31 research outputs found

    Improving Sampling from Generative Autoencoders with Markov Chains

    Get PDF
    We focus on generative autoencoders, such as variational or adversarial autoencoders, which jointly learn a generative model alongside an inference model. We define generative autoencoders as autoencoders which are trained to softly enforce a prior on the latent distribution learned by the model. However, the model does not necessarily learn to match the prior. We formulate a Markov chain Monte Carlo (MCMC) sampling process, equivalent to iteratively encoding and decoding, which allows us to sample from the learned latent distribution. Using this we can improve the quality of samples drawn from the model, especially when the learned distribution is far from the prior. Using MCMC sampling, we also reveal previously unseen differences between generative autoencoders trained either with or without the denoising criterion

    Denoising Criterion for Variational Auto-Encoding Framework

    Full text link
    Denoising autoencoders (DAE) are trained to reconstruct their clean inputs with noise injected at the input level, while variational autoencoders (VAE) are trained with noise injected in their stochastic hidden layer, with a regularizer that encourages this noise injection. In this paper, we show that injecting noise both in input and in the stochastic hidden layer can be advantageous and we propose a modified variational lower bound as an improved objective function in this setup. When input is corrupted, then the standard VAE lower bound involves marginalizing the encoder conditional distribution over the input noise, which makes the training criterion intractable. Instead, we propose a modified training criterion which corresponds to a tractable bound when input is corrupted. Experimentally, we find that the proposed denoising variational autoencoder (DVAE) yields better average log-likelihood than the VAE and the importance weighted autoencoder on the MNIST and Frey Face datasets.Comment: ICLR conference submissio

    A Deep Learning Approach to Structured Signal Recovery

    Full text link
    In this paper, we develop a new framework for sensing and recovering structured signals. In contrast to compressive sensing (CS) systems that employ linear measurements, sparse representations, and computationally complex convex/greedy algorithms, we introduce a deep learning framework that supports both linear and mildly nonlinear measurements, that learns a structured representation from training data, and that efficiently computes a signal estimate. In particular, we apply a stacked denoising autoencoder (SDA), as an unsupervised feature learner. SDA enables us to capture statistical dependencies between the different elements of certain signals and improve signal recovery performance as compared to the CS approach

    Discriminative Recurrent Sparse Auto-Encoders

    Full text link
    We present the discriminative recurrent sparse auto-encoder model, comprising a recurrent encoder of rectified linear units, unrolled for a fixed number of iterations, and connected to two linear decoders that reconstruct the input and predict its supervised classification. Training via backpropagation-through-time initially minimizes an unsupervised sparse reconstruction error; the loss function is then augmented with a discriminative term on the supervised classification. The depth implicit in the temporally-unrolled form allows the system to exhibit all the power of deep networks, while substantially reducing the number of trainable parameters. From an initially unstructured network the hidden units differentiate into categorical-units, each of which represents an input prototype with a well-defined class; and part-units representing deformations of these prototypes. The learned organization of the recurrent encoder is hierarchical: part-units are driven directly by the input, whereas the activity of categorical-units builds up over time through interactions with the part-units. Even using a small number of hidden units per layer, discriminative recurrent sparse auto-encoders achieve excellent performance on MNIST.Comment: Added clarifications suggested by reviewers. 15 pages, 10 figure

    Unsupervised feature extraction with autoencoder : for the representation of parkinson´s disease patients

    Get PDF
    Dissertation presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in Knowledge Management and Business IntelligenceData representation is one of the fundamental concepts in machine learning. An appropriate representation is found by discovering a structure and automatic detection of patterns in data. In many domains, representation or feature learning is a critical step in improving the performance of machine learning algorithms due to the multidimensionality of data that feeds the model. Some tasks may have different perspectives and approaches depending on how data is represented. In recent years, deep artificial neural networks have provided better solutions to several pattern recognition problems and classification tasks. Deep architectures have also shown their effectiveness in capturing latent features for data representation. In this document, autoencoders will be examined to obtain the representation of Parkinson's disease patients and compared with conventional representation learning algorithms. The results will show whether the proposed method of feature selection leads to the desired accuracy for predicting the severity of Parkinson’s disease
    corecore