95 research outputs found

    DNF Sparsification and a Faster Deterministic Counting Algorithm

    Full text link
    Given a DNF formula on n variables, the two natural size measures are the number of terms or size s(f), and the maximum width of a term w(f). It is folklore that short DNF formulas can be made narrow. We prove a converse, showing that narrow formulas can be sparsified. More precisely, any width w DNF irrespective of its size can be ϵ\epsilon-approximated by a width ww DNF with at most (wlog(1/ϵ))O(w)(w\log(1/\epsilon))^{O(w)} terms. We combine our sparsification result with the work of Luby and Velikovic to give a faster deterministic algorithm for approximately counting the number of satisfying solutions to a DNF. Given a formula on n variables with poly(n) terms, we give a deterministic nO~(loglog(n))n^{\tilde{O}(\log \log(n))} time algorithm that computes an additive ϵ\epsilon approximation to the fraction of satisfying assignments of f for \epsilon = 1/\poly(\log n). The previous best result due to Luby and Velickovic from nearly two decades ago had a run-time of nexp(O(loglogn))n^{\exp(O(\sqrt{\log \log n}))}.Comment: To appear in the IEEE Conference on Computational Complexity, 201

    A Nearly Optimal Lower Bound on the Approximate Degree of AC0^0

    Full text link
    The approximate degree of a Boolean function f ⁣:{1,1}n{1,1}f \colon \{-1, 1\}^n \rightarrow \{-1, 1\} is the least degree of a real polynomial that approximates ff pointwise to error at most 1/31/3. We introduce a generic method for increasing the approximate degree of a given function, while preserving its computability by constant-depth circuits. Specifically, we show how to transform any Boolean function ff with approximate degree dd into a function FF on O(npolylog(n))O(n \cdot \operatorname{polylog}(n)) variables with approximate degree at least D=Ω(n1/3d2/3)D = \Omega(n^{1/3} \cdot d^{2/3}). In particular, if d=n1Ω(1)d= n^{1-\Omega(1)}, then DD is polynomially larger than dd. Moreover, if ff is computed by a polynomial-size Boolean circuit of constant depth, then so is FF. By recursively applying our transformation, for any constant δ>0\delta > 0 we exhibit an AC0^0 function of approximate degree Ω(n1δ)\Omega(n^{1-\delta}). This improves over the best previous lower bound of Ω(n2/3)\Omega(n^{2/3}) due to Aaronson and Shi (J. ACM 2004), and nearly matches the trivial upper bound of nn that holds for any function. Our lower bounds also apply to (quasipolynomial-size) DNFs of polylogarithmic width. We describe several applications of these results. We give: * For any constant δ>0\delta > 0, an Ω(n1δ)\Omega(n^{1-\delta}) lower bound on the quantum communication complexity of a function in AC0^0. * A Boolean function ff with approximate degree at least C(f)2o(1)C(f)^{2-o(1)}, where C(f)C(f) is the certificate complexity of ff. This separation is optimal up to the o(1)o(1) term in the exponent. * Improved secret sharing schemes with reconstruction procedures in AC0^0.Comment: 40 pages, 1 figur

    Algorithmic Polynomials

    Full text link
    The approximate degree of a Boolean function f(x1,x2,,xn)f(x_{1},x_{2},\ldots,x_{n}) is the minimum degree of a real polynomial that approximates ff pointwise within 1/31/3. Upper bounds on approximate degree have a variety of applications in learning theory, differential privacy, and algorithm design in general. Nearly all known upper bounds on approximate degree arise in an existential manner from bounds on quantum query complexity. We develop a first-principles, classical approach to the polynomial approximation of Boolean functions. We use it to give the first constructive upper bounds on the approximate degree of several fundamental problems: - O(n3414(2k1))O\bigl(n^{\frac{3}{4}-\frac{1}{4(2^{k}-1)}}\bigr) for the kk-element distinctness problem; - O(n11k+1)O(n^{1-\frac{1}{k+1}}) for the kk-subset sum problem; - O(n11k+1)O(n^{1-\frac{1}{k+1}}) for any kk-DNF or kk-CNF formula; - O(n3/4)O(n^{3/4}) for the surjectivity problem. In all cases, we obtain explicit, closed-form approximating polynomials that are unrelated to the quantum arguments from previous work. Our first three results match the bounds from quantum query complexity. Our fourth result improves polynomially on the Θ(n)\Theta(n) quantum query complexity of the problem and refutes the conjecture by several experts that surjectivity has approximate degree Ω(n)\Omega(n). In particular, we exhibit the first natural problem with a polynomial gap between approximate degree and quantum query complexity

    Characterization of Overlap in Observational Studies

    Full text link
    Overlap between treatment groups is required for non-parametric estimation of causal effects. If a subgroup of subjects always receives the same intervention, we cannot estimate the effect of intervention changes on that subgroup without further assumptions. When overlap does not hold globally, characterizing local regions of overlap can inform the relevance of causal conclusions for new subjects, and can help guide additional data collection. To have impact, these descriptions must be interpretable for downstream users who are not machine learning experts, such as policy makers. We formalize overlap estimation as a problem of finding minimum volume sets subject to coverage constraints and reduce this problem to binary classification with Boolean rule classifiers. We then generalize this method to estimate overlap in off-policy policy evaluation. In several real-world applications, we demonstrate that these rules have comparable accuracy to black-box estimators and provide intuitive and informative explanations that can inform policy making.Comment: To appear at AISTATS 202

    Tight Bounds on Proper Equivalence Query Learning of DNF

    Full text link
    We prove a new structural lemma for partial Boolean functions ff, which we call the seed lemma for DNF. Using the lemma, we give the first subexponential algorithm for proper learning of DNF in Angluin's Equivalence Query (EQ) model. The algorithm has time and query complexity 2(O~n)2^{(\tilde{O}{\sqrt{n}})}, which is optimal. We also give a new result on certificates for DNF-size, a simple algorithm for properly PAC-learning DNF, and new results on EQ-learning logn\log n-term DNF and decision trees

    Probabilistic Inductive Querying Using ProbLog

    Get PDF
    We study how probabilistic reasoning and inductive querying can be combined within ProbLog, a recent probabilistic extension of Prolog. ProbLog can be regarded as a database system that supports both probabilistic and inductive reasoning through a variety of querying mechanisms. After a short introduction to ProbLog, we provide a survey of the different types of inductive queries that ProbLog supports, and show how it can be applied to the mining of large biological networks.Peer reviewe

    Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

    Get PDF
    We give the best known pseudorandom generators for two touchstone classes in unconditional derandomization: an ε\varepsilon-PRG for the class of size-MM depth-dd AC0\mathsf{AC}^0 circuits with seed length log(M)d+O(1)log(1/ε)\log(M)^{d+O(1)}\cdot \log(1/\varepsilon), and an ε\varepsilon-PRG for the class of SS-sparse F2\mathbb{F}_2 polynomials with seed length 2O(logS)log(1/ε)2^{O(\sqrt{\log S})}\cdot \log(1/\varepsilon). These results bring the state of the art for unconditional derandomization of these classes into sharp alignment with the state of the art for computational hardness for all parameter settings: improving on the seed lengths of either PRG would require breakthrough progress on longstanding and notorious circuit lower bounds. The key enabling ingredient in our approach is a new \emph{pseudorandom multi-switching lemma}. We derandomize recently-developed \emph{multi}-switching lemmas, which are powerful generalizations of H{\aa}stad's switching lemma that deal with \emph{families} of depth-two circuits. Our pseudorandom multi-switching lemma---a randomness-efficient algorithm for sampling restrictions that simultaneously simplify all circuits in a family---achieves the parameters obtained by the (full randomness) multi-switching lemmas of Impagliazzo, Matthews, and Paturi [IMP12] and H{\aa}stad [H{\aa}s14]. This optimality of our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs for AC0\mathsf{AC}^0 and sparse F2\mathbb{F}_2 polynomials

    Lower Bounds for the Approximate Degree of Block-Composed Functions

    Get PDF
    We describe a new hardness amplification result for point-wise approximation of Boolean functions by low-degree polynomials. Specifically, for any function f on N bits, define F(x_1,...,x_M) = OMB(f(x_1),...,f(x_M)) to be the function on M*N bits obtained by block-composing f with a function known as ODD-MAX-BIT. We show that, if f requires large degree to approximate to error 2/3 in a certain one-sided sense (captured by a complexity measure known as positive one-sided approximate degree), then F requires large degree to approximate even to error 1-2^{-M}. This generalizes a result of Beigel (Computational Complexity, 1994), who proved an identical result for the special case f=OR. Unlike related prior work, our result implies strong approximate degree lower bounds even for many functions F that have low threshold degree. Our proof is constructive: we exhibit a solution to the dual of an appropriate linear program capturing the approximate degree of any function. We describe several applications, including improved separations between the complexity classes P^{NP} and PP in both the query and communication complexity settings. Our separations improve on work of Beigel (1994) and Buhrman, Vereshchagin, and de Wolf (CCC, 2007)
    corecore