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a b s t r a c t

In this paper, we present an attention mechanism for mobile robots to face the problem of place
categorization. Our approach, which is based on active perception, aims to capture images with
characteristic or distinctive details of the environment that can be exploited to improve the efficiency
(quickness and accuracy) of the place categorization. To do so, at each time moment, our proposal
selects the most informative view by controlling the line-of-sight of the robot’s camera through
a pan-only unit. We root our proposal on an information maximization scheme, formalized as a
next-best-view problem through a Markov Decision Process (MDP) model. The latter exploits the
short-time estimated navigation path of the robot to anticipate the next robot’s movements and
make consistent decisions. We demonstrate over two datasets, with simulated and real data, that
our proposal generalizes well for the two main paradigms of place categorization (object-based and
image-based), outperforming typical camera-configurations (fixed and continuously-rotating) and a
pure-exploratory approach, both in quickness and accuracy.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Mobile robots are increasingly gaining presence in human-
entered environments, like houses [1,2] or convention centers
3,4]. For a mobile robot to autonomously and safely navigate on
uch challenging scenarios, it needs a geometric representation
r map from which: plan paths, support map-based localization,
void obstacles, etc. Acquiring such geometric representation is
hen a first step when deploying a mobile robot. However, for
ntelligent operation, human interaction and assistance, geomet-
ic information must be complemented with semantic knowledge
SK) such as the recognition of the objects and places within the
nvironment, or their contextual relations [5,6]. SK is required
o improve the integration and usefulness of mobile robots, im-
roving object classification [7,8], enabling high-level decision
rocesses [1,9] or modulating the robot behavior (e.g. navigation
peeds, path planning, voice level, HRI tuning, etc.) [10,11].
In this work we focus on the problem of semantic place cat-

gorization, which refers to the problem of assigning a semantic
abel to places or parts of the environment once their geometry
s already known [12]. The usual approach involves a mobile
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950-7051/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
robot inspecting the environment autonomously while capturing
images that are used to infer the semantic label of each place
(also referred in the literature as visual place categorization).
For example, a robot in an unfamiliar home environment should
be able to recognize the nature of the rooms it visits, such as
kitchen, bedroom, etc. Yet, a major concern when this place
categorization is carried out by a mobile robot is the need of
a powerful attention mechanism to automatically identify char-
acteristic objects or distinctive views of a given place [13]. For
instance, a person taking a picture of a kitchen will naturally
frame the image to include representative details such as the
stove, the sink, etc. In contrast, the video acquired by a mobile
robot with a fixed on-board camera will probably include many
non-informative images, since the line-of-sight is fixed, typically
along the tangent of the robot path. This has an important impact
on the categorization efficiency by constraining the observed
areas of the environment, being necessary to either adapt the
robot’s path during the inspection [14], or to employ advanced
image representations and temporal fusion methods to overcome
it.

In this work, we propose an attention mechanism based on
active perception to the place categorization problem that relies
on a pan-only unit to control the line-of-sight of the camera.
Our approach does not alter the navigation path of the robot
but exploits the ability of recent robots to dynamically change
the head orientation during navigation to continuously select

the line-of-sight of the camera that maximizes the information
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Fig. 1. System-diagram of the proposed line-of-sight selection mechanism for semantic place categorization. By exploiting knowledge of the environment (geometry
nd semantics), the robot pose, the expected robot path and the camera motion-cost, we select the most informative camera line-of-sight. Square blocks are the
ifferent subsystems related to our proposal. Cylinder block represent the whole accumulated knowledge of the environment. Black slashed lines refers to possibles
ata type inputs of place categorizations paradigms.
ain. The robot is assumed to be navigating the environment,
ither autonomously, by doing use of the previously gathered
eometric map, or teleoperated by a human operator. In any
ase, an external agent controls the navigation path, which can
e consulted but not altered by our method. Therefore, to select
he line-of-sight, we exploit knowledge about the robot pose,
he short-time estimated navigation path, the camera parameters
nd the environment geometry, including the segmentation of
he different rooms or spaces in it. The latter is a common
ssumption in place categorization problems where the goal is
o determine the most probable label for each segmented space
n the environment [15].

We propose a probabilistic framework built upon an informa-
ion maximization scheme formalized as a next-best-view prob-
em, as well as on Markov Decision Processes (MDP) to exploit
he expected short-term robot path and the previously gathered
emantic knowledge. The efficiency of the system is evaluated
ased on two criteria: (i) quickness (a fast place categorization
s desired in order to free resources such as GPUs and cameras
hat can be used by other tasks) and (ii) accuracy (minimizing
rrors in place categorization). A wide range of experiments
mploying two state-of-the-art datasets with real and simulated
mages demonstrate that our approach outperforms traditional
onfigurations with fixed or continuously-rotating cameras and a
ure-exploratory approach, while adding a small computational
verhead.
Moreover, we test our approach under the two main

aradigms of place categorization: image-based and object-based.
he former are the most straightforward methods, inferring di-
ectly the place category from RGB images [16,17], generally
mploying state-of-the-art neuronal networks. On the contrary,
bject-based approaches first recognize the objects in the scene
rom a set of RGB images, and then infer the place category
rom the list of detected objects [18,19]. In this case, the list
f detected objects together with their uncertainties are also
aken into account to select the camera line-of-sight. An overview
f the system-diagram of our proposal, outlined for both place
ategorization paradigms, is shown in Fig. 1.
2

2. Related work

In the last years, given the increasing interest for service
robots being able to coexist with humans and to perform high-
level automated tasks, multiple contributions have been pre-
sented to complement geometrical information of the environ-
ments with semantic knowledge. These contributions covers dif-
ferent problems such as semantic mapping [7,8] or semantic place
categorization (see Section 2.1 for a review of relevant works). For
the latter, which is in the scope of this work, most contributions
perform place categorization by controlling the robot motion and
not considering the camera rotation (i.e. assuming a fixed camera
orientation w.r.t. the robot) [7,17,20]. Yet, taking into account
the camera rotation is an interesting fact which enables to per-
form place categorization and maintain the semantic knowledge
updated in parallel to the normal activity of the robot, without re-
quiring to alter the robot navigation path. The latter is addressed
in this work in which we propose to control the camera line-
of-sight by an attention mechanism based on active perception.
Throughout this section, we discuss related works on place cate-
gorization algorithms (see Section 2.1) and attention mechanisms
based on active perception applied to other problems in mobile
robotics (see Section 2.2).

2.1. Place categorization

Place categorization contributions can be divided according to
the type of input data employed: object-based and image-based.
On the one hand, object-based contributions rely on the semantic
relationships between the category of the detected objects and
their location in the environment (e.g. a bed is usually located
in the bedroom, while a fridge is usually found in the kitchen).
For example, Ruiz-Sarmiento et al. [21] presented a Conditional
Random Field (CRF) model to categorize objects and rooms jointly
from RGB-D images by exploiting contextual relations (object–
object and object–room), while a prior of these relations was
encoded in the form of Human Knowledge (HK) in an ontol-
ogy [22]. Luo et al. [23] proposed a semantic mapping framework
based on a hybrid metric-topological map. A Convolutional Neural
Network (CNN) recognizes the objects that are stored as nodes
in the topological map. The map is segmented by rooms and the
topological nodes are clustered based on the map segmentation.
Applying a Multivariate Bernoulli Naïve Bayesian (MBNB) model
to semantic information from topological clusters, room labels
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re inferred. Brucker et al. [14] applied a CRF to infer scene
abels from recognized objects and prior knowledge (statistics
orrelating object presence to scene types). Ahmed et al. [18] train
Multi-class Logistic Regression (McLR) for scene classification
ith a set of object classes and their features. Object class and

ts uncertainty are obtained by applying a kernel function to
bject’s features such as signatures and local descriptors and
sing the Estimated Intersection over Union (EIoU). Fernandez-
haves et al. [19] and Oyebode et al. [24] face room categorization
y using a Bayesian probabilistic framework which combines
ecognized objects by a CNN and its semantics encoded in an
ntology.
On the other hand, image-based contributions follow a

traightforward approach for place categorization by obtaining
he place category directly from a given image. For instance,
ünderhauf et al. [7] train a CNN that given an RGB image as
nput, it is able to categorize the place between 205 different
ategories. For the CNN training, the authors used Places205 [16],
state-of-the-art indoor/outdoor environments’ dataset. To over-
ome closed-set limitations, the authors integrate the CNN with
ne-vs-all classifiers that allow to learn new places categories
nline. Temporal coherence is ensured using a Bayesian filter
ramework. Uršič et al. [25] propose a part-based model for
oom categorization. Proposal regions are obtained by applying
bject-type-agnostic part generation. Each extracted region is
odified as a descriptor by using a state-of-the-art image descrip-
or extractor. A mixture model of proposed parts is used to infer
oom category. Mancini et al. [20] implement a CNN-NBNN for
emantic place categorization, an integration of a CNN with a
aïve Bayes Nearest Neighbor (NBNN). This model unifies feature
xtraction and classifier learning steps. In the first stage, a CNN
ith fully-connected layers replaced by standard convolutional

ayers maps an input image of arbitrary size into a set of regions.
hen, a NBNN categorizes the place based on previous extracted
egions. Mancini et al. [26] propose a deep learning framework
or semantic place categorization facing Domain Generalization
DG) which aims to work properly under any environmental
ondition (occlusions, lightning changes, etc.). Pal [17] propose a
ombination of the object recognition CNN YOLOv3 [27] and the
lace categorization CNN Places365 [16] to boost the performance
f visual scene recognition systems. Othman et al. [28] introduce
model that integrates different CNN architectures by using a
ulti-binary classifier referred as Error-Correcting Output Codes

ECOC).
However, they all share a common drawback in terms of

fficiency due to a non-optimal observation of the scene, meaning
hat most methods will struggle when observing walls or empty
reas of the environment which provide few or none information
bout the place category. The latter is the focus of this work,
mproving the categorization efficiency by selecting the most
nformative camera line-of-sight at each time moment.

.2. Attention mechanisms in robotics

Generally speaking, and in the context of mobile robotics,
ttention mechanisms based on active perception aim to improve
he efficiency of relevant tasks such as navigation [29,30], object
odeling [31,32] or object manipulation [33,34], among others.
ithout loss of generality, most contributions formalizes active
erception through a next-best-view problem. Given a subset of
otential viewpoints, the goal is to estimate the expected infor-
ation gain at each potential point and perform the selection in

erms of information maximization. For example, in [31] a Hidden
arkov Model (HMM) was used to optimize the viewpoint of
robot for object modeling, while in [29], authors introduced
n uncertainty reduction strategy for robotic navigation through
3

a reward function based on Partially Observable Markov Deci-
sion Processes (POMDPs). Also, noticeable are those contributions
that handled information gain in terms of entropy minimization
through a cost function [35,36].

3. Problem formulation

Given a mobile robot equipped with an RGB-D camera
mounted on a pan unit, we seek to improve the efficiency of
place categorization systems by selecting the camera’s line-of-
sight that maximizes the expected information gain at each time
moment.

Defining V ′(xt, θt ) as the expected information gain given a
robot pose (x) and the angle of the pan unit (θ ) at the time
moment t , the problem can be expressed as:

θ̂t = argmax
θ

{V ′(xt, θt )}. (1)

Our approach, from now on BVPC (Best-View to Place Catego-
rization), considers the following assumptions:

1. Availability of a pre-segmented geometric map of the en-
vironment (M), common in place categorization prob-
lems [15].

2. A robot equipped with an RGB-D camera mounted on a
pan unit to control the observation angle (θ ). The camera
should be placed at a minimum height from the floor (≥
1 m) in order to have a meaningful view of the environ-
ment.

3. Control over the camera observation angle (θ ), but zero
control over the robot motion. We assume that the robot
is moving within the environment, but we cannot alter its
path, we just can consult the short-term planned naviga-
tion path computed by the navigation planner. This allows
the method to anticipate the next robot poses and make
more optimal and consistent decisions ahead of time than
just acting reactively.

4. Only for object-based place categorization, an object de-
tector that given an input image yields a list of detected
objects and their class probabilities.

Given that the categorization of a place considers a sequence
of images taken while the robot navigates it, we present in
Section 3.1 our proposal for time-optimization. Then, we derive
the expected information gain attending to the categorization
paradigm, covering object-based categorization in Section 3.2,
and image-based categorization in Section 3.3.

3.1. Time-optimization through Markov decision processes

We pursue to maximize the information gain along a specified
time-horizon γ given a short-time prediction of the next robot
movements. Then, the objective is to find the set of angles Θ̂ =

{θ̂t , θ̂t+1, . . . , θ̂t+γ } that maximizes the information gain. We
formulate the problem in terms of information maximization
through a Markov Decision Process (MDP). A MDP is represented
by the 5-tuple ⟨S, A, T , R, γ ⟩:

• S represents the finite set of states. A state st is defined by
the observation angle θt and the expected robot pose xt at
time t , and a flag that indicates if the current state is goal
(i.e. the space has already been categorized).

• A is the set of possible actions, being an action R com-
posed of γ successive rotations of the pan unit over time:
R = {r0, r1, . . . , ri, . . . , rγ−1}, and ri the pan unit rotation
from θt+i to θt+i+1. For each rotation, we consider three
options: maintain the current orientation, turn left or turn
right ∆θ degrees.



J.L. Matez-Bandera, J. Monroy and J. Gonzalez-Jimenez Knowledge-Based Systems 240 (2022) 108022

r

p
e
t
s
t

V

w
t
s
t
p
R
a
p

l
g

R

g
a
f
r
t
V
f
w
r
o

t

a
i
3

3

c
t
a
t
r
t
o
f
a

r
t

V

w
b
p
w
N

3

e
o
T
o
F
a
b
i
a

t
a

Ψ

Fig. 2. An example of a tree-based representation of our MDP model for a value
of γ = 2. An instance of action R = {Turn left, Turn right} is highlighted in
ed. TL: Turn Left, TR: Turn Right and NM: No Move.

• T : S×A → S stands for the transition function and denotes
the probability of reaching a state st+i+1 after executing a
rotation ri ∈ R from state st+i.

• R : S × A → R is the reward that the decision framework
expects to receive when executing action R.

• γ is the time-horizon and it specifies the number of rota-
tions ri that compose an action R, limiting the evaluation
horizon. We define a tree-based representation S(γ ) of the
state space given by all the possible actions R ∈ A, as shown
in Fig. 2.

Once the MDP model is defined, we apply the action–value
aradigm, i.e. we estimate the expected gain of information for
ach action R ∈ A. Defining the action–value function V (st ,R) as
he expected accumulated gain of information when moving from
tate st to st+γ through an action R, it can be expressed according
o Bellman expectation as:

(st ,R) = R(st ,R) +

γ−1∑
i=0

T (st+i+1|st+i, ai)V ′(st+i+1), (2)

here T (st+i+1|st+i, ai) is the probability that rotation ri updates
he current state from st+i to st+i+1 (in our case, T (·) = 1
ince the states transitions are deterministic) and V ′(st+i+1) is
he expected gain of information after reaching state st+i+1, as
roposed in Eq. (1). R(st ,R) is the reward of executing the action
, and serves to disambiguate between actions entailing equal
ccumulated information gain V (st ,R), promoting those with few
an unit rotations.
Applying Eq. (2) to the set of possible actions A, we seek to se-

ect the action R̂ that maximizes the expected rate of information
ain as:

ˆ = argmax
R

{V (st ,R)}, with R ∈ A. (3)

For solving the Bellman equation, we employ Dynamic Pro-
ramming (DP), concretely the value-iteration method, known
s Bellman’s update [37]. The value-iteration method works as
ollows: (i) from the current state st , we obtain the tree-based
epresentation S(γ ) that defines the state-space A; (ii) we es-
imate the expected information gain for each possible action
(st ,R); (iii) the action R̂ with maximum expected rate of in-
ormation is selected and executed; (iv) after reaching state st+1
e check whether the space is categorized. If the space is catego-
ized, the task is completed. Otherwise, a new iteration is carried
ut.
An MDP model becomes more complex as the value of the

ime-horizon γ increases, i.e. the number of possible actions R
4

nd the length of each action (number of pan unit rotations)
ncreases exponentially. In brief, for a fixed value of γ , we have
γ possible actions, each one composed by γ rotations.

.2. Expected information gain for object-based categorizers

Object-based place categorization relies on inferring the place
ategory from a set of recognized objects. Its performance is,
herefore, largely dependent on the set of recognized objects
nd their associated uncertainty [19,24]. In this sense, we seek
o maximize the number of detected objects by forcing explo-
ation of unobserved areas in the environment, while also trying
o provide robustness to the recognition of previously detected
nes. For the latter, multiple observations of the same object
rom different points of view has been demonstrated an effective
pproach [38].
Formally speaking, the expected gain of information after

eaching state st+i+1 from state st+i can be defined in terms of
hese two factors as:
′(st+i+1) = λ Ψexp(st+i+1) + (1 − λ)Ψobj(st+i+1), (4)

here Ψexp(·) and Ψobj(·) represent the expected information gain
y exploring unobserved areas and by providing robustness to
revious detected objects, respectively, and λ is a configurable
eight that trades off the importance of each term (0 ≤ λ ≤ 1).
ext, we describe in detail both terms.

.2.1. Exploring unobserved space
The expected information gain when exploring unobserved ar-

as of the environment stems from the possibility to discover new
bjects that may contribute to the inference of the place label.
o numerically assess this term we make use of the probabilistic
ccupancy grid map of the environment M1, and the camera
ield-of-View (FOV) parameters (angle and depth range) to apply
2D ray-tracer over M1 in order to generate an observability
inary grid map M2 (with same dimensions as M1), as shown
n Fig. 3. Each cell in M2 takes the value bj = 1 if the cell has
lready been observed, otherwise bj = 0.
We evaluate the expected information gain by the ratio be-

ween the number of cells that will be observed for the first time,
nd the total number of cells within the FOV of the camera:

exp(st+i+1) =
C(bj = 0 | θt+i+1, xt+i+1, M1, M2)

C(M1)
, (5)

where C(bj = 0 | θt+i+1, xt+i+1, M1, M2) represents the number
of cells observed for the first time, given the point of view
(xt+i+1, θt+i+1), and C(M1) is a constant defined by the number of
observable cells given the FOV and the depth range of the RGB-D
camera.

It must be stressed that although more elaborated approaches
to quantify the information gain can be considered (e.g. relying on
the concept of entropy [31]), in this work we rely on a simple, yet
efficient, formulation to keep the computational overhead low.
The latter is particularly important when optimizing through a
time-horizon while not stopping neither slowing down the robot
navigation, being fundamental to take quick decisions.

3.2.2. Temporal coherence in object classification
Without loss of generality, we can consider ot as the observa-

tion of an unknown object o at time moment t , which is defined
by the object detector probabilities p(Om|ot ), ∀Om ∈ O, being O
the set of M object classes. This classification, provided by an off-
the-shelf object detector (a CNN in our case), is based only on a
single observation and, therefore, is prone to failures. To improve
it, we incorporate temporal coherence in this classification by

applying a recursive Bayes filter that accounts for all the previous
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bservations concerning object o. Concretely, we express our
elief Bel(Ot

m) = p(Om|o1:t ) (i.e. the overall posterior probability
over object classes) recursively over time, as:

Bel(Ot
m) =

L(ot |Om) Bel(Ot−1
m )

p(ot )
∝ L(ot |Om) Bel(Ot−1

m ), (6)

where Bel(Ot
m) is our belief at time t that a specific object be-

longs to each possible object class Om, p(ot ) is assumed to be
a constant scale factor for all Om ∈ O and L(ot |Om) represents
the likelihood function. Assuming first order Markov properties,
this probability can be related, through Bayes theorem, to the
posterior probabilities that the object detector yields:

L(ot |Om) =
p(Om|ot )p(ot )

p(Om)
∝

p(Om|ot )
p(Om)

, (7)

where p(ot ) is a scale factor for all Om ∈ O, and p(Om) is a prior
that can be learned from experimental data. For example, the
probability of any object to be chair is, a priori, higher than that
of being toilet, as typically there are more chairs than toilets in
the environment (see Table 1).

To have an estimation of the classification uncertainty of each
detected object o, we employ the well known Shannon Entropy:

(o) =

∑
Om

−Bel(Ot
m)log(Bel(O

t
m)) (8)

Yet, this standard entropy does not account for the relevance
f the different object classes in the place categorization problem.
hat is, a chair, which can be found on almost any place, does
ot help to discern the true category of the place, while a bed, for
xample, provides an unequivocal contribution for the place to be
bedroom. Therefore, we define a weighted entropy H′ where we
ntroduce the parameter ωm that allows us to select which objects
deserve further attention (i.e. more observations):

H′(o) =

∑
Om

−ωmBel(Ot
m)log(Bel(O

t
m)). (9)

This weighting is application-dependent and user-defined (an
example of this weighting can be seen in Section 4.4).

At this point, we define the expected information gain Ψobj to
promote the re-observation of previously detected objects with a
low number of observations, as well as those with a high entropy
(seeking to reduce it with further observations):

Ψobj(st+i+1) = tanh

(
N∑

n=1

H′(on)
Zn

)
, (10)

here tanh(·) is the hyperbolic tangent function, which is applied
o normalize the contributions, N is the number of previously
 m

5

Table 1
Objects–room relations and appearing frequency.

Kitchen Bedroom Living room Bathroom p(Om) ωm
N# rooms 31 70 39 53 –

Bed 0 74 0 0 0.12 3.12
Toilet 0 0 0 53 0.08 3.08
Couch 0 0 37 0 0.06 3.06
Microwave 30 0 0 0 0.06 3.05
Oven 21 0 0 0 0.03 3.03
Sink 32 0 0 53 0.14 2.14
Dining table 18 0 25 0 0.07 2.07
Chair 51 36 137 0 0.35 1.35
TV 7 15 32 0 0.09 1.09

Fig. 4. An example where 3 recognized objects are visible from state st , i.e. N =

3. Note that an object o is considered as visible when at least half of the object
is expected to be seen by the camera, i.e. the object center is inside of the
camera FOV.

recognized objects visible from state st+i+1 (see an instance in
ig. 4), and Zn is the number of observations of the object on.

.3. Expected information gain for image-based categorizers

Image-based place categorization just require an RGB image
o infer the place category, being unnecessary to maximize the
umber of recognized objects or to provide robustness to the
bject classification, as done for object-based approaches. Since
mage-based approaches only use the information included in the
mage, these images should be as informative as possible [25].
amely, images framing visually-coherent composition of ele-
ents and scene-related characteristics are more appropriate for
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he place categorization than low-textured images such as an
mage of a wall. In terms of information gain, camera viewpoints
hat maximize the observed area of the place should cover a
ore general view of the space and hence, images will be more

nformative for the categorization.
Based on the knowledge about the occupancy grid map M1,

he camera parameters, and taking into account the compu-
ational limitations previously mentioned, we evaluate the ex-
ected information gain as the ratio between the number of
bservable cells and, the total number of cells within the camera
OV:

′(st+i+1) =
C(θt+i+1, xt+i+1, M1)

C(M1)
, (11)

here C(θt+i+1, xt+i+1, M1) is the number of observable cells
from state st+i+1, computed by a 2D ray-tracer over the area of
the map M1 that is covered by the camera FOV (see Fig. 3).

3.4. Time complexity

The time complexity of place a categorization algorithm
mainly depends on the paradigm employed. For object-based, it is
determined by the object detection stage and the categorization
process. In our case, the detection of objects is carried out through
a CNN O(w h), where w and h are the width and height of the
input image, respectively, while the categorization process is
based on a Bayesian network O(K ) [39], being K the number
of detected objects. In contrast, for image-based paradigm, the
complexity corresponds solely to the CNN used for inference,
which is O(w h) as previously mentioned. Moreover, since most
of CNNs tend to require a fixed input image size, their time
complexity can be simplified to O(1).

Regarding the complexity overhead added by our BVPC
method, it mainly depends on the time-horizon or number of pos-
sible actions (3γ ). However, while for image-based the time com-
plexity is just O(3γ ), for object-based we also need to consider
he semantic information gain estimation, resulting in O(K 3γ ),
hich is proportional to the number of recognized objects.
Fig. 5 shows a comparative analysis of such time complexities

ecoupling each contribution. As can be seen, despite the fact
hat an MDP model scales exponentially with the time-horizon
γ ), as long as the γ -value is set within the range [1–4], the time
verhead is not excessive.

. Experimental setup

This section covers the setup of the multiple experiments
arried out to evaluate the proposed algorithm, including an
utline of the datasets and robots employed, an overview of the
 r

6

lace categorization method implemented, the description of the
ifferent camera-configurations used for comparison, as well as
ome comments on parameter selection.

.1. Datasets and robotic platforms

Two state-of-the-art robotic datasets have been selected for
he evaluation: Robot@Home [40] and Robot@VirtualHome [38].
he usage of datasets is motivated by their inherent repeatabil-
ty, enabling to reproduce different experiments under identical
onditions and to make a fair comparison. Both datasets include
eometric pre-segmented maps by spaces and the localization of
he robot during exploration.

Robot@Home [40] is a collection of raw data recorded in five
eal households by the mobile robot Giraff, which is equipped
ith a rig of 4 overlapping RGB-D cameras with an overall field-
f-view of 180 degrees, and a 2D laser scanner (see Fig. 6a). The
ameras are placed at a height of 1.05 m from the floor, which
nables a meaningful view over the environment (see Fig. 6b–c
or an instance of RGB and depth images). Yet, Robot@Home does
ot explicitly offer a controllable pan unit. Hence, in this work
e consider a virtual one1 with 135 degrees of pan motion and
maximum rotation speed of 20 degrees per second, generated
y interpolating the view from the four available fixed cameras.
rom Robot@Home, we selected the households Anto, Alma and
x2 as representative environments of large, medium and small
ize, respectively. Their respective maps with ground-truth room
abels and the path followed by the robot are shown in Fig. 7a–c.

Robot@VirtualHome [41] is a set of 30 synthetic realistic-
ooking houses, recreated from real environments. The robot em-
loyed for the environment categorization is a virtualization of
iraff robot provided of a laser scanner and an RGB-D camera
ith 45 degrees of FOV. The latter is placed at a height of 1.05 m

rom the floor, mounted on a controllable pan-only unit with
35 degrees of pan motion and maximum rotation speed of 20
egrees per second. For evaluation, we selected three virtual
nvironments: House12 and House18 because both contains a high
umber of rooms to categorize, and House30 as a challenging
nvironment composed by small rooms with objects in close
roximity to each other. Both maps with ground-truth room
abels and the path followed by the robot are depicted in Fig. 7d–f.

Since both datasets focus on households, we consider the set
f place categories: living room, bedroom, bathroom and kitchen.

1 In order to provide realistic movements to the virtual pan unit, we coded
script to control the camera including technical parameters such as maximum
otation speed or maximum rotation range.
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Fig. 6. (a) Giraff mobile robot used to record the Robot@Home dataset. The images (b) and (c) are an example of the resulting panoramic RGB and depth, respectively.
Fig. 7. Geometric maps with room category ground-truth and the path followed by the robot in each household.
4.2. Place categorization methods

To analyze the impact of our proposal when applied to object-
based and image-based categorizers, we have relied on state-
of-the-art methods. On the one hand, for object-based systems,
and taking into consideration that objects and their properties
constitute the semantic knowledge that is exploited by our pro-
posed attention mechanism, we rely on the state-of-the-art object
7

detection Mask R-CNN [42]. Concretely, we employ the imple-
mentation Detectron2 [43] pre-trained on MS COCO dataset [44].
This choice is motivated by the outstanding runtime performance
demonstrated in recent works [45,46]. Detectron2 yields the in-
put image with the object masks and a list with the class prob-
abilities. Next, knowing the intrinsic parameters of the camera
and the depth of each pixel of the mask obtained from the depth
channel, we locate in the 3D world each detected object. The
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et of detected objects in each room is then fed to a state-of-
he-art Bayesian object-based place categorizer [19], that uses an
ntology as the internal representation of the semantic knowl-
dge. The latter is used in this work to accumulate the semantic
nformation obtained from the environment, while exploiting it to
elect the optimal line-of-sight of the camera. The Bayesian prob-
bilistic categorizer requires as input a list of recognized objects
ogether with their class probabilities, and returns a probability
istribution over the room categories.
On the other hand, for image-based systems, we leverage

he excellent performance of the scene categorization CNN
laces365 [16] shown in recent works [47,48], to classify an RGB
mage between 365 different categories of indoor and outdoor
nvironments. For each individual RGB image It , Places365 yields

a combined probability p(C|It ) over the set of 365 possible place
labels C = {c0, . . . , ci, . . . , c364}. Yet, we know in advance that
just four types of indoor places can be found in the evaluation
environments. Hence, as done in [7], treating the problem as
Bayesian, we can incorporate prior knowledge p(C) about the
laces that are unlikely to be encountered as follows:

(C|It ) ∝ p(C) · p(C|It ), (12)

here p(C) is the prior term that encodes whether each place
category ci is unlikely to be observed (p(ci) = 0) or not (p(ci) = 1).
ote that in this expression, the prior term works as a scale factor,
ence the scaled result must be normalized in order to meet
he definition of a probability distribution (i.e. the sum of all the
robabilities must equal 1).
Moreover, although images are classified individually, they

re acquired consecutively and thus, a temporal dimension can
e exploited between their classifications. Considering the place
ategorization as a Bayesian probabilistic estimation problem and
ssuming first order Markov properties, we can integrate over
ime the classification by employing a Bayesian filter [7]:

el(Ct ) = p(C|I0:t ) ∝ p(C) · p(C|It ) · Bel(Ct−1), (13)

here Bel(Ct ) is the belief or overall posterior probability given
he set of all images taken until time moment t . Note that this
elief is estimated recursively over time along the sequence of
mages I0:t .

.3. Camera-configurations for comparison

Most state-of-the-art works that seek to improve the effi-
iency of place categorization present algorithms that control the
obot motion during the inspection [7,17,20,49], not taking into
ccount the camera rotation (i.e. assuming the camera is fixed
.r.t. the robot). These methods are not directly comparable with
ur approach, as controlling the robot path allows observation
f any area of interest with no time restriction, as opposed to
hen only controlling the camera line-of-sight. Hence, for com-
arison, we include in this work comparison with seven different
onfigurations. The first four ones correspond to different fixed
amera-configurations typically employed in place categoriza-
ion, which are referred as RGBD1, RGBD2, RGBD3 and RGBD4, each
ne with a specific angle of observation w.r.t. robot (see Fig. 8).
oreover, to exploit the rotation capability of the camera, a fifth
onfiguration referred as Continuous Exploration (CE) [50,51] is
lso considered. This configuration attempts to mimic the behav-
or of a human seeking to maximize the information acquired
rom an environment without prior knowledge, by continuously
oving the camera from left to right and vice versa.
Finally, the last two configurations are rooted on the concept

f exploration [49], where the goal is to maximize the explored
rea of the environment by moving the robot to their so-called

rontier points. Frontiers are boundaries that separate known

8

Fig. 8. Proposed camera-configurations for comparison. Fixed camera-
configurations are obtained from Robot@Home dataset and replicated to
Robot@VirtualHome. RGBD3 represents the typical camera-configuration
employed in most state-of-the-art contributions, were the camera points in the
direction of the robot path.

space from unknown space. Thus, our adaptation is to select the
camera line-of-sights that maximize the observation of unknown
space. As this exploratory approach allows for time optimization,
we also compare with the frontier-based method working on our
proposed MDP model in order to exploit the short-time estimated
navigation path.

4.4. Parameter selection

To obtain representative results, while avoiding a high com-
putational overhead, we set the time-horizon of the MDP model
as γ = 3 and the temporal step between successive MDP states
to ∆t = 1 s. The latter means that a new camera line-of-sight
s selected at a frequency of 1 Hz. Additionally, knowing that
ur transition function is deterministic (i.e. we assume that the
amera always reach the desired orientation since only reachable
tates are proposed) and the MDP temporal step is 1 s, we set the
ngle step of the pan unit to ∆θ = 15◦, a value below the rotation
peed of the camera (20 degrees per second for our employed
ameras) to guarantee that the desired position is always reached
hile keeping a minimum overlapping between images to avoid

nformation loss.
Related to the weighted entropy in Eq. (9), we set the weights

m that assess the relevance of each object class in the inference
rocess attending to their occurrence frequency, as:

m = N̄m
places + p(Om), (14)

here N̄m
places is the number of place categories where an object

lass Om is not expected to be found and is computed based on
uman knowledge. For example, from the set of rooms consid-
red in this work (kitchen, bedroom, bathroom and living room), a
ed is expected to be found only in bedrooms, hence N̄bed

places = 3.
dditionally, p(Om) is the prior probability which encodes the
elative frequency of appearing a certain object class in a house-
old. In practice, this probability is difficult to estimate and hence,
ypically it is learned from the prior knowledge retrieved from
he existing data. Particularly, in this work we extract the prior
robability by observing the objects distribution and occurrence
requency in both employed datasets (see Table 1).

Finally, to select the value of the parameter λ controlling the
nfluence of the different contributions to the expected informa-
ion gain (see Eq. (4)), we carried out an empirically evaluation
hown in Fig. 9. In terms of time performance, it can be seen
hat this parameter has no relevant impact, being the optimal
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Fig. 9. Average time for successful categorization and accuracy of object-based place categorization working under BVPC configuration with different values of the
information gain parameter λ.
Table 2
Accuracy performance for each experiment and camera-configuration. Best results are marked in bold.

Camera configuration Robot@Home Robot@VirtualHome Global avg.
Anto Alma Rx2 Avg. House 12 House 18 House 30 Avg.

BVPC 87.50% 100.00% 75.00% 88.24% 100.00% 100.00% 75.00% 93.75% 90.91%

Object-based

Frontiers [49] 75.00% 100.00% 50.00% 76.47% 50.00% 83.33% 75.00% 68.75% 72.73%
Frontiers [49] + MDP 75.00% 100.00% 75.00% 82.35% 83.33% 66.67% 75.00% 75.00% 78.80%
CE 75.00% 85.00% 75.00% 77.94% 83.33% 83.33% 100.00% 87.50% 82.58%
RGBD1 62.50% 80.00% 75.00% 70.59% 33.33% 66.67% 50.00% 50.00% 60.61%
RGBD2 68.75% 90.00% 68.75% 75.00% 33.33% 66.67% 25.00% 43.75% 59.85%
RGBD3 75.00% 75.00% 68.75% 73.53% 50.00% 83.33% 75.00% 68.75% 71.21%
RGBD4 65.63% 60.00% 75.00% 66.18% 66.67% 66.67% 100.00% 75.00% 70.46%

BVPC 75.00% 80.00% 100.00% 82.35% 83.33% 66.67% 75.00% 75.00% 78.79%

Image-based

Frontiers [49] 62.50% 60.00% 50.00% 58.82% 66.67% 66.67% 50.00% 62.50% 60.61%
Frontiers [49] + MDP 62.50% 80.00% 50.00% 64.71% 66.67% 66.67% 50.00% 62.50% 63.64%
CE 50.00% 60.00% 75.00% 58.82% 66.67% 66.67% 50.00% 62.50% 60.61%
RGBD1 62.50% 60.00% 75.00% 64.71% 50.00% 50.00% 25.00% 43.75% 54.55%
RGBD2 62.50% 40.00% 75.00% 58.82% 66.67% 16.67% 25.00% 37.50% 48.49%
RGBD3 62.50% 80.00% 75.00% 70.59% 66.67% 66.67% 50.00% 62.50% 66.67%
RGBD4 62.50% 40.00% 50.00% 52.94% 66.67% 66.67% 50.00% 62.50% 57.58%
values in the range [0.4–0.7], approximately. However, looking
to Fig. 9(b), it can be observed that low λ values are detrimental
o the categorization accuracy. The latter indicates that the ex-
loratory contribution of the expected information gain should
ot be underrated, avoiding situations where the algorithm fo-
uses too much on previously detected objects, not exploring the
hole environment and thus recognizing a smaller number of
hem. Therefore, although the exact value λ is not particularly
mportant, it is recommended to be within the range [0.4–0.7].
n this work we select the value λ = 0.5. It must be stressed that
this range only applies to house environments with no signifi-
cant differences in room dimensions, being necessary to repeat a
similar analysis for environments of different nature.

5. Experimental results

5.1. Evaluation of place categorization accuracy

Table 2 summarizes the accuracy results for the proposed
camera configurations and testing environments under both place
categorization paradigms. As can be seen, our approach out-
performs other camera-configurations in almost any environ-
ment, improving a ∼8.33% the average accuracy for object-based
paradigm w.r.t. the second-best configuration (CE), while for
image-based, BVPC exceeds the top-2 configuration (RGBD3) by
a ∼12.12%. These results demonstrate that the orientation of
the camera plays an important role during place categorization.
Furthermore, results obtained from Frontiers compared to Fron-
tiers + MDP shows that exploiting the short-time estimated
navigation path of the robot through the MDP contributes to
obtain more representative views for both place categorization
paradigms.
9

Moreover, Table 2 illustrates that moving the camera actively
(BVPC, Frontiers [49], Frontiers [49] + MDP and CE) increases
the overall performance of object-based methods, as a larger
area of the environment is observed (see Fig. 10), allowing the
recognition of a greater number of objects. However, this fact is
not reflected in image-based methods, in which the focus is on
maximizing the area observed per frame, seeking to avoid non-
informative frames. In this sense, RGBD3 shows better results
than moving actively the camera without appropriate constraints
(Frontiers) or even without constraints as does CE. The latter is
because both Frontiers and CE maximizes the global observed
area of the environment (see Fig. 11), but not the observed area
per frame, leading sometimes to non-informative frames such
as walls, while RGBD3 is oriented in the direction of the robot
movement, so frames are generally more appropriate.

Finally, in terms of accuracy, we can see that under identi-
cal conditions of camera-configuration and environment, object-
based paradigm shows better results than image-based. This fact
is explained because object-based exploits contextual relations
between objects and rooms and hence, more information is taken
into account during the inference process, while image-based just
consider the information included in the processed frame.

5.2. Analysis of time performance

For a comprehensive efficiency evaluation, we measure the
required time for a successful categorization of a place (see Ta-
ble 3). Notice that wrong or inconclusive categorizations are not
taken into account, so we also indicate in brackets the average
accuracy per room category. Results for both place categoriza-
tion paradigms illustrates that our approach generalizes well
for environments of different characteristics (e.g. real/synthetic,
small/large, etc.), obtaining, on average, the shortest time for a
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Fig. 10. Temporal evolution of the remain unobserved cells for each camera-configuration in Anto (Robot@Home) under object-based paradigm. Results shows that
moving the camera actively (BVPC, Frontiers [49], Frontiers [49] + MDP and CE) allows to maximize the observed area of the environment, which increases the
possibility of observing a greater number of objects.
Fig. 11. Representation of the most observed areas for each camera configuration working under the image-based paradigm in the household Anto (Robot@Home)
through heatmaps. Blue color in a cell indicates low number of observations and red color indicates high number of observations. BVPC tend to cover general views of
the environment while Frontiers [49] and Frontiers [49] + MDP seek to discover the maximum space of the environment. Concerning typical camera-configurations,
CE shows a similar number of observations for the whole environment while the fixed camera-configurations tend to concentrate their views in certain spaces of
the environment.
successful categorization and the highest accuracy. However, it
can be noticed that sometimes a fixed camera-configuration can
be faster than BVPC. This fact is more common under object-
based paradigms and it is usually associated to a low categoriza-
tion accuracy, meaning that only a few samples have been taken
into account to compute the categorization time, while most of
the times the categorization fails. In these rooms, as the robot
step in, a relevant object happens to be inside the FOV of the
camera, so the object is continuously observed. Naturally, this fact
does not always occurs, because objects are not always placed in
the same location for a given place category (e.g. a toilet is not
always in the left side of the bathroom). Thus, analyzing a greater
number of rooms, this fact is compensated.

Moreover, from the results for object-based in Table 3 we can
observe how inspecting a larger area of the environment, and
10
so recognizing a greater number of objects, is not sufficient for
an efficient place categorization. In the case of CE and Frontiers,
accuracy increases but also does the average required time. Due
to the maximization of the observed space from CE and Frontiers,
it increases the possibility to recognize more objects, yet it does
not implement mechanisms to provide robustness to their clas-
sification. The latter makes difficult to discern between a false
and a correct detection, being both equally considered in the
inference process of the place category. This fact, also common
for fixed camera-configurations, can be seen in Fig. 12, where a
false detection cause fluctuations in the inference process of the
room category. This leads to longer times for a successful place
categorization, or, in the worst case, to failure.

Looking to Fig. 12, we demonstrate that the Bayesian filtering
in BVPC provides robustness to object classes, which contributes
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c
f

Table 3
Temporal evaluation of the average required time for successful place categorization of each experiment (wrong or inconclusive
categorizations are not taken into account). All time measures are in seconds. In brackets, we indicate the average accuracy for each
place category. Best results based on time are marked in bold.

Bedroom Bathroom Living Room Kitchen Avg.

BVPC 6.04 s
(92.31%)

3.75 s
(100.00%)

7.05 s
(83.33%)

3.24 s
(100.00%)

5.02 s
(90.91%)

Frontiers [49] 6.18 s
(84.62%)

3.29 s
(100.00%)

26.50 s
(33.33%)

3.50 s
(66.67%)

6.75 s
(72.73%)

Object-based

Frontiers [49] + MDP 6.09 s
(91.67%)

1.71 s
(87.50%)

24.50 s
(33.33%)

5.67 s
(100.00%)

6.23 s
(78.80%)

CE 7.38 s
(91.67%)

2.53 s
(100.00%)

16.56 s
(37.50%)

9.94 s
(100.00%)

9.10 s
(82.58%)

RGBD1 12.46 s
(75.00%)

3.20 s
(62.50%)

1.00 s
(16.67%)

10.99 s
(83.33%)

6.91 s
(60.61%)

RGBD2 9.21 s
(70.83%)

1.48 s
(62.50%)

9.35 s
(41.67%)

1.92 s
(62.50%)

5.49 s
(59.85%)

RGBD3 9.31 s
(66.67%)

4.66 s
(100.00%)

1.91 s
(45.83%)

6.89 s
(79.17%)

5.69 s
(71.21%)

RGBD4 6.72 s
(75.00%)

5.66 s
(100.00%)

34.60 s
(20.83%)

6.86 s
(83.33%)

13.46 s
(70.46%)

BVPC 1.50 s
(83.33%)

1.00 s
(50.00%)

1.33 s
(100.00%)

1.17 s
(100.00%)

1.25 s
(78.79%)

Frontiers [49] 4.20 s
(83.33%)

2.25 s
(50.00%)

4.00 s
(33.33%)

2.75 s
(66.67%)

3.50 s
(60.61%)

Image-based

Frontiers [49] + MDP 3.90 s
(83.33%)

2.00 s
(50.00%)

4.33 s
(50.00%)

1.00 s
(66.67%)

3.05 s
(63.64%)

CE 2.75 s
(66.67%)

2.00 s
(50.00%)

1.50 s
(33.33%)

3.00 s
(100.00%)

2.31 s
(60.61%)

RGBD1 4.67 s
(75.00%)

2.75 s
(50.00%)

1.00 s
(16.67%)

3.50 s
(66.67%)

2.98 s
(54.55%)

RGBD2 1.86 s
(58.33%)

1.50 s
(33.33%)

17.00 s
(33.33%)

4.25 s
(66.67%)

6.15 s
(48.49%)

RGBD3 1.67 s
(75.00%)

1.33 s
(50.00%)

2.25 s
(66.67%)

1.80 s
(83.33%)

1.76 s
(66.67%)

RGBD4 7.50 s
(83.33%)

1.25 s
(16.67%)

3.50 s
(66.67%)

1.33 s
(50.00%)

3.40 s
(57.58%)
Fig. 12. Temporal overview of the inference process of the Living Room from Anto (Robot@Home) with object-based place categorization under the evaluated
amera-configurations. BVPC is the faster configuration that categorizes well the environment, followed by RGBD3. The rest of configurations suffers from high
luctuations in the inference process, leading to inconclusive (Frontiers [49] + MDP, RGBD1 and RGBD4) and failure (Frontiers [49], CE and RGBD2) results.
11
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o reduce fluctuations during the categorization, leading to an
fficient place categorization. This fact is also observable between
ixed cameras, as RGBD3 is oriented in the direction of the robot’s
ovement, while the robot moves forward without rotating,

he camera observes continuously the same objects, providing
obustness to its object class. It implies a better performance
trade-off between quickness and accuracy) than others fixed
amera-configurations.
Examining the results obtained for the image-based paradigm

n Table 3, we can see that these methods are able to quickly
ategorize a room provided that the processed frames contain
epresentative features of the scene. The latter is demonstrated
n the results obtained for BVPC, which includes the proposed
ttention mechanism to maximize the area observed per frame,
eing 1.41× faster than the top-2 camera-configuration (RGBD3).
urthermore, comparing both place categorization paradigms,
mage-based tend to be faster than object-based for equivalent
xperiments. This fact is explained for the limited information
mployed for image-based while object-based manage more in-
ormation and hence, require extra acquisition and computation
ime.

. Conclusion and future work

In this work we presented an attention mechanism based
n active perception to improve the efficiency (quickness and
ccuracy) of place categorization methods. To do so, our proposal
elects the most informative line-of-sight of the robot’s camera
t each time moment by controlling a pan-only unit. The op-
imization is carried out in terms of information maximization,
ormalized as a next-best-view problem through a Markov Deci-
ion Process (MDP) model, which exploits the short-term robot
avigation path planning in order to anticipate the next robot
oses, being able to make consistent decisions.
We have discussed how the valuable information depends

n the place categorization paradigm, proposing solutions for
bject-based and image-based methods. Results over multiple
nvironments of heterogeneous characteristics (i.e. small/large,
eal/synthetic, etc.) demonstrate that the proposed attention
echanism improves the efficiency for both place categorization
aradigms. In the case of object-based categorization, the accu-
acy increases when the observed area is maximized (i.e. when
higher number of objects is detected and taken into account

o discern the place category), while the efficiency is also related
o the robustness in the object detection. For image-based, max-
mizing the observed area per frame contributes to reduce the
umber of non-informative frames, improving the accuracy while
educing the required time for categorization.

As future work, we plan to extend the proposed algorithm
rom place categorization to semantic mapping, where prior
nowledge is highly reduced. We will also explore the consider-
tion of new parameters such as the camera’s zoom or a pan–tilt
nit.
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