27 research outputs found

    Learning Deep NBNN Representations for Robust Place Categorization

    Full text link
    This paper presents an approach for semantic place categorization using data obtained from RGB cameras. Previous studies on visual place recognition and classification have shown that, by considering features derived from pre-trained Convolutional Neural Networks (CNNs) in combination with part-based classification models, high recognition accuracy can be achieved, even in presence of occlusions and severe viewpoint changes. Inspired by these works, we propose to exploit local deep representations, representing images as set of regions applying a Na\"{i}ve Bayes Nearest Neighbor (NBNN) model for image classification. As opposed to previous methods where CNNs are merely used as feature extractors, our approach seamlessly integrates the NBNN model into a fully-convolutional neural network. Experimental results show that the proposed algorithm outperforms previous methods based on pre-trained CNN models and that, when employed in challenging robot place recognition tasks, it is robust to occlusions, environmental and sensor changes

    Robust Place Categorization With Deep Domain Generalization

    Get PDF
    Traditional place categorization approaches in robot vision assume that training and test images have similar visual appearance. Therefore, any seasonal, illumination, and environmental changes typically lead to severe degradation in performance. To cope with this problem, recent works have been proposed to adopt domain adaptation techniques. While effective, these methods assume that some prior information about the scenario where the robot will operate is available at training time. Unfortunately, in many cases, this assumption does not hold, as we often do not know where a robot will be deployed. To overcome this issue, in this paper, we present an approach that aims at learning classification models able to generalize to unseen scenarios. Specifically, we propose a novel deep learning framework for domain generalization. Our method develops from the intuition that, given a set of different classification models associated to known domains (e.g., corresponding to multiple environments, robots), the best model for a new sample in the novel domain can be computed directly at test time by optimally combining the known models. To implement our idea, we exploit recent advances in deep domain adaptation and design a convolutional neural network architecture with novel layers performing a weighted version of batch normalization. Our experiments, conducted on three common datasets for robot place categorization, confirm the validity of our contribution

    Efficient semantic place categorization by a robot through active line-of-sight selection

    Get PDF
    In this paper, we present an attention mechanism for mobile robots to face the problem of place categorization. Our approach, which is based on active perception, aims to capture images with characteristic or distinctive details of the environment that can be exploited to improve the efficiency (quickness and accuracy) of the place categorization. To do so, at each time moment, our proposal selects the most informative view by controlling the line-of-sight of the robot’s camera through a pan-only unit. We root our proposal on an information maximization scheme, formalized as a next-best-view problem through a Markov Decision Process (MDP) model. The latter exploits the short-time estimated navigation path of the robot to anticipate the next robot’s movements and make consistent decisions. We demonstrate over two datasets, with simulated and real data, that our proposal generalizes well for the two main paradigms of place categorization (object-based and image-based), outperforming typical camera-configurations (fixed and continuously-rotating) and a pure-exploratory approach, both in quickness and accuracy.This work was supported by the research projects WISER (DPI2017-84827-R) and ARPEGGIO (PID2020-117057), as well as by the Spanish grant program FPU19/00704. Funding for open access charge: Universidad de Málaga / CBUA

    On the Challenges of Open World Recognitionunder Shifting Visual Domains

    Get PDF
    Robotic visual systems operating in the wild must act in unconstrained scenarios, under different environmental conditions while facing a variety of semantic concepts, including unknown ones. To this end, recent works tried to empower visual object recognition methods with the capability to i) detect unseen concepts and ii) extended their knowledge over time, as images of new semantic classes arrive. This setting, called Open World Recognition (OWR), has the goal to produce systems capable of breaking the semantic limits present in the initial training set. However, this training set imposes to the system not only its own semantic limits, but also environmental ones, due to its bias toward certain acquisition conditions that do not necessarily reflect the high variability of the real-world. This discrepancy between training and test distribution is called domain-shift. This work investigates whether OWR algorithms are effective under domain-shift, presenting the first benchmark setup for assessing fairly the performances of OWR algorithms, with and without domain-shift. We then use this benchmark to conduct analyses in various scenarios, showing how existing OWR algorithms indeed suffer a severe performance degradation when train and test distributions differ. Our analysis shows that this degradation is only slightly mitigated by coupling OWR with domain generalization techniques, indicating that the mere plug-and-play of existing algorithms is not enough to recognize new and unknown categories in unseen domains. Our results clearly point toward open issues and future research directions, that need to be investigated for building robot visual systems able to function reliably under these challenging yet very real conditions. Code available at https://github.com/DarioFontanel/OWR-VisualDomainsComment: RAL/ICRA 202

    Visual Feature Learning

    Get PDF
    Categorization is a fundamental problem of many computer vision applications, e.g., image classification, pedestrian detection and face recognition. The robustness of a categorization system heavily relies on the quality of features, by which data are represented. The prior arts of feature extraction can be concluded in different levels, which, in a bottom up order, are low level features (e.g., pixels and gradients) and middle/high-level features (e.g., the BoW model and sparse coding). Low level features can be directly extracted from images or videos, while middle/high-level features are constructed upon low-level features, and are designed to enhance the capability of categorization systems based on different considerations (e.g., guaranteeing the domain-invariance and improving the discriminative power). This thesis focuses on the study of visual feature learning. Challenges that remain in designing visual features lie in intra-class variation, occlusions, illumination and view-point changes and insufficient prior knowledge. To address these challenges, I present several visual feature learning methods, where these methods cover the following sub-topics: (i) I start by introducing a segmentation-based object recognition system. (ii) When training data are insufficient, I seek data from other resources, which include images or videos in a different domain, actions captured from a different viewpoint and information in a different media form. In order to appropriately transfer such resources into the target categorization system, four transfer learning-based feature learning methods are presented in this section, where both cross-view, cross-domain and cross-modality scenarios are addressed accordingly. (iii) Finally, I present a random-forest based feature fusion method for multi-view action recognition
    corecore