884± 6.680 16.762± 1.797 11.726± 1.312 0.643± 0.095 0.660± 0.157 1 0

We used the academic version of ALGLIB (www.alglib.net)
for optimisation. The non-linearly constrained optimisation
problem (7) is solved using the augmented Lagrangian al-
gorithm with analytical gradients. This algorithm may allow
some violation of constraints. An instance of the problem is
solved in 3-10 ms. The least-squares optimisation problem (6)
is modelled as quadratic programming and solved using the
QuickQP solver of ALGLIB.

C. Dataset

We evaluate our system by teaching two representative
motions by demonstration (Fig. 6.b). Both are demonstrated
kinesthetically, by holding the robot physically and guiding its
fingers. Although both are unconstrained 6-DoF trajectories,
task 1 is dominantly about translation and task 2, rotation. A
video of the experiments is available1.

The learned motions are then applied to objects with differ-
ent shapes and friction properties. Our setup includes 3 objects
of different shapes and textures as illustrated in Fig. 6.a. The
objects are handcrafted from extruded polystyrene, hence their
surfaces are not perfectly smooth. Objects 1 and 3 are covered
with tape, and object 2 is covered with paper to have different
friction properties. Different object shapes are chosen to have
different local surface normals. People use objects that show
these characteristics on daily basis, e.g., a bottle can have a
convex, straight or concave facet.

D. Procedure

Each experiment begins with the object placed manually
on a marked area. The robot hand is brought closer to the
area by the robot arm, the hand takes a programmed pre-grasp
shape and puts its fingertips on the object. We rely on pre-
programmed grasp planning because it is out of our scope.
This behaviour could also be achieved by a vision-based grasp
planning algorithm [71].

When all the fingers are in contact with the object, haptic
exploration begins. Haptic exploration proceeds in two stages.
Stage 1 probes the local surface orientation by applying the
centre-bound forces. If the force is not incidentally upright
the fingers slip along the surface. Using this observation, the
forces are updated to be perpendicular to the slip vectors and
the grasp is repeated as in Fig. 4.b. Stage 1 lasts about 12 s.

After estimating the surface normal, the exploration pro-
ceeds with stage 2. In this stage, the grasping forces are rotated
individually to explore the 3-dimensional contact force space.
It searches for the boundary of the friction cone iteratively

(Fig. 5). Stage 2 lasts about 130 s on average. When the
friction cone is estimated, the object is regrasped and the GFO
initiates with the extracted information. The GFO continues
until the end of the experiment.

After the exploration, the object is lifted by the robot arm.
The hand attempts the manipulation task that is encoded by the
learned DMPs. The learned motion primitives are modulated
with the initial object pose to create an object trajectory. This
trajectory is then mapped to each finger joint and executed
using PID control. Both tasks are executed in 16 s.

The baseline method does not involve the haptic exploration
procedure. In that case, the object is grasped using the VSF as
described in Sec. IV-F. After the grasp, manipulation is carried
the same way as above.

E. Results

We have carried out the experiments for 2 tasks (Fig. 6.b)
and 3 objects (Fig. 6.a) with and without haptic exploration.
Each case is repeated 10 times.2 Table I presents the contact
stability and accuracy results. It also includes the failure
counts for all cases where the object was lost during manip-
ulation. The failed cases are discarded during the calculation
of the performance metrics. For an easier comparison of the
results, we also provide the bar plots in Fig. 7. The orientation
trajectories are plotted for task 2 executed on object 1 to
demonstrate the tracking accuracy over time (Fig. 8).

We mark the cases with significantly better outcomes using
boldface fonts in the table. We used Welch’s t-test for the
significance analysis (p < .05) for its robustness when the
compared populations have different variances [72].

F. Discussion

The results show that the exploration procedure improves
the contact stability and the orientation accuracy significantly
in most of the cases while the position accuracy does not show
a significant difference overall (Fig. 7). The exploration also
prevented failures that occurred in task 2 with the baseline.

The inferior results of the baseline method can be attributed
mainly to contact slips. As it is illustrated in Fig. 1, the VSF
approach works best when the object has a round convex shape
where the forces are incidentally applied upright to the surface
of the object. In an unstructured environment, it is likely to
encounter objects for which this is not the case.

2For the object 1-task 1 case we considered only 9 repetitions, as one trial
was discarded during data analysis due to faulty marker tracking.
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The higher contact loss in the baseline outcomes can be
explained by the observation that all contacts slide towards the
centre, pushing and blocking each other. In some executions
of task 2, the index and the ring fingers squeezed the middle
finger away from the object during rotation. Additionally, we
observe short temporal contact losses during the manipulation
that can be attributed to the fact that the baseline applies more
tangential forces than the proposed method. In some cases, we
observed a partial loss of the grasp during manipulation where
a fingertip slips out of the surface while the object is held
with the other fingers. The exploration improves the contact

stability because it adapts the contact forces to increase the
normal components and satisfy the estimated friction cones.

The improvement in the orientation error erot can be ex-
plained by the observation that in the baseline all contacts slide
towards the centre, hence it is hard to apply the desired torque
on the object frame. On the other hand, the proposed method
helps to maintain the initial contact points which are further
from the centre, hence producing higher object torques with
lower contact forces. Fig. 8 shows this improvement clearly:
the exploration method both reduces the tracking error and
increases the repeatability of the motion by reducing the de-
viation. The consistency of the performance can be attributed
to the preservation of the intended grasp configuration. Please
note that Fig. 8 shows the motion of the object frame as tracked
using ARUCO markers; thus, the exact tracking error seen in
this figure was not available to the controller.

The improvement of contact losses and rotation errors was
minor for task 1. This is understandable as this task stays in
safer parts of the workspace in comparison to task 2, and the
rotational component of this motion is smaller.

We see very similar position errors epos overall. In all cases,
the average error is around 6.5 mm. This is satisfactory, given
the accuracy of the robot hand and the ARUCO marker track-
ing. The mean difference between the two approaches is less
than 0.5 mm. The translation accuracy epos is not significantly
affected by the contact slips because the translation direction
is different from the possible finger slip directions.

VI. CONCLUSION

We presented a novel haptic exploration method to extract
local surface normal and friction coefficient information at
contact points to improve in-hand manipulation performance.
Our haptic exploration method does not require complex
special-purpose sensors and object shape information. It is
designed to conclude in a short time without lifting the object
so it can be applied safely in unstructured environments.

The haptic exploration method and our earlier object-centric
LfD method constitutes a framework for in-hand manipulation
of unknown objects. This framework answers the problems of
the missing object and task information, towards the goal of
in-hand manipulation in unstructured environments. It learns
novel action knowledge from human demonstration and ac-
quires object information by autonomous haptic exploration.
We validate the contribution of haptic exploration directly on
robotic in-hand manipulation performance which has not been
shown before, to our knowledge.

In our previous work, we have used the VSF for in-hand
manipulation of unknown objects. However, for some object
shapes, grasp stability and manipulation accuracy issues arise.
Haptic exploration is introduced to answer these issues. Grasp-
ing with online force optimisation that is informed by haptic
exploration improves stability significantly. It also improves
the manipulation accuracy, specifically the orientation error.

Our method is limited to rigid, high-DoF anthropomorphic
robot hands. In the case of a non-rigid robot hand, our
method would require further sensing capabilities to accurately
measure the fingertip positions and feedforward force. High-
DoF is required to apply the diverse grasping forces at different
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contact points. Also, our haptic exploration approach is limited
to rigid objects as the presumed slip behaviour does not occur
for deformable objects.
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