22 research outputs found

    A note on a problem in communication complexity

    Full text link
    In this note, we prove a version of Tarui's Theorem in communication complexity, namely PHccBPPPccPH^{cc} \subseteq BP\cdot PP^{cc}. Consequently, every measure for PPccPP^{cc} leads to a measure for PHccPH^{cc}, subsuming a result of Linial and Shraibman that problems with high mc-rigidity lie outside the polynomial hierarchy. By slightly changing the definition of mc-rigidity (arbitrary instead of uniform distribution), it is then evident that the class MccM^{cc} of problems with low mc-rigidity equals BPPPccBP\cdot PP^{cc}. As BPPPccPSPACEccBP\cdot PP^{cc} \subseteq PSPACE^{cc}, this rules out the possibility, that had been left open, that even polynomial space is contained in MccM^{cc}

    Unbounded-Error Classical and Quantum Communication Complexity

    Full text link
    Since the seminal work of Paturi and Simon \cite[FOCS'84 & JCSS'86]{PS86}, the unbounded-error classical communication complexity of a Boolean function has been studied based on the arrangement of points and hyperplanes. Recently, \cite[ICALP'07]{INRY07} found that the unbounded-error {\em quantum} communication complexity in the {\em one-way communication} model can also be investigated using the arrangement, and showed that it is exactly (without a difference of even one qubit) half of the classical one-way communication complexity. In this paper, we extend the arrangement argument to the {\em two-way} and {\em simultaneous message passing} (SMP) models. As a result, we show similarly tight bounds of the unbounded-error two-way/one-way/SMP quantum/classical communication complexities for {\em any} partial/total Boolean function, implying that all of them are equivalent up to a multiplicative constant of four. Moreover, the arrangement argument is also used to show that the gap between {\em weakly} unbounded-error quantum and classical communication complexities is at most a factor of three.Comment: 11 pages. To appear at Proc. ISAAC 200

    Distribution-Independent Evolvability of Linear Threshold Functions

    Full text link
    Valiant's (2007) model of evolvability models the evolutionary process of acquiring useful functionality as a restricted form of learning from random examples. Linear threshold functions and their various subclasses, such as conjunctions and decision lists, play a fundamental role in learning theory and hence their evolvability has been the primary focus of research on Valiant's framework (2007). One of the main open problems regarding the model is whether conjunctions are evolvable distribution-independently (Feldman and Valiant, 2008). We show that the answer is negative. Our proof is based on a new combinatorial parameter of a concept class that lower-bounds the complexity of learning from correlations. We contrast the lower bound with a proof that linear threshold functions having a non-negligible margin on the data points are evolvable distribution-independently via a simple mutation algorithm. Our algorithm relies on a non-linear loss function being used to select the hypotheses instead of 0-1 loss in Valiant's (2007) original definition. The proof of evolvability requires that the loss function satisfies several mild conditions that are, for example, satisfied by the quadratic loss function studied in several other works (Michael, 2007; Feldman, 2009; Valiant, 2010). An important property of our evolution algorithm is monotonicity, that is the algorithm guarantees evolvability without any decreases in performance. Previously, monotone evolvability was only shown for conjunctions with quadratic loss (Feldman, 2009) or when the distribution on the domain is severely restricted (Michael, 2007; Feldman, 2009; Kanade et al., 2010

    Using Elimination Theory to construct Rigid Matrices

    Get PDF
    The rigidity of a matrix A for target rank r is the minimum number of entries of A that must be changed to ensure that the rank of the altered matrix is at most r. Since its introduction by Valiant (1977), rigidity and similar rank-robustness functions of matrices have found numerous applications in circuit complexity, communication complexity, and learning complexity. Almost all nxn matrices over an infinite field have a rigidity of (n-r)^2. It is a long-standing open question to construct infinite families of explicit matrices even with superlinear rigidity when r = Omega(n). In this paper, we construct an infinite family of complex matrices with the largest possible, i.e., (n-r)^2, rigidity. The entries of an n x n matrix in this family are distinct primitive roots of unity of orders roughly exp(n^2 log n). To the best of our knowledge, this is the first family of concrete (but not entirely explicit) matrices having maximal rigidity and a succinct algebraic description. Our construction is based on elimination theory of polynomial ideals. In particular, we use results on the existence of polynomials in elimination ideals with effective degree upper bounds (effective Nullstellensatz). Using elementary algebraic geometry, we prove that the dimension of the affine variety of matrices of rigidity at most k is exactly n^2-(n-r)^2+k. Finally, we use elimination theory to examine whether the rigidity function is semi-continuous.Comment: 25 Pages, minor typos correcte

    Matrix discrepancy and the log-rank conjecture

    Full text link
    Given an m×nm\times n binary matrix MM with M=pmn|M|=p\cdot mn (where M|M| denotes the number of 1 entries), define the discrepancy of MM as \mbox{disc}(M)=\displaystyle\max_{X\subset [m], Y\subset [n]}\big||M[X\times Y]|-p|X|\cdot |Y|\big|. Using semidefinite programming and spectral techniques, we prove that if \mbox{rank}(M)\leq r and p1/2p\leq 1/2, then \mbox{disc}(M)\geq \Omega(mn)\cdot \min\left\{p,\frac{p^{1/2}}{\sqrt{r}}\right\}. We use this result to obtain a modest improvement of Lovett's best known upper bound on the log-rank conjecture. We prove that any m×nm\times n binary matrix MM of rank at most rr contains an (m2O(r))×(n2O(r))(m\cdot 2^{-O(\sqrt{r})})\times (n\cdot 2^{-O(\sqrt{r})}) sized all-1 or all-0 submatrix, which implies that the deterministic communication complexity of any Boolean function of rank rr is at most O(r)O(\sqrt{r}).Comment: 9 page

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran

    Sign Rank vs Discrepancy

    Get PDF
    Sign-rank and discrepancy are two central notions in communication complexity. The seminal work of Babai, Frankl, and Simon from 1986 initiated an active line of research that investigates the gap between these two notions. In this article, we establish the strongest possible separation by constructing a boolean matrix whose sign-rank is only 3, and yet its discrepancy is 2^{-?(n)}. We note that every matrix of sign-rank 2 has discrepancy n^{-O(1)}. Our result in particular implies that there are boolean functions with O(1) unbounded error randomized communication complexity while having ?(n) weakly unbounded error randomized communication complexity

    Lower Bounds for the Approximate Degree of Block-Composed Functions

    Get PDF
    We describe a new hardness amplification result for point-wise approximation of Boolean functions by low-degree polynomials. Specifically, for any function f on N bits, define F(x_1,...,x_M) = OMB(f(x_1),...,f(x_M)) to be the function on M*N bits obtained by block-composing f with a function known as ODD-MAX-BIT. We show that, if f requires large degree to approximate to error 2/3 in a certain one-sided sense (captured by a complexity measure known as positive one-sided approximate degree), then F requires large degree to approximate even to error 1-2^{-M}. This generalizes a result of Beigel (Computational Complexity, 1994), who proved an identical result for the special case f=OR. Unlike related prior work, our result implies strong approximate degree lower bounds even for many functions F that have low threshold degree. Our proof is constructive: we exhibit a solution to the dual of an appropriate linear program capturing the approximate degree of any function. We describe several applications, including improved separations between the complexity classes P^{NP} and PP in both the query and communication complexity settings. Our separations improve on work of Beigel (1994) and Buhrman, Vereshchagin, and de Wolf (CCC, 2007)
    corecore