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Abstract
We describe a new hardness amplification result for point-wise approximation of Boolean func-
tions by low-degree polynomials. Specifically, for any function f on N bits, define

F (x1, . . . , xM ) = OMB(f(x1), . . . , f(xM ))

to be the function on M ·N bits obtained by block-composing f with a function known as ODD-
MAX-BIT. We show that, if f requires large degree to approximate to error 2/3 in a certain
one-sided sense (captured by a complexity measure known as positive one-sided approximate
degree), then F requires large degree to approximate even to error 1 − 2−M . This generalizes a
result of Beigel (Computational Complexity, 1994), who proved an identical result for the special
case f = OR.

Unlike related prior work, our result implies strong approximate degree lower bounds even for
many functions F that have low threshold degree. Our proof is constructive: we exhibit a solution
to the dual of an appropriate linear program capturing the approximate degree of any function.
We describe several applications, including improved separations between the complexity classes
PNP and PP in both the query and communication complexity settings. Our separations improve
on work of Beigel (1994) and Buhrman, Vereshchagin, and de Wolf (CCC, 2007).
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1 Introduction

Approximate degree and threshold degree are two measures of Boolean function complexity
that capture the difficulty of point-wise approximation by low-degree polynomials. The
ε-approximate degree of a function f : {−1, 1}n → {−1, 1}, denoted d̃egε(f), is the least
degree of a polynomial that point-wise approximates f to error ε. The threshold degree,
denoted deg±(f), is the least degree of a real polynomial that agrees in sign with f point-wise.

Approximate degree and threshold degree have found a diverse array of algorithmic and
complexity-theoretic applications. On the complexity side, approximate degree lower bounds
underlie many tight lower bounds on quantum query complexity [2, 3, 25, 6, 41], and have
proven instrumental in resolving a host of long-standing open problems in communication
and circuit complexity [40, 39, 35, 42, 16, 44, 34, 41, 14, 12, 13, 27, 8]. On the algorithms side,
upper bounds on these complexity measures underlie the fastest known learning algorithms
in a number of important models, including the PAC, agnostic, and mistake-bounded
models [23, 24, 20, 36]. They also yield fast algorithms for private data release [49, 11].

∗ The full version of this paper is available at http://eccc.hpi-web.de/report/2014/150/.
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17:2 Lower Bounds for the Approximate Degree of Block-Composed Functions

Despite these applications, our understanding of approximate and threshold degree
remains limited. While tight upper and lower bounds are known for some specific functions,
including symmetric functions [32, 38, 15] and certain read-once formulae, few general
results are known, and characterizing the approximate and threshold degrees of many simple
functions remains open. However, a handful of recent works has established various forms of
“hardness amplification” for approximate degree [43, 9, 10, 46, 45, 26, 47]. Roughly speaking,
these results show how to take a function f which is hard to approximate by low-degree
polynomials in a weak sense, and turn f into a related function F that is hard to approximate
by low-degree polynomials in a much stronger sense.

Our Contributions. We extend this recent line of work by establishing a new, generic form
of hardness amplification for approximate degree. Unlike prior work, our result implies strong
lower bounds even for many functions F that have low threshold degree (e.g., halfspaces). In
contrast, analogous hardness amplification results [43, 9, 10, 46, 45, 26, 47] apply only to
functions with polynomially large threshold degree. We describe several applications of our
result, including an improved separation between the complexity classes PNP and PP in
both the query and communication complexity settings (see Section 1.3 for details).

We prove our results by constructing explicit dual polynomials, which are dual solutions
to an appropriate linear program capturing the approximate degree of any function. This
“method of dual polynomials” has proven to be a powerful technique for establishing lower
bounds on approximate degree. Our construction departs qualitatively from earlier applica-
tions of the method, and we believe it to be of interest in its own right. In addition to implying
approximate degree lower bounds, dual polynomials have been used to resolve several long-
standing open problems in communication complexity, and they yield explicit distributions
under which various communication problems are hard [40, 42, 16, 44, 34, 41, 14].

1.1 Overview of Our Results
Let f : {−1, 1}n → {−1, 1} be a Boolean function. Our hardness amplification method relies
heavily on a complexity measure known as one-sided approximate degree, or, more precisely,
its “positive” and “negative” variants, denoted d̃eg+,ε(f) and d̃eg−,ε(f) respectively. These
are intermediate complexity measures that lie between ε-approximate degree and threshold
degree, and they have played a central role in recent prior work on hardness amplification for
approximate degree [46, 10, 9, 43].1 Unlike the latter two complexity measures, d̃eg+,ε(f)
and d̃eg−,ε(f) treat inputs in f−1(+1) and inputs in f−1(−1) asymmetrically.

In more detail, a polynomial p is said to be a positive one-sided ε-approximation for
a Boolean function f if |p(x) − f(x)| ≤ ε for all x ∈ f−1(−1), and p(x) ≥ 1 − ε for all
x ∈ f−1(+1). The positive one-sided ε-approximate degree of f is the least degree of a
positive one-sided ε-approximation for f . Negative one-sided ε-approximate degree is defined
analogously. Notice that d̃eg+,ε(f) and d̃eg−,ε(f) are always at most d̃egε(f), but can be
much smaller. Similarly, d̃eg+,ε(f) and d̃eg−,ε(f) are always at least deg±(f), but can be
much larger.

1 Strictly speaking, the terms positive and negative one-sided approximate degree were introduced by
Kanade and Thaler [21], who gave applications of these complexity measures to learning theory. Earlier
works on hardness amplification for pointwise approximation by polynomials only used negative one-
sided approximate degree, and referred to this complexity measure without qualification as one-sided
approximate degree [10, 46]. For our purposes, the distinction between positive and negative one-sided
approximate degree is crucial.
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Let OMB : {−1, 1}n → {−1, 1} denote a specific polynomial size DNF formula known
as ODD-MAX-BIT, defined as follows. On input x = (x1, . . . , xn), let i∗ denote the
largest index such that xi∗ = −1, and let i∗ = 0 if no such index exists. We define
OMB(x1, . . . , xn) = −1 if i∗ is odd, and OMB(x1, . . . , xn) = 1 otherwise. When appropri-
ate, we also use subscripts after function symbols to indicate the number of variables over
which the function is defined. Thus, OMBM denotes the OMB function on M inputs.

For any function f : {−1, 1}N → {−1, 1}, define F :
(
{−1, 1}N

)M → {−1, 1} to be the
block-composition of OMBM with f , i.e., F = OMBM (f, . . . , f). Our hardness amplification
result establishes that if d̃eg+,ε(f) is large for some ε bounded away from 1, then d̃eg+,ε(F )
is large even for ε exponentially close to 1.

I Theorem 1. Fix an f : {−1, 1}N → {−1, 1}, and let F = OMBM (f, . . . , f). If d̃eg+,2/3(f)
≥ d, then d̃eg+,ε(F ) ≥ d for ε = 1− 2−M .

A Matching Upper Bound for Theorem 1. To understand the intuition underlying The-
orem 1, it is instructive to consider (matching) upper bounds. We begin by giving the
well-known sign-representing polynomial for OMBM itself. Define p : {−1, 1}M → R via

p(x1, . . . , xM ) := 1 +
M∑
i=1

(−2)i · (1− xi)/2.

It is easy to see that OMBM (x) = sgn (p(x)), and in fact 2−M−1 ·p(x) approximates OMBM

to error ε = 1− 2−M−1.
We now turn to constructing approximants for OMBM (f, . . . , f), for an arbitrary inner

function f . Fix a W ≥ 2, and let q : {−1, 1}N → R be any degree d polynomial satisfying
the following two properties.

q(x) = 0 for all x ∈ f−1(+1). (1)
1 ≤ q(x) ≤W − 1 for all x ∈ f−1(−1). (2)

Denoting an (M ·N)-bit input as (x1, . . . , xM ) ∈
(
{−1, 1}N

)M , it is easy to check that

F (x1, . . . , xM ) = sgn(h(x1, . . . , xM )), where h(x1, . . . , xM ) = 1 +
M∑
i=1

(−W )i · q(xi).

In fact, W−M−1 ·h(x) approximates F to error 1−W−M−1, and has degree equal to that of q.
If W = O(1), then this construction shows that F can be approximated to error 1− 2−O(M)

by a degree d polynomial, which matches the error bound of Theorem 1 up to a constant
factor in the exponent.

I Observation 2. If there exists a polynomial q of degree d satisfying Eq. (1) and Eq. (1)
with W = O(1), then d̃egε(F ) ≤ d for some ε = 1− 2−O(M).

A few words are in order regarding the relationship between the hypothesis of the upper bound
(Observation 2), and the hypothesis of the lower bound (Theorem 1) that d̃eg+,2/3(f) ≥ d.
Conditions 1 and 1 together imply that r(x) := 1

2W · (1 − 2q(x)) is a positive one-sided
approximation to f for error parameter ε = 1− 1

2W . Moreover, r has the additional (crucial)
property that this approximant is constant on inputs in f−1(+1). Observe that the smaller
W is, the smaller the error of the one-sided approximant r(x) for f(x), and the smaller the
error of the derived approximant W−M−1 · h(x) that we constructed for F .

ICALP 2016



17:4 Lower Bounds for the Approximate Degree of Block-Composed Functions

In general, requiring that r be constant on inputs in f−1(+1) is a very stringent condition,
which will not be satisfied by all one-sided approximations for f . However, Bun and Thaler [10,
Theorem 2] have identified a large class of functions for which any one-sided approximation
for f can be transformed into one that is constant on inputs in f−1(+1), without increasing
its degree. This class includes important functions such as f = OR (see Section 1.2.2), and
f = ED, where ED is the well-studied Element Distinctness function that we use in our
applications to communication and query complexity. For such functions, Observation 2
implies that Theorem 1 is tight.

Can the Hypothesis in Theorem 1 be Weakened? There are two natural ways to weaken
the hypothesis of Theorem 1, and it is natural to wonder whether Theorem 1 would continue
to hold under these hypotheses. Specifically, we can ask:

Does Theorem 1 hold if we replace the outer function OMBM function with the simpler
function ORM , as in previous hardness amplification results for approximate degree [46,
10, 9, 43]?2
Is a one-sided hardness assumption really essential for Theorem 1 to hold? That is, does
OMBM still amplify the hardness of f if we replace the assumption that d̃eg+,2/3(f) ≥ d
with the weaker assumption that d̃eg2/3(f) ≥ d?

The answer to the first question is no. A counterexample is given by f = ORN . It is known
that d̃eg+,2/3(ORN ) = Ω(N1/2) (see, e.g., [30, 10, 17]), yet ORM (ORN , . . . ,ORN ) = ORN ·M
can be approximated to error 1− 1/(MN)� 1− 2−M by a polynomial of degree 1. Thus,
the use of OMBM as the “hardness amplifier” is essential to Theorem 1.

The answer to the second question, unfortunately, remains unknown. Formally, we leave
the resolution of the following conjecture as an open problem.

I Conjecture 3. Suppose that f : {−1, 1}N → {−1, 1} satisfies d̃eg2/3(f) ≥ d. Then letting
F = OMBM (f, . . . , f), it holds that d̃egε(OMBM (f, . . . , f)) ≥ d, for some ε = 1− 2−Ω(M).

1.2 Technical Comparison to Prior Work
1.2.1 The Method of Dual Polynomials
A dual witness to the statement d̃egε(f) ≥ d is a non-zero function ψ : {−1, 1}N → R satisfy-
ing two conditions: (a)

∑
x∈{−1,1}N ψ(x) · f(x) ≥ ε · ‖ψ‖1, where ‖ψ‖1 =

∑
x∈{−1,1}N |ψ(x)|,

and (b) ψ has zero correlation with all polynomials of degree at most d. We refer to Property
(a) by saying that ψ is ε-correlated with f . We refer to Property (b) by saying that ψ has
pure high degree d. We refer to ψ as a dual polynomial for f .

A dual witness to the statement that d̃eg+,ε(f) ≥ d must satisfy an additional correlation
condition, namely: (c) φ(x) agrees in sign with f(x) for all x ∈ f−1(+1). We refer to
Property (c) by saying that φ has positive one-sided error. (Due to space constraints, we
defer further discussion of the duality theory to the full version of the paper.)

We prove Theorem 1 by showing the following: given a dual polynomial ψin witnessing
the assumed d̃eg+,2/3 lower bound on the inner function f , one can construct an explicit

2 One may also ask about replacing OMBM with ANDM in the statement of Theorem 1. Analyses
from prior works [10, 46] apply in this case, but show that the resulting function in fact has high
threshold degree, and hence is not suitable for our applications to query and communication complexity.
We discuss this point in detail in the next section (see Theorem 5, Footnote 5, and the surrounding
discussion).
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dual polynomial ψcomb witnessing the claimed lower bound on the composed function
F = OMB(f, . . . , f).

1.2.2 Prior Work on the Approximate Degree of OMB
Beigel [7] proved that for any d > 0, there is an ε ∈ 1−2−Ω(n/d2) such that d̃egε(OMBn) ≥ d,
and used this result3 to give an oracle separating the (Turing Machine) complexity class
PP from PNP. Note that OMBM (ORN , . . . ,ORN ) is a sub-function of OMBM ·(2N). As
mentioned in Section 1.1, it is known that d̃eg+,2/3(ORN ) = Ω(N1/2). Hence, Theorem 1
can be viewed as a substantial strengthening of Beigel’s result: we recover Beigel’s lower
bound as a special case of Theorem 1 by letting f = ORd2 . Unlike Beigel’s proof, which used
a non-constructive symmetrization technique, our proof of Theorem 1 constructs an explicit
dual polynomial witnessing the lower bound.

For any ε > 0, Klivans and Servedio [24] gave an optimal ε-approximating polynomial for
the function OMB, showing that Beigel’s lower bound (and hence also our Theorem 1 in the
case f = ORN ) is asymptotically tight for all d > 0.4

1.2.3 Earlier Constructions of Dual Polynomials
Given functions gM , fN , Sherstov [45] and Lee [26] independently described a powerful
method for constructing a dual polynomial for the composed function F = gM (fN , . . . , fN ) :
{−1, 1}M ·N → {−1, 1}. This method takes a dual polynomial ψin for fN , and a dual
polynomial ψout for g, and combines them to obtain a dual polynomial ψcomb for the composed
function F . Specifically, denoting an (M · N)-bit input as (x1, . . . , xM ) ∈

(
{−1, 1}N

)M ,
Sherstov and Lee defined

ψcomb(x1, . . . , xM ) = ψout (s̃gn (ψin (x1)) , . . . , s̃gn (ψin (xM ))) ·
M∏
i=1
|ψin(xi)|. (3)

Here, s̃gn : R → {−1, 0, 1} denotes the function satisfying s̃gn(t) = 1 if t > 0, s̃gn(t) =
−1 if t < 0, and s̃gn(0) = 0.

Recall that for ψcomb to witness a good lower bound for the approximate degree of F , it
must be well-correlated with F (Property (a) of Section 1.2.1), and it must have large pure
high degree (Property (b) of Section 1.2.1). Sherstov and Lee showed that the pure high
degree of ψcomb is multiplicative in the pure high degrees of ψin and ψout. That is, if ψin
has pure high degree d1, and ψout has pure high degree d2, then ψcomb has pure high degree
d1 · d2. And while ψcomb is not in general well-correlated with the composed function F ,
several important examples have been identified in which this is the case, as we now explain.

Sherstov [43] and independently Bun and Thaler [9] used the combining technique of
Eq. (3) to resolve the (1/3)-approximate degree of the two-level AND-OR tree. Subsequent
work by Bun and Thaler [10] used Eq. (3) to establish a hardness amplification result that
looks similar to our Theorem 1. Specifically, Bun and Thaler proved:

I Theorem 4 (Bun and Thaler [10]). Suppose d̃eg−,2/3(f) ≥ d. Then d̃eg−,ε(ORM (f, . . . , f))
≥ d, for ε = 1− 2−M .

3 Beigel describes his result as a lower bound on the degree-d threshold weight of OMBn. However, his
argument is easily seen to establish the claimed approximate degree lower bound.

4 Like Beigel, Klivans and Servedio state their results in terms of degree-d threshold weight. However,
their construction is easily seen to imply the claimed upper bound on the approximate degree of OMBn.
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17:6 Lower Bounds for the Approximate Degree of Block-Composed Functions

Theorem 4 is identical to our Theorem 1, but for two differences: first, in our Theorem 1,
the outer function in the composition is OMB, while in Theorem 4 it is OR. Second, the
hypothesis in Theorem 1 is that the inner function f satisfies d̃eg+,2/3(f) ≥ d, while the
assumption in Theorem 4 is that d̃eg−,2/3(f) ≥ d. Both of these differences are crucial for
obtaining a hardness amplification result that applies to functions with low threshold degree
(which is essential for our applications to the communication and query complexity described
in Section 1.3 below). Indeed, subsequent work by Sherstov refined Theorem 4 to yield a
threshold degree lower bound, rather than a d̃eg−,ε lower bound [46].

I Theorem 5 (Sherstov [46]). Suppose d̃eg−,2/3(f) ≥ d. Then deg±(ORM (f, . . . , f)) ≥
min{d, cM} for some constant c > 0.5

Sherstov gives several proofs of Theorem 5. One proof draws heavily on Eq. (3): he
constructs a dual witness of the form ψcomb+ψfix, where ψcomb is the dual witness constructed
by Bun and Thaler using Eq. (3) to prove Theorem 4, and ψfix “zeros out” ψcomb on points
x such that 0 6= s̃gn(ψcomb(x)) 6= s̃gn(ORM (f, . . . , f)). This ensures that ψcomb + ψfix is
perfectly correlated with F .

Sherstov used Theorem 5 to give a depth three circuit with threshold degree Ω̃(n2/5). He
also established the following result, which yields a polynomially stronger lower bound for
depth k > 3.

I Theorem 6 (Sherstov [46]). For any k ≥ 2, there is a depth k (read-once) Boolean circuit
computing a function F satisfying deg±(F ) = Ω(n(k−1)/(2k−1)).

Sherstov’s proof of Theorem 6 is not a refinement of the proof Theorem 4 from [10]. Rather
it relies on an elaborate inductive construction of a dual polynomial (which is nonetheless
reminiscent of Eq. (3)).

In the full version of the paper, we explain why any dual witness establishing Theorem 1
must qualitatively depart from the dual witnesses constructed in prior work. In brief, we
first argue that the dual witnesses constructed in prior work are implicitly tailored to show
optimality of a specific technique for approximating block-composed functions. We then
explain that this technique is far from optimal for the functions to which Theorem 1 applies.

1.3 Applications
This section gives an overview of our applications to query and communication complexity.
Due to space constraints, formal definitions of the complexity classes involved in these
applications, and statements and proofs of the relevant theorems, are deferred to the full
version of the paper.

Notation. Given a query or communication model C and a function f , the notation C(f)
denotes the least cost of a protocol computing f in the model C. Following Babai et al. [4],
we define a corresponding complexity class, also denoted C, consisting of all problems that
have polylogarithmic cost protocols in the model C. Throughout, we use the superscript
cc to denote communication complexity classes, and the subscript query to denote query
complexity classes. Any complexity class without a subscript refers to a classical (Turing
Machine) class.

5 By De Morgan’s laws and the observation that d̃eg−,ε(f) = d̃eg+,ε(f), the following is an equivalent
formulation of Theorem 5. Suppose that d̃eg+,2/3(f) ≥ d. Then deg±(ANDM (f, . . . , f)) ≥ min{d, cM}
for some constant c > 0.
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1.3.1 Query Complexity
Connecting Query Complexity, Approximate Degree, and Oracle Separations. A signi-
ficant motivation for studying query complexity is that separations of query complexity
classes immediately yield oracle separations of their classical counterparts. Such oracle separ-
ations are sometimes construed as evidence that the same separation applies to the classes’
classical counterparts. At a minimum, oracle separations imply a formal barrier (called the
relativization barrier [5]) to disproving the corresponding Turing Machine separation.

It is well-known that approximate degree lower bounds imply lower bounds on (even
quantum) query complexity. So to summarize, approximate degree lower bounds imply
query complexity lower bounds, which in turn often imply oracle separations for classical
complexity classes.

ODD-MAX-BIT, Counting, and the Polynomial Hierarchy. An important question in
complexity theory is to determine the relative power of alternation (as captured by the
polynomial-hierarchy PH), and counting (as captured by the complexity class #P and its
decisional variant PP). Both PH and PP generalize NP in natural ways. Toda famously
showed that their power is related: PH ⊆ PPP [50].

Beigel [7] was interested in determining how much of the Polynomial Hierarchy is contained
in PP itself, and he set out to give an oracle separating PNP from PP. To do so, he introduced
the function OMB and observed that OMB is in the query complexity of analog of PNP –
essentially, the query protocol uses the NP oracle to perform a binary search for the largest
index i∗ such that xi∗ = −1. Then, to show that OMB is not in the query complexity
analog of PP, Beigel proved a lower bound on the approximate degree of OMB. (Recall
from Section 1.2.2 that in [7] Beigel proved that for any d > 0, there is an ε ∈ 1− 2−Ω(n/d2)

such that d̃egε(OMBn) ≥ d).
Thus, Beigel’s result separated the query complexity classes PPquery and PNP

query, and this
in turn implied an oracle separating the classical classes PP from PNP.

An Improved Separation for Query Complexity. Quantitatively, Beigel’s analysis implies
that PPquery(OMB) = Ω(n1/3), and prior to our work, this was the best known separation
between PPquery(f) and PNP

query(f) for any function f . We improve on this separation by
giving a function F in PNP

query such that PPquery(F ) = Ω̃(n2/5).

Details of the separation. The function F we use to exhibit this improved separation is

F := OMBn2/5(EDn3/5 , . . . ,EDn3/5), (4)

where ED is the negation of the well-studied Element Distinctness function (due to space
constraints, we defer a formal definition of the Element Distinctness function to the full
version of the paper). Prior work has shown that EDN satisfies d̃eg+,2/3(EDN ) = Ω̃(N2/3)
[10], so Theorem 1 implies that d̃eg+,ε(F ) = Ω̃(n2/5) even for ε = 1− 2−n2/5 . This in turn
implies the claimed lower bound PPquery(F ) = Ω̃(n2/5). Meanwhile, ED is in NPquery, and
hence the same binary search-based PNP

query protocol that works for OMB also works for F .

1.3.2 Communication Complexity
Babai, Frankl, and Simon [4] defined the (two-party) communication analogs of many complex-
ity classes from the Turing Machine world. Since their seminal paper, these communication
classes have been studied intensely, with the following motivation.

ICALP 2016



17:8 Lower Bounds for the Approximate Degree of Block-Composed Functions

Relationship to Turing Machine Complexity. Just as query complexity separations are
sometimes construed as evidence that the same separation applies to the classes’ classical
counterparts, so too are communication complexity separations. In addition, Aaronson and
Wigderson [1] showed that a separation of communication complexity classes implies a formal
barrier (called the algebraization barrier) to disproving the analogous separation in the Turing
Machine world. Their result is analogous to how query complexity separations imply that
the relativization barrier applies in the Turing Machine world. Thus, studying PNPcc and
PPcc sheds additional light on the relationship between their Turing Machine counterparts.
These communication classes are also of interest in their own right, as we now explain.

The class PNPcc . PNPcc lies near the frontier of our current understanding of communication
complexity classes, in that it is one of the most powerful communication models against which
we know how to prove lower bounds. This communication class has received considerable
attention in recent years: Impagliazzo and Williams [19] were the first to prove lower bounds
against this class, and Papakonstantinou et al. [31] characterized the class in terms of
limited memory communication models. Göös et al. [18] related PNPcc to various other
communication classes near the frontier of understanding.

The class PPcc. PPcc captures the difficulty of computing functions to small-bias, and it
turns out to be characterized by an important combinatorial quantity known as discrepancy
[22]. Motivated in part by this characterization, PPcc has received intense study (cf. [40, 39,
8, 18, 22, 29, 48] and many others).

An improved separation between PPcc and PNPcc . Buhrman, Vereshchagin, and de Wolf [8]
gave the first separation between PPcc and PNPcc .6 Specifically, they “lifted” Beigel’s
query complexity lower bound for OMB to the communication setting, showing that a
certain communication problem G derived from OMB satisfies PNPcc(G) = O(log2 n), but
PPcc(G) = Ω(n1/3). Prior to our work, this was the best separation between these two
communication classes.

We improve on this separation. By applying Sherstov’s pattern matrix method [40] to
the function F of Eq. (4), we obtain a communication problem F ′ that satisfies PNPcc(F ′) =
O(log2 n), but PPcc(F ′) = Ω̃(n2/5).

An improved separation between PPcc and UPPcc for an AC0 function. Buhrman et al.’s
function G also exhibited the first separation between PPcc and a related communication
class called UPPcc, which captures the difficulty of computing f to strictly positive bias
(Sherstov [37] independently separated these two classes). In more detail, the function G used
by Buhrman et al. satisfies UPPcc(G) = O(logn), while PPcc(G) = Ω(n1/3), and until our
work this remained the best known separation between PPcc and UPPcc for any function in
AC0. Our communication problem F ′ improves on this separation, giving a function F ′ in
AC0 satisfying UPPcc(F ′) = O(logn), but PPcc(F ′) = Ω̃(n2/5).

To further motivate this application, we mention that PPcc is characterized not only by
discrepancy, but also by the learning-theoretic notion of margin complexity [29, 28], while
UPPcc is characterized by the notion of dimension complexity [33]. Both margin complexity

6 Buhrman et al. framed their result as an exponential separation between the PPcc and a related class
called UPPcc. As pointed out in subsequent work [18], their result also separates PNPcc

and PPcc.
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and dimension complexity underly state-of-the-art learning algorithms for constant-depth
circuits in a variety of learning models (for details, see [24, 35, 10, 40, 23] and the references
therein). Separating these two quantities sheds light on the relative power of these algorithms.

1.3.3 Roadmap for the Rest of the Paper
We introduce notation and establish preliminary lemmas in Section 2. Section 3 provides an
intuitive overview of the dual witness we construct to prove Theorem 1, before providing
proof details. In the full version of the paper, we collect formal definitions of approximate
degree and its one-sided variants, along with their dual characterizations, and formalize our
applications to query and communication complexity.

2 Notation and Preliminary Facts

Given a set T ⊆ {−1, 1}N , we let IT denote the indicator vector of T ; that is, IT (x) = 1
if x ∈ T , and IT (x) = 0 otherwise. Given a dual polynomial ψ : {−1, 1}N → R, we define
the L1-weight of T under ψ to be Wψ(T ) =

∑
x∈T |ψ(x)|. We use the standard notation

‖ψ‖1 := Wψ({−1, 1}N ), and refer to ‖ψ‖1 as the L1-norm of ψ. Define the function s̃gn : R→
{−1, 0, 1} via: s̃gn(t) = 1 if t > 0, s̃gn(t) = −1 if t < 0, and s̃gn(t) = 0 if t = 0. We say that
a dual polynomial ψ for a function f makes an error on input x if 0 6= s̃gn(ψ(x)) 6= s̃gn(f(x)).

Crucial to our proof are the following two facts that provide methods of combining
multiple dual witnesses while preserving their pure high degree.

I Fact 7. If ψ1, ψ2 :
(
{−1, 1}N

)M → {−1, 1} both have pure high degree d, then so does
ψ1 + ψ2.

I Fact 8. Suppose that ψ1, . . . , ψM : {−1, 1}N → {−1, 1} are each defined over disjoint
sets of variables, and there is some i such that ψi has pure high degree d. Then so does the
function ψ :

(
{−1, 1}N

)M → {−1, 1} defined via ψ(x1, . . . , xM ) =
∏M
i=1 ψi(xi).

3 Proof of Theorem 1

This section proves Theorem 1, which we restate here for the reader’s convenience. Recall
from the introduction that for any Boolean function f : {−1, 1}N → {−1, 1}, F denotes the
function OMBM (f, . . . , f) that maps {−1, 1}M ·N to {−1, 1}.

I Theorem 1 (restated). If d̃eg+,2/3(f) ≥ d, then d̃eg+,ε(F ) ≥ d for ε = 1− 2−M

Proof. Let ψin denote a dual witness for the fact that d̃eg+,2/3(f) ≥ d, normalized to ensure
that its L1-norm is 1. Recall from Section 1.2.1 that ψin satisfies three properties: (a) ψin
has pure high degree at least d, (b) ψin has correlation ε′ ≥ 2/3 with f , and (c) ψin has
positive one-sided error for f , i.e., ψin(xi) ≥ 0 for all xi ∈ f−1(+1). Let E denote the set of
all xi ∈ {−1, 1}N on which ψin(xi) is in error, i.e., 0 6= s̃gn(ψin(xi)) 6= s̃gn(f(xi)).

Proof Overview. For any vector x = (x1, . . . , xM ) ∈
(
{−1, 1}N

)M , we think of xM as the
“most significant” block in x, because if f(xM ) = −1, then F evaluates to −1 regardless of
the values of the other blocks x1, . . . , xM−1. Similarly, we think of x1 as the “least significant
block” of x.

We think of our dual witness ψcomb as being constructed iteratively. The first iteration
creates a dual witness ψ(1) that “uses” the least significant block x1 to “achieve” pure high
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degree at least d. That is, ψ(1) will be uncorrelated with any polynomial p, unless the degree
of p is at least d even when restricted to the variables in the first block. However, ψ(1) will
only have correlation ε′ with F , and hence it will make errors if ε′ < 1. The second iteration
creates a dual witness ψ(2)

comb = ψ(1) + ψ(2), where ψ(2) is a correction term that zeros out
there errors of ψ(1). Moreover, ψ(2) will use the second block x2 to achieve pure high degree
at least d. By Fact 7, this ensures that ψ(2)

comb also has pure high degree at least d.
If ψ(2) zeroed out all of the errors of ψ(1) without introducing any new errors, then ψ(2)

comb
would have perfect correlation with F , and we would be done. Unfortunately, ψ(2) does
introduce new errors. But we have made tangible progress: we show that the number of
errors ψ(2) makes, relative to ψ(1), falls by a factor of Wψin(f−1(+1))/Wψin(E) = ε′/(1− ε′).
Since ε′ ≥ 2/3, we conclude that ε′/(1− ε′) ≥ 2, and hence that ψ(2) makes at most half as
many errors as ψ(1).

In general, the ith iteration adds in a correction term ψ(i) that zeros out all of the
errors of the dual witness ψ(i−1)

comb constructed in the previous iteration. ψ(i) will use the
ith input block xi to achieve pure high degree at least d, and will introduce at most
a Wψin(E)/Wψin(f−1(+1)) ≤ 1/2 fraction of the errors made by ψ(i−1). At the end of
iteration M , we have constructed a dual witness ψcomb :=

∑M
i=1 ψ

(i) that makes only a(
Wψin(E)/Wψin(f−1(+1))

)M = ((1− ε′)/ε′)M ≤ 2−M fraction of the errors made by ψ(1),
and we are done.

Proof Details. Throughout, we assume without loss of generality that M is odd (we only
exploit this assumption in the proof of Lemma 17, which shows that ψcomb has positive
one-sided error for F ).

Properties of ψin. Throughout, we let Q−, Q+ ⊆ {−1, 1}N denote the set of inputs xi for
which ψin(xi) < 0 and ψin(xi) > 0 respectively. We assume d ≥ 1, as otherwise Theorem 1
holds trivially. We make use of the following simple facts about IQ+ and IQ− .

I Fact 9.
∑
xi∈{−1,1}N IQ−(xi) · |ψin(xi)| =

∑
xi∈{−1,1}N IQ+(xi) · |ψin(xi)| = 1/2.

Proof. Since ψin witnesses the fact that d̃eg+,1/2(f) ≥ d, ψin has pure high degree at least d ≥
1. In particular, ψin is uncorrelated with any constant function. Hence,

∑
xi∈{−1,1}N ψin(xi) =

0. Since
∑
xi∈{−1,1}N |ψin(xi)| = 1, it follows that

∑
xi∈{−1,1}N :xi∈Q+ |ψin(xi)| =∑

xi∈{−1,1}N :xi∈Q− |ψin(xi)| = 1/2, which is equivalent to what we wished to prove. J

A crucial implication of the fact that ψin has positive one-sided error is that if ψin outputs
a negative value on input xi, we can “trust” that f(xi) = −1. This is formalized as follows.

I Fact 10. For all xi ∈ Q−, it holds that f(xi) = −1. Equivalently, E ⊆ f−1(−1), or in
other words E ∩ f−1(+1) = ∅.

The following two facts relate the correlation of ψin with f to the L1-weight of the sets
E and f−1(+1) under ψin.

I Fact 11. Wψin(E) = (1− ε′)/2.

Proof. By Property (a), ε′ =
∑
xi∈{−1,1}N ψin(xi) · f(xi) = 1− 2

∑
xi∈E |ψin(xi)|. J

I Fact 12. Wψin(f−1(+1)) = ε′/2.
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Proof. This holds by the following sequence of equalities:

1/2=
∑
xi∈Q+

|ψin(xi)| =
∑
xi∈E
|ψin(xi)|+

∑
xi∈f−1(+1)

|ψin(xi)|=(1/2− ε′/2)+
∑

xi∈f−1(+1)

|ψin(xi)|.

The first equality holds by Fact 9, the second because ψin satisfies Property (c), and the
third by Fact 11. J

Construction of ψcomb. The dual witness we construct is:

ψcomb(x1, . . . , xM ) =
M∑
i=1

ψ(i), where (5)

ψ(i) =(−1)i−1 ·(2/ε′)M−1

∏
j<i

IE(xj)·|ψin(xj)|

 · ψin(xi)·

 M∏
j=i+1

If−1(+1)(xj) · |ψin(xj)|

.
(6)

Recall that, to show that ψcomb is a dual witness for the property d̃eg+,ε(F ) ≥ d for
ε = 1− 2−M , it suffices to establish three properties of ψcomb (cf. Section 1.2.1): (a) it must
have pure high degree at least d, (b) it must satisfy

∑
x∈({−1,1}N )M ψcomb(x) ·F (x) ≥ ‖ψ‖1 ·ε,

where ‖ψ‖1 =
∑

(x∈{−1,1}N )M |ψcomb(x)|, and (c) it must have positive one-sided error. We
establish each in turn below, in Propositions 13, 14, and 17.

I Proposition 13. ψcomb has pure high degree at least d.

Proof. Since ψin has pure high degree at least d, Fact 8 implies that each term ψ(i) in
the sum within Eq. (5) also has pure high degree at least d. The lemma then follows by
Fact 7. J

I Proposition 14.
∑
x∈({−1,1}N )M ψcomb(x) · F (x) ≥ ‖ψ‖1 · ε.

The proof of Proposition 14 will make use of the following two lemmas.

I Lemma 15. ‖ψ‖1 ≥ 1/2.

Proof. Consider the set S = {(x1, . . . , xM ) : x1 ∈ Q− and x2, . . . , xM ∈ f−1(+1)}.We claim
that the weight, Wψcomb(S), that ψcomb places on the set S is 1/2. The lemma clearly follows.

To see this, fix x = (x1, . . . , xM ) ∈ S. We first note that for all i ≥ 2, ψ(i)(x) = 0. Indeed,
Q− ∩ E = ∅ (cf. Fact 10), and hence IE(x1) = 0. Thus, it is immediate from Eq. (6) that
ψ(i)(x) = 0 for i ≥ 2.

So it suffices to show that
∑
x∈S −ψ(1)(x) ≥ 1/2. This follows from the following

calculation:

∑
x∈S
−ψ(1)(x)=(2/ε′)M−1 ·

 ∑
x1∈Q−

−ψin(x1)

·
 M∏
j=2

 ∑
xj∈{−1,1}N

If−1(+1)(xj)·|ψin(xj)|


= (2/ε′)M−1 · (1/2) ·

M∏
j=2

(ε′/2) = 1/2,

where the first equality holds by Eq. (6), and the second holds by Facts 9 and 12. J
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I Lemma 16. Let Ecomb ⊆
(
{−1, 1}N

)M denote the set of inputs on which ψcomb makes an
error, i.e., 0 6= s̃gn(ψcomb(x)) 6= s̃gn(F (x)). Let EM ⊆

(
{−1, 1}N

)M denote {(x1, . . . , xM ) :
xi ∈ E for all i}. Then Ecomb = EM .

Proof. We first show that EM ⊆ Ecomb before showing that Ecomb ⊆ EM . Suppose that
x = (x1, . . . , xM ) ∈ EM . Fact 10 states that E ⊆ f−1(−1), and hence If−1(+1)(xM ) = 0. It
is then immediate from Eq. (6) that ψ(i)(x) = 0 for all i < M . Meanwhile, by Eq. (6) it
holds that

s̃gn(ψ(M)(x)) = (−1)M−1 · s̃gn(ψin(xM )) = (−1)M−1.

Here, we used the fact that s̃gn(ψin(xM )) > 0 if xM ∈ E. (To see this, note that since
xM ∈ E, it holds that 0 6= s̃gn(ψin(xM )) 6= f(xM ) = −1, where the final equality holds
because E ⊆ f−1(−1).) At the same time,

F (x) = OMBM (−1,−1, . . . ,−1) = (−1)M .

Thus, x ∈ Ecomb as claimed.
Fix any x = (x1, . . . , xM ) ∈

(
{−1, 1}N

)M such that there exists an i ∈ {1, . . . ,M}
satisfying xi 6∈ E. To show that Ecomb ⊆ EM , we must show that x 6∈ Ecomb. To this end, let
i∗ be the smallest coordinate such that xi∗ 6∈ E. It is clear that ψcomb(x) = 0 if ψin(xi) = 0
for any i ∈ [M ], and hence x 6∈ Ecomb. So assume throughout that ψin(xi) 6= 0 for all i. The
proof proceeds via a case analysis.

Case 1: There exists a j > i∗ such that xj 6∈ f−1(+1). In this case, If−1(+1)(xj) = 0,
so it is immediate from Eq. (6) that ψ(k)(x) = 0 for all k < j. Meanwhile, since
IE(xi∗) = 0, it is immediate from Eq. (6) that ψ(k)(x) = 0 for all k ≥ j. Thus,
ψcomb(x) =

∑M
k=0 ψ

(k)(x) = 0, implying that x 6∈ Ecomb.
Case 2: i∗ = 1, and xj ∈ f−1(+1) for all j > i∗. In this case, it is clear by Eq. (6) that

s̃gn(ψ(1)(x)) = (−1)0 · s̃gn(ψin(x1)) = s̃gn(ψin(x1)) = s̃gn(f(x1)) = F (x1, . . . , xM ). (7)

Here, the third equality holds because x1 6∈ E, and the fourth equality exploits the fact
that if xj ∈ f−1(+1) for all j > 1, then F (x) = f(x1).
Meanwhile, since x1 6∈ E, it holds that IE(x1) = 0, and so it is clear by Eq. (6) that
ψ(k)(x) = 0 for all k ≥ 2. Combining this with Eq. (7), we conclude that s̃gn(ψcomb(x)) =
s̃gn(ψ(1)(x)) = F (x1, . . . , xM ). Thus, x 6∈ Ecomb.
Case 3: i∗ ≥ 2, and xj ∈ f−1(+1) for all j > i∗. First, we argue that ψ(k) = 0 for all
k < i∗ − 1. Indeed, for all such k, xk+1 ∈ E ⊆ f−1(−1) (cf. Fact 10), and so it holds that
If−1(+1)(xk+1) = 0. Hence, it is immediate from Eq. (6) that ψ(k)(x) = 0.
Next, we argue that ψ(k) = 0 for all k ≥ i∗ + 1. Indeed, xi∗ 6∈ E, so IE(xi∗) = 0. It is
then immediate from Eq. (6) that ψ(k)(x) = 0 for all k ≥ i∗ + 1.
Finally, we claim that either ψ(i∗−1)(x)+ψ(i∗)(x) = 0 or s̃gn(ψ(i∗−1)(x)+ψ(i∗)(x)) = F (x).
This follows from the following calculation.

Case 3a: Suppose xi∗ 6∈ f−1(+1), i.e., that If−1(+1)(xi∗) = 0. Then is clear from
Eq. (6) that ψ(i∗−1)(x) = 0. Meanwhile, since xi∗ 6∈ E, it is clear from Eq. (6) that

s̃gn(ψ(i∗)(x)) = (−1)i
∗−1 · s̃gn(ψin(xi∗)) = (−1)i

∗−1 · f(xi∗) = F (x),

where the final equality exploits the fact that if xj ∈ f−1(+1) for all j > i∗, and
xi∗−1∈E⊆ f−1(−1) (Fact 10), then F (x) = (−1)i∗−1 · f(xi∗).
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Case 3b: Suppose xi∗ ∈ f−1(+1). We claim that it holds that ψ(i∗−1)(x) = −ψ(i∗)(x).
To see this, note that in this case

ψ(i∗−1)(x) = (−1)i
∗−2 · (2/ε′)M−1 · ψin(xi∗−1) ·

∏
j 6=i∗−1

|ψin(xj)|, and (8)

ψ(i∗)(x) = (−1)i
∗−1 · (2/ε′)M−1 · ψin(xi∗) ·

∏
j 6=i∗
|ψin(xj)|. (9)

Both of the above quantities are clearly equal in absolute value, but it remains to
show that ψ(i∗−1)(x) = −ψ(i∗)(x). Since xi∗−1 ∈ E ⊆ f−1(−1) (Fact 10), it holds that
s̃gn(ψin(xi∗−1)) = +1. Meanwhile, since xi∗ 6∈ E, s̃gn(ψin(xi∗)) = f(xi∗) = +1. Hence,
s̃gn(ψ(i∗−1)(x)) = (−1)i∗−2, while s̃gn(ψ(i∗)(x)) = (−1)i∗−1, completing the proof.

Combining all of the above, we conclude that ψcomb(x)=
∑M
j=1 ψ

(j)
comb(x)=ψ

(i∗−1)
comb (x) +

ψ
(i∗)
comb(x), and the latter expression is either equal to 0 or agrees in sign with F (x). Thus,
x 6∈ Ecomb. This completes the proof of Lemma 16. J

Proof of Proposition 14. Note that∑
x∈({−1,1}N )M

ψcomb(x) · F (x) =
∑

x∈({−1,1}N )M

|ψcomb(x)| − 2
∑

x∈Ecomb

|ψcomb(x)|

= ‖ψ‖1 − 2
∑

x∈Ecomb

|ψcomb(x)|, (10)

where we recall from Lemma 16 that Ecomb = EM is the set of points on which ψcomb makes
an error. Observe that for each j:

∑
x∈EM

ψ(j)(x)≤(2/ε′)M−1
M∏
i=1

(∑
xi∈E
|ψin(xi)|

)
≤(2/ε′)M−1 ·

M∏
i=1

((1− ε′)/2)≤3M−1/6M <2−M−1

(11)

Here, the first equality holds because, for all x ∈ EM and j < M , ψ(j)(x) = 0; this follows by
combining Eq. (6) with the fact that E ∩ f−1(+1) = ∅ (Fact 10) (see also the EM ⊆ Ecomb
direction in the proof of Lemma 16). The second inequality holds by Fact 11, and the third
because ε′ ≥ 2/3. Combining Lemma 15 with Eq. (10) and Eq. (11), we conclude that∑
x∈({−1,1}N )M ψcomb(x) ·F (x) ≥ ‖ψ‖1−2−M−1 ≥ ‖ψ‖1(1−2−M ), completing the proof. J

I Proposition 17. ψcomb(x) ≥ 0 for all x ∈ F−1(+1).

Proof. Lemma 16 implies that the set Ecomb on which ψcomb makes an error is equal to
EM . Since E ⊆ f−1(−1) (cf. Fact 10), and we assumed that M is odd, it is obvious from
the definition of F that EM ⊆ F−1(−1). It follows that ψcomb makes no errors on F−1(+1),
implying the proposition. J

Theorem 1 follows from Propositions 13, 14, 17 and the dual characterization of d̃eg+,ε. J
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