5,058 research outputs found

    A Conceptual Framework for Mobile Learning

    Get PDF
    Several technology projects have been launched to explore the opportunities that mobile technologies bring about when tackling issues of democratic participation and social inclusion through mobile learning. Mobile devices are cheaper than for instance a PC, and their affordance, usability and accessibility are such that they can potentially complement or even replace traditional computer technology. The importance of communication and collaboration features of mobile technologies has been stressed in the framework of ICT-mediated learning. In this paper, a theoretical framework for mobile learning and e-inclusion is developed for people outside the conventional education system. The framework draws upon the fields of pedagogy (constructivist learning in particular), mobile learning objects and sociology.Mobile Learning, Digital Divide, Constructivist Pedagogy, Forms Of Capital

    Context aware ontology‐based hybrid intelligent framework for vehicle driver categorization

    Get PDF
    In public vehicles, one of the major concerns is driver's level of expertise for its direct proportionality to safety of passengers. Hence, before a driver is subjected to certain type of vehicle, he should be thoroughly evaluated and categorized with respect to certain parameters instead of only one‐time metric of having driving license. These aspects may be driver's expertise, vigilance, aptitude, experience years, cognition, driving style, formal education, terrain, region, minor violations, major accidents, and age group. The purpose of this categorization is to ascertain suitability of a driver for certain vehicle type(s) to ensure passengers' safety. Currently, no driver categorization technique fully comprehends the implicit as well as explicit characteristics of drivers dynamically. In this paper, machine learning–based dynamic and adaptive technique named D‐CHAITs (driver categorization through hybrid of artificial intelligence techniques) is proposed for driver categorization with an objective focus on driver's attributes modeled in DriverOntology. A supervised mode of learning has been employed on a labeled dataset, having diverse profiles of drivers with attributes pertinent to drivers' perspectives of demographics, behaviors, expertise, and inclinations. A comparative analysis of D‐CHAIT with three other machine learning techniques (fuzzy logic, case‐based reasoning, and artificial neural networks) is also presented. The efficacy of all techniques was empirically measured while categorizing the drivers based on their profiles through metrics of accuracy, precision, recall, F‐measure performance, and associated costs. These empirical quantifications assert D‐CHAIT as a better technique than contemporary ones. The novelty of proposed technique is signified through preprocessing of feature attributes, quality of data, training of machine learning model on more relevant data, and adaptivity This is the peer reviewed version of the following article: Context aware ontology‐based hybrid intelligent framework for vehicle driver categorization, which has been published in final form at https://doi.org/10.1002/ett.3729. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

    FEPDS: A Proposal for the Extraction of Fuzzy Emerging Patterns in Data Streams

    Get PDF
    Nowadays, most data is generated by devices that produce data continuously. These kinds of data can be categorised as data streams and valuable insights can be extracted from them. In particular, the insights extracted by emerging patterns are interesting in a data stream context as easy, fast, reliable decisions can be made. However, their extraction is a challenge due to the necessary response time, memory and continuous model updates. In this paper, an approach for the extraction of emerging patterns in data streams is presented. It processes the instances by means of batches following an adaptive approach. The learning algorithm is an evolutionary fuzzy system where previous knowledge is employed in order to adapt to concept drift. A wide experimental study has been performed in order to show both the suitability of the approach in combating concept drift and the quality of the knowledge extracted. Finally, the proposal is applied to a case study related to the continuous determination of the profiles of New York City cab customers according to their fare amount, in order to show its potential

    An adaptable fuzzy-based model for predicting link quality in robot networks.

    Get PDF
    It is often essential for robots to maintain wireless connectivity with other systems so that commands, sensor data, and other situational information can be exchanged. Unfortunately, maintaining sufficient connection quality between these systems can be problematic. Robot mobility, combined with the attenuation and rapid dynamics associated with radio wave propagation, can cause frequent link quality (LQ) issues such as degraded throughput, temporary disconnects, or even link failure. In order to proactively mitigate such problems, robots must possess the capability, at the application layer, to gauge the quality of their wireless connections. However, many of the existing approaches lack adaptability or the framework necessary to rapidly build and sustain an accurate LQ prediction model. The primary contribution of this dissertation is the introduction of a novel way of blending machine learning with fuzzy logic so that an adaptable, yet intuitive LQ prediction model can be formed. Another significant contribution includes the evaluation of a unique active and incremental learning framework for quickly constructing and maintaining prediction models in robot networks with minimal sampling overhead

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    What are natural concepts? A design perspective

    Get PDF
    Conceptual spaces have become an increasingly popular modeling tool in cognitive psychology. The core idea of the conceptual spaces approach is that concepts can be represented as regions in similarity spaces. While it is generally acknowledged that not every region in such a space represents a natural concept, it is still an open question what distinguishes those regions that represent natural concepts from those that do not. The central claim of this paper is that natural concepts are represented by the cells of an optimally designed similarity space
    • 

    corecore