2,325 research outputs found

    LFG without C-structures

    Get PDF
    We explore the use of two dependency parsers, Malt and MST, in a Lexical Functional Grammar parsing pipeline. We compare this to the traditional LFG parsing pipeline which uses constituency parsers. We train the dependency parsers not on classical LFG f-structures but rather on modified dependency-tree versions of these in which all words in the input sentence are represented and multiple heads are removed. For the purposes of comparison, we also modify the existing CFG-based LFG parsing pipeline so that these "LFG-inspired" dependency trees are produced. We find that the differences in parsing accuracy over the various parsing architectures is small

    Structured Prediction of Sequences and Trees using Infinite Contexts

    Full text link
    Linguistic structures exhibit a rich array of global phenomena, however commonly used Markov models are unable to adequately describe these phenomena due to their strong locality assumptions. We propose a novel hierarchical model for structured prediction over sequences and trees which exploits global context by conditioning each generation decision on an unbounded context of prior decisions. This builds on the success of Markov models but without imposing a fixed bound in order to better represent global phenomena. To facilitate learning of this large and unbounded model, we use a hierarchical Pitman-Yor process prior which provides a recursive form of smoothing. We propose prediction algorithms based on A* and Markov Chain Monte Carlo sampling. Empirical results demonstrate the potential of our model compared to baseline finite-context Markov models on part-of-speech tagging and syntactic parsing

    Making decision trees feasible in ultrahigh feature and label dimensions

    Full text link
    ©2017 Weiwei Liu and Ivor W. Tsang. Due to the non-linear but highly interpretable representations, decision tree (DT) models have significantly attracted a lot of attention of researchers. However, it is difficult to understand and interpret DT models in ultrahigh dimensions and DT models usually suffer from the curse of dimensionality and achieve degenerated performance when there are many noisy features. To address these issues, this paper first presents a novel data-dependent generalization error bound for the perceptron decision tree (PDT), which provides the theoretical justification to learn a sparse linear hyperplane in each decision node and to prune the tree. Following our analysis, we introduce the notion of budget-aware classifier (BAC) with a budget constraint on the weight coefficients, and propose a supervised budgeted tree (SBT) algorithm to achieve non-linear prediction performance. To avoid generating an unstable and complicated decision tree and improve the generalization of the SBT, we present a pruning strategy by learning classifiers to minimize cross-validation errors on each BAC. To deal with ultrahigh label dimensions, based on three important phenomena of real-world data sets from a variety of application domains, we develop a sparse coding tree framework for multi-label annotation problems and provide the theoretical analysis. Extensive empirical studies verify that 1) SBT is easy to understand and interpret in ultrahigh dimensions and is more resilient to noisy features. 2) Compared with state-of-the-art algorithms, our proposed sparse coding tree framework is more efficient, yet accurate in ultrahigh label and feature dimensions

    Beyond Sparsity: Tree Regularization of Deep Models for Interpretability

    Get PDF
    The lack of interpretability remains a key barrier to the adoption of deep models in many applications. In this work, we explicitly regularize deep models so human users might step through the process behind their predictions in little time. Specifically, we train deep time-series models so their class-probability predictions have high accuracy while being closely modeled by decision trees with few nodes. Using intuitive toy examples as well as medical tasks for treating sepsis and HIV, we demonstrate that this new tree regularization yields models that are easier for humans to simulate than simpler L1 or L2 penalties without sacrificing predictive power.Comment: To appear in AAAI 2018. Contains 9-page main paper and appendix with supplementary materia
    corecore