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Abstract

Conceptual spaces have become an increasingly popular modeling tool in cognitive
psychology, artificial intelligence, and philosophy. e core idea of the conceptual
spaces approach is that concepts can be represented geometrically, as regions in simi-
larity spaces. While it is generally acknowledged that not every region in such a space
represents a natural concept—a concept that figures or could plausibly figure in hu-
man thinking—it is still an open question what distinguishes those regions that rep-
resent natural concepts from those that do not. e central claim of this paper is that
natural concepts are represented by the cells of an optimally designed similarity space.
To explicate the notion of optimal design, we present a number of general desider-
ata formulated in terms of parsimony, informativeness, representation, contrast, and
learnability. Detailed support for the proposal comes from empirical and computa-
tional research on color categorization and from agent-based social simulations.

Keywords: concepts; design; meeting of minds; optimality; similarity spaces.

1 Introduction
Consider the concepts  and , where something falls under the latter concept if it
is green and examined before a future time 𝑡, or blue and not examined before 𝑡 (Goodman
1954). While  strikes everyone as a perfectly natural concept,  appears gerryman-
dered, even absurd. But what accounts for this difference in status? is question is at the
center of a long-standing philosophical debate, but it is also directly relevant to recent de-
velopments in the cognitive sciences. Specifically, it arises in relation to the increasingly
popular conceptual spaces framework for representing concepts, which emerged from em-
pirical work in cognitive psychology (Nosofsky 1987; Indow 1988; Gärdenfors 2000) but
has in recent years also been used with great success in a range of areas of artificial intelli-
gence as well as in philosophy.1

1Applications in artificial intelligence research include the formalization of commonsense reasoning
(Schockaert & Prade 2013; Derrac & Schockaert 2015), computer vision and robotics (Chella, Frixione, &
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Central to the conceptual spaces framework is the idea that concepts can be represented
geometrically, as regions in so-called similarity spaces (roughly, metrical spaces where the
metric measures similarity; more on this below). At the same time, it is clear that not just
any region in a similarity space represents a concept, at least not one that plays or could
play a role in our thinking and theorizing—not a natural concept, like , and unlike
. However, this raises the question of what differentiates natural from non-natural
concepts, a question that has so far received no fully satisfactory answer in the conceptual
spaces literature.

Literature on the universalism/relativism debate suggests some prima-facie plausible
answers to this question. e way the question has been asked in that literature is whether
supposedly natural concepts like , , and  are universal, reflecting real divi-
sions in reality that must therefore be shared by all people, or whether their extensions are,
at bottom, arbitrary, reflecting mere conventions or cultural biases.

It speaks in favor of the former, “universalist” answer that there seems to be something
objectively right about our having separate concepts for horses and cows, or about our hav-
ing the concept  but not the concept . On the other hand, relativists are in a
much better position to explain why we do not find the same conceptual systems across the
globe, and even find ones that deviate quite starkly from our own. Following the “meeting
of minds” model of Warglien and Gärdenfors (2013), we propose a middle ground between
universalism and relativism that, we believe, can explain both how a conceptual system can
be, in an important sense, objectively correct and how one might plausibly expect to find
deviations from that system.

According to our approach, a conceptual system is an agreement between the members
of a community that a particular meaning domain be partitioned in a particular way. A
concept is then a particular element of such a partitioning, for example a color or a fruit con-
cept. e agreement about a conceptual system need not be explicit but typically emerges
out of the successes and failures of the interactions between themembers of the community
(Warglien & Gärdenfors 2013). Such a “meeting of minds” is universal in the sense that all
members of the community must adopt the same conceptual system in order to cooperate
and communicate with others. It is also relativist in the sense that a variety of conceptual
systems are possible for a particular meaning domain. For instance, the number of color
concepts varies extensively between different cultures (see Section 5). Furthermore, experts
in an area typically use finer-grained conceptual systems than lay people do. is approach
makes concepts socio-cognitive constructs rather than Platonic abstract entities (Gärden-
fors 2014).

Given this characterization of conceptual systems, one may ask whether a particular
system is optimally designed, where “optimality” is defined by reference to certain broad
constraints to which we humans are subject. Our central claim is that natural concepts

Gaglio 1997, 2000, 2003), the computational modeling of linguistic phenomena (Steels 2012; Tang & Lawry
2012; Lawry & Eyre 2014; Lewis & Lawry 2014, 2016), and cognitive architectures (Aisbett & Gibbon 2001;
Lieto et al. 2015; Lieto, Chella, & Frixione 2017). In philosophy, conceptual spaces have been used in the study
of theory change (Gärdenfors & Zenker 2011, 2013), vagueness (Douven et al. 2013; Douven 2018a), graded
membership and truth (Decock&Douven 2014; Douven&Decock 2017; Douven 2018b), the nature of percep-
tual experience (Brössel 2017), and ethical issues related to technological advances (Peterson 2017). See also
Roy (2005a, b) and Steels and Belpaeme (2005) for applications of the conceptual spaces framework in com-
putational linguistics, and Kriegeskorte and Mur (2012), Kriegeskorte and Kievit (2013), and Mur et al. (2013)
for applications in neuroscience.
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are those represented by an optimally designed conceptual system. Contra relativism, this
renders the notion of a natural concept non-arbitrary, while also allowing for the occurrence
of (sometimes substantial) differences among conceptual systems used in different cultures.
But, contra universalism, the best designed conceptual systems, and hence natural concepts,
are not held to reflect some fundamental blueprint of the physical or mental world.

If one adopts a design perspective, a crucial question is what concepts are for. ere are
three main uses of concepts: (i) for categorization; (ii) for communication; and (iii) for rea-
soning. Firstly, we need to categorize entities in the world in order to choose appropriate
actions. For example, we must be able to distinguish edible things from non-edible ones.
Secondly, we oen communicate about concepts, and not only about single objects or indi-
viduals. For example, in teaching contexts, general relations between concepts (“elephants
have trunks,” “smoking causes cancer”) are central. irdly, concepts are used in reasoning,
as has been studied by philosophers at least since Aristotle’s syllogisms. In this paper, we
primarily focus on design principles—according to which, for example, concepts should be
informative, representative, and learnable—that pertain to the first two uses.

In Section 2, we rehearse the main tenets of the conceptual spaces approach. In Sec-
tion 3, we present various candidates for cognitive criteria on the design of conceptual sys-
tems. Section 4 discusses examples of specific design constraints in the context of the con-
ceptual spaces approach. Section 5 makes the discussion more concrete by illustrating how
the criteria and constraints function in the color domain. Section 6, finally, takes a social
perspective and shows how the same criteria and constraints are also motivated by the need
for concepts to serve purposes of communication and of social interaction more generally.

Before we start, we should note that there is a vast and diverse literature on concepts,
with contributions from psychologists (Osherson & Smith 1981, 1982, 1997; Medin 1989;
Malt 1994, 1995; Medin, Lynch, & Solomon 2000; Malt, Sloman, & Gennari 2003; Murphy
2004; Malt & Sloman 2007; Carey 2009), linguists (e.g., Lakoff 1973; Kamp & Partee 1995;
Jäger 2007, 2010), and philosophers (e.g., Rey 1983, 1985; Aydede & Guzeldere 2005; Mar-
golis & Laurence 2007; Machery 2009; Churchland 2012) contributing. Even within each of
these research communities, there is much disagreement on what concepts are and even on
their ontological status (i.e., whether they are to be interpreted realistically or only instru-
mentally, as convenient tools for psychological theorizing). For our own view on concepts,
including their ontological status, see Gärdenfors (2000, 2014), where differences and com-
monalities with much of the just-cited literature are also highlighted.

2 Conceptual spaces
e conceptual spaces approach is an expanding research program based on the idea that
concepts can be modeled as regions of similarity spaces. Not every similarity space repre-
sents concepts (see, e.g., Johnson 2008, Sect. 6.5), but the ones that do are referred to as
“conceptual spaces” (Gärdenfors 2000). Conceptual spaces that have been discussed in the
literature include color space (e.g., Shepard 1964; Indow 1988; Bosten et al. 2005; Douven et
al. 2017), taste space (Churchland 1986), olfactory space (Castro, Ramanathan, &Chennub-
hotla 2013), various auditory spaces, as well as shape spaces (Petitot 1989; Gärdenfors 2000;
Churchland 2012; Douven 2016; Valentine, Lewis, & Hills 2016), musical spaces (Shepard
1982; Bååth, Lagerstedt, & Gärdenfors 2014; Nussbaum 2015), spaces to represent actions,
events, emotions, moral concepts, scientific concepts, epistemic concepts, and many more
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Figure 1: An approximate representation of color space.

(e.g., Gärdenfors 2007; Gärdenfors & Zenker 2011, 2013; Gärdenfors & Warglien 2012; De-
cock et al. 2014).

As a paradigmatic example, we will use human perceptual color space, of which Fig-
ure 1 shows an approximate representation. is space is three-dimensional, with one
dimension—the vertical axis—standing for luminance or brightness, which goes fromwhite
to black through various shades of gray; the second dimension is the hue circle, which goes
through yellow, green, blue, violet, red, and orange, to arrive at yellow again, with these
colors gradually blending into each other; and the third dimension is saturation, which is
the intensity or depth of the corresponding shade and for any point in color space is given
by the shortest distance to the vertical axis.

Similarity spaces are, as theoretical constructions, mathematical entities, specifically,
one- or multidimensional structures with a metric defined on them. What makes them
similarity spaces is that distances in the space are meant to measure dissimilarities between
objects. More exactly, the dimensions of these spaces are interpreted as representing fun-
damental subjective qualities that objects may be perceived to possess to different degrees,
so that objects can be mapped onto points in the space in accordance with the degree to
which they instantiate each fundamental quality. Distances between such representations
of objects are then supposed tomeasure how similar the objects are to each other, where the
similarity is not overall similarity but similarity in the respect—color, taste, shape, and so
on—that the space is aimed to model. e metrics most frequently encountered in the lit-
erature are the familiar Euclidean distance and the so-called Manhattan distance; the latter
simply adds up distances along all the dimensions of a space.2

is way of modeling concepts allows them to be context-dependent. For example, in
a biological context, an avocado may be classified as a fruit, while in a cooking context is it
classified as a vegetable. Another example is that our classification of colors is dependent on
the composition of the background light. Such cases of context-sensitivity can be modeled
in similarity spaces by assigning different weights to the dimensions that are involved in

2Metrics based on polar coordinates have also been proposed; see, e.g., Gärdenfors (2014) and Zwarts and
Gärdenfors (2016).
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the application of the relevant concept or concepts (see Gärdenfors 2000, Sect. 4.2.1; also
Krumhansl 1978 and Johannesson 2000).

Neither the shape of a similarity space nor the choice of metric defined on it is arbitrary.
Usually, both the structure and the metric of a similarity space are determined on the ba-
sis of a large set of similarity ratings, oen obtained in an empirical study, which serve as
input for one of several related statistical techniques that turn similarities into geometric
objects. A frequently used technique is multidimensional scaling (Borg & Groenen 2010);
less frequently, other techniques are also used (such as principal component analysis or
non-negative matrix factorization; see, e.g., Castro, Ramanathan, & Chennubhotla 2013).
By applying such techniques to similarity data, one hopes to achieve not just some arbitrary
geometrical representation of those data, but a space that (i) is low-dimensional; (ii) has in-
terpretable dimensions, that is, dimensions one can make sense of, ideally by associating
them with a fundamental attribute; and (iii) has good fit, meaning that it faithfully repre-
sents the similarity judgments. For a detailed description of the various steps involved in
creating a similarity space, see, for instance, Douven (2016).

In principle, similarity judgments for the same set of stimuli could vary widely across
subjects, and so two subjects’ color similarity spaces (say) could look very different from
one another. In practice, there turns out to be large if not perfect agreement in subjects’
similarity judgments for a great variety of domains. at is no surprise in view of the fact
that, at least for a number of similarity spaces, scientists have been able to relate their struc-
ture to specific features of human physiology; for instance, the shape of color space has been
explained by reference to the functioning of the rods and cones in our retinas and the early
stage of the visual process (see Bosten et al. 2005; Churchland 2012).

3 Design criteria
ere is a trend in modern theoretical biology to explain the existence of traits of or pro-
cesses in organisms, or the workings of biological networks, by reference to good engi-
neering design (Savageau 2001; Alon 2003; Nowak 2006; Poyatos 2012). For example,
Alon (2003) points out that the principles of modularity, robustness with regard to com-
ponent tolerances (roughly, stability under commonly occurring interferences), and use
of recurring circuit elements found in many well-designed engineered networks are also
found in many biological networks (e.g., groups of interacting cells, or groups of interact-
ing molecules within a cell). e basic principles involved in this kind of theorizing are
usually referred to as “design principles,” which have been characterized as “patterns of or-
ganization that can be specified abstractly, supplying an explanation for a given behavior
that occurs across a range of cases in which the organizational pattern is realized” (Green,
Levy, & Bechtel 2015, 16). In this paper, we appeal to design principles to characterize
natural concepts, specifically as concepts that occur in an optimally designed conceptual
system.

e aim of this section is to present and motivate a number of design criteria that a
conceptual system should fulfil. We distinguish between criteria, which formulate general
principles that are independent of particular implementations, and constraints, which pre-
sume some sort of representational format for a conceptual system. Further on, we look
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at a number of constraints specifically for similarity spaces, which is the representational
format we focus on in this paper.3

At the most general level, the approach to be proposed can be described in terms of an
engineering task. Suppose we aim at endowing a system with a conceptual scheme, where
it is given that the system must succeed in a competition for scarce commodities, and that
the system’s success depends, inter alia, on its ability to make correct and sufficiently fine-
grained classifications. For instance, it should not mistake a poisonous mushroom for an
edible one or a foe for a friend, although we are given no specifics about the world the
system is to function in (e.g., we are not given a frequency distribution for the different
types of mushrooms in that world). e system will have to operate under various general
limitations, specifically, that its memory has limited storage capacity, and that its discrimi-
natory powers do not allow it to detect arbitrarily small perceptual differences. Moreover,
the system should be able to learn to function on its own in a relatively short time. Finally,
the system must be able to communicate with other systems. e overarching goal is to
optimize the system’s chances of long-term success.

In a first stab at the problem, we translate these givens into a number of very general
design objectives. One objective is to provide the system with a rich arsenal of concepts.
Another is to minimize strain on the system’s memory: the conceptual scheme must be
parsimonious. atmay also help to partly realize a third objective, which is that the scheme
must be easy to learn. Finally, the scheme should be such that it minimizes the risk of
classification error.

What follow are core design principles that are meant to pertain to individual concep-
tual structures and that are in line with the above more general objectives:

P: e conceptual structure should not overload the system’s memory.

I: e concepts should be informative, meaning that they should jointly
offer good and roughly equal coverage of the domain of classification cases.

R: e conceptual structure should be such that it allows the system to
choose for each concept a prototype that is a good representative of all items falling
under the concept.

C: e conceptual structure should be such that prototypes of different concepts
can be so chosen that they are easy to tell apart.

L: e conceptual structure should be learnable, ideally from a small number
of instances.

Here we briefly comment on these criteria, but they will be further discussed later.
P is obviously motivated by the system’s memory limitations. I-

 means that the conceptual structure is useful for selecting which actions to perform.
For example, if we are looking for a car that functions well under tough mountain condi-
tions, we are not helped by categorizations that build on the color or the CO2 emission of
cars.

3To some extent, the distinction between design criteria and design constraints is a parallel toMarr’s (1982)
distinction between the computational and the implementational level.
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Note that there is a tension between these two criteria: the fewer concepts there are in a
conceptual structure, the better P is fulfilled, but the less informative the concepts
will be. To balance the two criteria, the connection between concepts and actions must be
considered. e set of concepts should be rich enough to allow a system to select the right
actions. For example, if you do not know the distinction between black and red elder bushes,
then you do not knowwhich flowers to pick tomake elderflower cordial. On the other hand,
having fine conceptual distinctions may become a burden for your memory. If you are not
a professional carpenter, you may, for example, not need to distinguish between curved-
claw hammers, ball-peen hammers, drywall hammers, tack hammers, lineman’s hammers,
and so on. Depending on the environment the system is going to inhabit—which at design
time is unknown, as mentioned—and on which more specific goals it aims to pursue (e.g.,
choosing to become a carpenter), it may have reason to refine its conceptual scheme later
on, perhaps in a way that will allow it to make distinctions finer than the ones the initial
scheme allows it to make. R and C will aid with memorization
and with avoiding classification errors. As will be seen later on, these criteria may pull in
different directions as well. L, finally, is required since varying environments
preclude that all relevant concepts are initially provided.

Further motivation for these criteria will come from considering how they operate in
concrete contexts, for instance in structuring the color domain (Sect. 5). Some of the cri-
teria will also be seen to flow from a very general desideratum on concepts as tools for
communication (Sect. 6). We are not claiming that the above list of criteria is exhaustive,
and we are open to the idea that the notion of an optimally designed conceptual system can
be, and may even need to be, explicated in terms of additional design criteria.

4 Concepts as the outcomes of constrained optimization

4.1 Optimal design of vowel space

To introduce the idea of applying design thinking in the context of similarity spaces, we
start with a brief discussion of precisely such an application—even if it was not advertized
as design thinking—to wit, the explanation of vowel systems as proposed in Liljencrants
and Lindblom (1972).

ese authors point out that the vowels the human vocal tract is able to produce can be
represented in a three-dimensional similarity space (a vowel space), with the dimensions
representing the three lowest formant frequencies. While the vocal tract can in principle
produce an indefinite number of different vowels, only a very limited number of those pos-
sibilities are instantiated in human speech (see also Jakobson 1968). Liljencrants and Lind-
blom set out to answer the question of why that is so.

For this application, C is a particularly important criterion, an obvious ratio-
nale for which is that it minimizes the risk of confusing vowels and thus of misunderstand-
ings in spoken communication. To explain how the notion of perceptual contrast is to be
understood in spatial terms, Liljencrants and Lindblom offer a useful analogy from physics:
two particles with equal electric charge that can move freely in a container will reach an
equilibrium if and only if the distance between them is maximal within the confines of the
container. In Liljencrants and Lindblom’s proposal, we are to think of vowel space as the
container, and the vowels as the particles that seek to maximize their mutual distance.
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Evidence for the proposal comes from a computer program that calculates sets of co-
ordinates in vowel space which yield maximum perceptual contrast among 𝑛 vowels, for
𝑛 ∈ {3,… , 12}. e computational results are excellent for the 𝑛 = 3 to 𝑛 = 6 cases in that
the computer models predict with great accuracy the vowels found in spoken languages
with the corresponding numbers of vowels. e larger vowel systems found by the com-
puter contain more errors. Still, Liljencrants and Lindblom’s results are impressive enough
to warrant their conclusion that the principle of maximizing perceptual contrast plays a piv-
otal role in how the inventories of speech sounds of languages are selected, even if—as they
remark—the errors for the larger systems are evidence that other factors, not implemented
in their model, play a role, too. ey (plausibly) speculate that among such other factors
may be various articulatory variables, most notably ease of articulation and co-articulability
(p. 854). As they put it: “a vowel system which has been optimized with respect to commu-
nicative efficiency consists of vowels that are not only ‘easy to hear’ but also ‘easy to say’ ”
(p. 856).

e approach taken by Liljencrants and Lindblom can be applied to the question of how
to best furnish similarity spaces with concepts, but—as will be seen below—then consider-
ation should be given to all the design criteria presented in Section 3.

4.2 Design constraints on conceptual spaces

4.2.1 Convexity

Wenoted that, in the conceptual spaces framework, concepts are regions in similarity spaces,
but also that not every region in a similarity space stands for a concept, or at least not one
that might ordinarily figure in our thinking or that we might care to name in our language.
us arose the question of what distinguishes natural concepts from non-natural ones.

As a constraint on the conceptual systems that are based on similarity spaces, the fol-
lowing has been proposed (Gärdenfors 2000, 71, calls the constraint “Criterion P”):

C: A natural concept is a convex region of a conceptual space.

at a region is convex means that, for any two points in the region, the line segment be-
tween those points lies in its entirety in the region as well. Gärdenfors (2000, 70; 2014,
Sect. 7.2) points at important empirical support for C from color-naming studies
(notably, Sivik & Ta 1994), which show that what we commonly regard as natural color
concepts—, , , and so on—form convex regions in color space.4

Most importantly for our present concerns, Gärdenfors (2000) defends C as
“a principle of cognitive economy; handling convex sets puts less strain on learning, on your
memory, and on your processing capacities than working with arbitrarily shaped regions”
(p. 70). While there is no explicit reference to overarching design criteria here, it is manifest
that C was motivated by the same intuitions that underlie P and R-
. Moreover, Gärdenfors points out that if C holds, then by learning
of a small set 𝑆 of items that they fall under a given concept 𝐶, one automatically learns of

4Recent empirical support not concerning the color domain comes from studies reported in Douven
(2016), which investigated the concepts  and  in a shape space. e aim of that paper was to de-
termine degrees of bowlhood and vasehood for a great number of shapes. It was verified that if a degree of
membership greater than .5 is chosen as a criterion for belonging to a concept, then  and  both come
out as convex in the relevant similarity space.
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Figure 2: TwoVoronoi tessellations of a two-dimensional space. e points represent the prototypes
and the lines show the borders between the categories.

all items represented by points in the convex hull of 𝑆 that they fall under 𝐶 as well. us
C is supported by L, too.5

But although plausible, the question is whether C is enough to single out the
natural concepts. Gärdenfors notes that he “only view[s] the criterion as a necessary but
perhaps not sufficient condition on a natural property” (ibid.). To see why C
is in fact not enough to differentiate natural from non-natural concepts, note that every
plane intersecting the color space shown in Figure 1 divides that space into two convex
regions. eproperty of convexity is also preserved under set intersection (see, e.g., Douven
et al. 2013, 147). us, we can randomly pick any number of planes intersecting color space
and be guaranteed to end up with a division of that space into convex regions. What holds
for color space holds for almost any similarity space: there are countlessways of partitioning
the space into convex regions that yield concepts, few of which will count as natural in any
intuitive sense.

4.2.2 Prototypes to the rescue?

Gärdenfors’ ownbrand of the conceptual spaces approach relies heavily on prototype theory,
and it might be thought that prototypes are exactly what we need to answer the question
of how similarity spaces get equipped with concepts. Specifically, Gärdenfors combines
prototype theory with themathematical technique of Voronoi tessellations. Given a space 𝑆
and a set 𝑃 = {𝑝1,… , 𝑝𝑛} of points in 𝑆, the Voronoi tessellation of 𝑆 generated by 𝑃 is the
set of cells {𝑐1,… , 𝑐𝑛} such that each 𝑐𝑖 contains all and only points in 𝑆 that are at least
as close to 𝑝𝑖 as they are to 𝑝𝑗, for all 𝑗 ≠ 𝑖, where closeness is measured by the metric
associated with 𝑆 (see Figure 2).

us, imagine that we have the prototypes of , , , and so on, located in
color space. en the Voronoi tessellation generated by those points divides color space
into a number of regions such that the shades closer to the  prototype than to the other

5C is also immediately helpful in showing why  is not a natural concept: it does not corre-
spond to a convex region in any known similarity space (Gärdenfors 1990).

9



prototypes are grouped together, the shades closer to the  prototype than to the other
prototypes are grouped together, and so on. is sounds like we might have identified the
natural color concepts, in particular since it is provably the case that the cells of a Voronoi
tessellation defined on a Euclidean space—any such Voronoi tessellation—are all convex
(Okabe et al. 2000, 58) so that C is automatically satisfied.

For a Voronoi tessellation, P is more generally satisfied in that an individual
only has to remember the locations of the prototypes to be able to construct the tessella-
tion, from which she can retrieve the concept under which any given item falls in the space.
e degree to which I is satisfied depends on the number of color cate-
gories in the system and on how “evenly” they cover the space. While the le tessellation
in Figure 2 would appear to do well on I, and also on R
and C, satisfaction of these criteria is by no means guaranteed, as is apparent from
the right tessellation in the same figure. In that tessellation, quite a number of prototypes
are located relatively close to each other, thereby jeopardizing C. It would also be
false to claim that all parts of the space are roughly equally covered in that tessellation: this
conceptual system would allow us to make fine-grained distinctions in some parts of the
space (especially the lower right part) but only coarse-grained distinctions in other parts,
so it does poorly on I. Note, moreover, that many of the prototypes lie
much closer to various other prototypes than to some points in the concepts of which they
are the prototypes. As a result, this tessellation scores poorly also on the count of R-
.6

Even if Voronoi tessellations satisfied all our design criteria, however, a central question
would remain, namely: Where do the prototypes come from? It is important to note that
prototypes derive from categories. In particular, a prototype is supposed to be the best repre-
sentative, ormost typical instance, of a concept (Rosch 1973, 330)—which presupposes that
the concept is already in place.7 See also Gärdenfors (2000, Sect. 4.5), where it is proposed
that the prototype is calculated as themean of all the exemplars of a category that have been
encountered. In itself, this simple rule would explain how it is possible to learn a category
quickly, given that the mean is defined as soon as the first exemplar is observed. e rule
would thus help achieve L. e problem is that the rule presupposes that the
learning process is supervised: the systemmust be provided with the correct categorizations
of the exemplars to begin with. So, on this proposal, too, we arrive at the conclusion that
categories come first, prototypes second.8

6It is to be recalled thatwe are considering the role of these criteria at design time, when specific information
about the world is still unavailable. Depending on what the world looks like, and specifically on how objects in
the world would be distributed in the space, a person or artificial system starting out with a conceptual scheme
represented by the le tessellation might reasonably end up with one represented by the right tessellation.

7Douven et al. (2013) argue that, for many concepts, there is actually more than one most typical instance,
which they use to show how the conceptual spaces framework can accommodate the fact that many concepts
are vague. For a different approach to dealing with vagueness in the context of conceptual spaces, see Lawry
and Tang (2009). In this paper, we leave the issue of vagueness aside. See Douven (2018a) for a design approach
to vagueness.

8Another response would be to claim that prototypes are somehow hard-wired in the brain. It has in effect
been suggested that the prototypes of , , , , , and  can be identified with
particular neuronal responses in our processing of colors (DeValois, Abramov, & Jacobs 1966; Kay &McDaniel
1978; Kay, Berlin, & Merrifield 1991). But later research cast doubt on this suggestion (De Valois & De Valois
1993), and eventually it was rejected (Abramov&Gordon 1994; Abramov 1997; De Valois, De Valois, &Mahon
2000).

10



4.2.3 Well-formedness

C is motivated by design thinking: if one had to design a conceptual architecture
for a similarity space, one would want it to yield convex concepts, for reasons of cognitive
economy and learnability—reasons that derive their relevance from the fact that the human
cognitive system is limited in important ways. While, as we saw, C is unable to
single out the natural concepts, at least on its own, there are other constraints that can be
invoked to flesh out the notion of an optimally designed conceptual system. e following
design constraint appears particularly promising:

W-: e concepts should be “well-formed” in that the items falling under
any one of them are maximally similar to each other and maximally dissimilar to the
items falling under the other concepts represented in the same space.

W- can be thought of as flowing directly from P and I-
 (Regier, Kay, & Khetarpal 2007; Regier, Kemp, & Kay 2015) and as being mo-
tivated by the same considerations of constrained optimization that underlie our design
criteria generally: we will be less prone to misclassify two items falling under the same con-
cept as falling under different concepts if these items are always very similar to each other,
and we will also be less prone to misclassify two items falling under different concepts as
falling under the same concept if these items are always very dissimilar.

ough not put quite in this way, and not usually designated as a design constraint,
W- plays a central role in the literature on unsupervised learning, specifi-
cally on clustering algorithms. For instance, many of the best known clustering algorithms,
such as 𝑘-means clustering and its variants (e.g., Partitioning Around Medoids and neural
network algorithms like self-organizing maps and various adaptive resonance theory net-
works; see Kaufman & Rousseeuw 1990 and Du 2010 for useful overviews), aim at finding
clusters in data such that the clustering as a whole simultaneously maximizes intra-cluster
similarity and inter-cluster dissimilarity.

We have taken the label “Well-formedness” from Regier, Kay, and Khetarpal (2007),
who have also given a formalization of the constraint. We state the formalization here, be-
cause it will play a role further on in the paper. Let variables 𝑥 and 𝑦 range over possible
objects representable in similarity space 𝑆, and let 𝑃 be a categorization of all possible such
objects, meaning that 𝑃(𝑥) assigns 𝑥 to one of a number of mutually exclusive and jointly
exhaustive regions of 𝑆. Furthermore, let sim be the similarity relation defined on 𝑆. en
Regier et al. define the “within-similarity” of 𝑃 as

𝑆(𝑃) ≔ 𝑥,𝑦∶ 𝑃(𝑥)=𝑃(𝑦)sim(𝑥, 𝑦),

where 0 ⩽ sim(𝑥, 𝑦) ⩽ 1. ey further define the “across-dissimilarity” of 𝑃 as

𝐷(𝑃) ≔ 𝑥,𝑦∶ 𝑃(𝑥)≠𝑃(𝑦)1 − sim(𝑥, 𝑦).

ewell-formedness𝑊(𝑃) of a categorization𝑃 is then defined as the sumof 𝑆(𝑃) and𝐷(𝑃).
Although Regier, Kay, and Khetarpal propose these definitions in the context of color cate-
gorization (see Section 5), the definitions apply generally to similarity spaces, thus provid-
ing a quantitative version of W-. On this version, concepts should be such
that their combination—the category system of the space in which they live—maximizes𝑊.
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Figure 3: Different views on CIELAB space; the shape of the space is shown by locating in it the set
of 1625 Munsell chips that are available from the website of the Munsell Laboratory at the Rochester
Institute of Technology.

4.2.4 Anticipated objection

To end this section, we address what may easily appear as a major problem for our pro-
posal, towit, that our design principles—both the criteria fromSection 3 and the constraints
just discussed—are structural constraints. e concern is that such constraints may not be
enough to guarantee uniqueness, in that there may be many partitions of a given similar-
ity space that satisfy the constraints to the same maximal extent. Look again at perceptual
color space, as shown in Figure 1. It would seem that the design principles considered so far
cannot possibly succeed in fixing a unique conceptualization of that space, given that any
rotation along the luminance axis is structure-preserving in the relevant sense: any non-
trivial rotation along that axis of a structure that satifies our design principles will itself
satisfy those principles, although it will yield different color concepts.

Here, it is important to recall that Figure 1 shows an approximate representation of
color space. In reality, color space is spindle-like indeed, but not nearly as symmetric as
is suggested by Figure 1. See Figure 3, which shows the so-called CIELAB space, one of
the two main color similarity spaces.9 e asymmetries in the space are impossible to miss.
As a result, the concern about rotational symmetry that would arise for perceptual color
space were the representation in Figure 1 exact, does not arise for the actual perceptual
color space.

Admittedly, there is no way to be sure that every similarity space will be sufficiently
asymmetric to escape the aforementioned problem. On the other hand, there may be ad-
ditional design constraints that are more directly connected with specific domains, and it
is not a priori that such constraints could not be of a non-structural kind. For example,
even if the space shown in Figure 1 were an entirely accurate representation of human per-

9e other one is CIELUV space, which looks very similar. It is generally assumed that CIELAB space
is a more accurate representation of judged similarities between color stimuli when the colors are perceived
on paper or on cloth, whereas CIELUV space represents such judgments more accurately when the colors
are perceived on-screen; see Malacara (2002, 86–90) or Fairchild (2013, Ch. 10) for a useful discussion of the
differences between these spaces.
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ceptual space, the world we inhabit might be such that we need to be able to make more
fine-grained distinctions in some parts of the space than in others. And if we rotate a par-
tition that achieves that aim, the resulting partition will likely fail to achieve it.

Also, while this paper is largely motivated by the thought that not any carving-up of a
conceptual space that satisfies C yields natural concepts, and while we agree with
Lewis (1983) that natural concepts are sparse, it would probably be too much to require
absolute uniqueness in all cases. We are understanding the notion of an optimally designed
conceptual space as one that does, on balance, best on our design principles. But it cannot
be ruled out that, at least for some similarity spaces, there may be more than one way of
striking the best balance, and thus it cannot be ruled out that, for those spaces, there is
more than one optimal design. Moreover, even if there is a unique optimal design, there
may be designs that are so close to being optimal that looking for a still better one may not
be worth the effort. Indeed, this is how a constrained optimization approach is compatible
with the finding of different conceptualizations across cultures (see below).

5 Design in the color domain
In the previous section, it was suggested that the kind of design thinking embodied in the
criteria presented in Section 3 and underlying C and W- may
help us narrow down a conceptual architecture for a similarity space, and thus give content
to our central claim about natural concepts. No evidence has been given that the criteria
and constraints introduced so far are indeed operative in the process of conceptualization.
Here, we look in some detail at color research that not only yields empirical support for the
idea that what we think of as natural color concepts correspond to regions in an optimally
partitioned perceptual color space, but also supports the hypothesis that specific design
principles are actually at work in dividing up color space into concepts.

Berlin, Kay, and their collaborators (Berlin&Kay 1969/1999; Cook, Kay, &Regier 2005)
had gathered color-naming data from a great many languages. ese data revealed striking
universal tendencies in color lexicons as well as noteworthy deviations from those tenden-
cies. ereby the data put some pressure on both main accounts of color categorization:
the universal tendencies were difficult to explain from the relativist standpoint, while devi-
ations from those tendencies were difficult to explain from the universalist standpoint.

Jameson and D’Andrade (1997) put forward an interesting suggestion for explaining
both the universal tendencies and the deviations, effectively carving out a sort of middle
ground between universalism and relativism. eir suggestion was that both the regular-
ities and the deviations might be due to an interaction between a cognitively motivated
preference for informative lexicons and the irregularities in perceptual color space that can
be seen in Figure 3 as bumps and depressions. As different lexicons might achieve roughly
the same high level of informativeness, Jameson and D’Andrade’s explanation leaves some
room for cultural influences in categorization, even though the preference for informative
naming systems as well as the irregularities in color space are culture-independent, the first
being anchored in the efficiency of our cognitive makeup and the latter in our perceptual
apparatus.

is suggestion made by Jameson and D’Andrade was put to the test in computational
work by Regier, Kay, and Khetarpal (2007), which proposed W-, presented
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Figure 4: Munsell chips used in Berlin and Kay’s (1969/1999) and related studies (top row), and the
𝑊-maximal partition of those chips into 6 cells (bottom row).

in the previous section, as capturing the gist of Jameson and D’Andrade’s notion of infor-
mativeness. Formalized in the way also discussed previously—so in terms of the functions
𝑆 and 𝐷 and, ultimately, 𝑊—they implemented W- in computer simula-
tions, and they compared the output from those simulations with the above-mentioned
color-naming data.

Regier and coauthors applied the constraint to the 330 so-called Munsell chips that
Berlin and Kay used in their studies on color naming. ese chips, shown in the top chart
of Figure 4, consist of 320 chromatic chips and ten achromatic chips ranging from black
to white. e columns of the chart represent equally spaced Munsell hues, and the rows
represent levels of luminance; the chromatic chips are all at the maximum saturation avail-
able for their hue-value combination (meaning that they are all from the surface of the
color space). Specifically, Regier and coauthors’ input data consisted of the CIELAB coor-
dinates of the aforementioned Munsell chips. Accordingly, they defined similarity in terms
of CIELAB distance, dist, more exactly as an exponentially decaying function of that dis-
tance: sim(𝑥, 𝑦) = exp−0.001 × dist(𝑥, 𝑦)2.

Regier and coauthors used computer simulations to find𝑊-maximal partitions (with
3, 4, 5, and 6 cells) of the Munsell chips; the bottom row of Figure 4 gives the result they ob-
tained for the 6-cell partition. Regier and coauthors showed that these partitions strikingly
resemble how a great variety of natural languages categorize the 330 Munsell chips. A fur-
ther important finding was that partitions which look rather different from the𝑊-maximal
partition can still have a𝑊-value very close to the optimum.10

Regier and coauthors thereby obtained an explanation of the universal tendencies in
color naming found in Berlin and Kay (1969/1999) and Cook, Kay, and Regier (2005) that

10Douven (2017) shows that applying Regier, Kay, and Khetarpal’s algorithm to the Munsell chips as speci-
fied by their CIELUV coordinates leads to even better results.
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does without metaphysical heavy liing by invoking no more than CIELAB distances (so,
perceptual similarities) in conjunction with a very general design constraint (viz., W-
) that derives its justification from some well-established bottlenecks in our
cognitive makeup. Just as importantly, the computational results suggest a straightforward
explanation of the deviations from the universal tendencies that were found in the same
color-naming studies: it is easy to imagine how the close competitors to the optimal par-
tition that Regier and coauthors showed to exist may serve our practical interests in ways
that are not appreciably worse than those of the optimal partition, so that we will have no
incentive to continue our search for a better formed partition once we have one that is “well-
formed enough.” is could, in turn, be understood as an instance of satisficing behavior
in the sense of Simon (1972).

Given that W- is the only design constraint at play in Regier and coau-
thors’ result, one wonders how it relates to the other design constraint we discussed—
C—or to the more general design criteria from Section 2. Does it subsume these,
or might a role still remain for these criteria, or for C?

What can be learnt from placing the 330 Munsell chips in CIELAB space is that the
partitions for the 3-, 4-, 5-, and 6-cell cases all yield concepts that satisfy C; see
Figure 5 for the 6-cell partition. I is also fulfilled since the cells divide the
space into roughly evenly large regions, as is clear from inspecting Figures 4 and 5.11 And
the convex hulls shown in Figure 5 suggest that it should be easy to satisfy R
and C as well. For instance, we could pick, for each hull, a point centrally located
in that hull, and those points would be at quite some distance from one another (relatively
speaking). As briefly mentioned in Section 3, however, R and C
may pull in different directions, and in the case of color space one could imagine putting
more emphasis on the second than on the first criterion and choosing prototypes closer to
the surface of the space. In reality, that is where color prototypes tend to be located (Berlin
& Kay 1969/1999).

With respect to P, the situation is different. While Regier and coauthors’ com-
puter simulations yield conceptual architectures with low numbers of cells, these numbers
are put in by hand: Regier et al.’s algorithm, like most clustering algorithms, requires the
number of cells to be pre-specified.12

We thus see that, in the color domain, W- is sufficient to realize a fair
number of the design criteria discussed in Section 3 and also C. ere is no guar-

11Or from looking at the numbers of chips assigned to the various clusters. For the 6-cell partition these are:
72 in, 55 in , 54 in , 54 in , 47 in , and 48 in . Equality of coverage can in fact
easily be formalized in terms of the Kullback–Leibler distance from a completely flat distribution (Kullback &
Leibler 1951). For an 𝑛-cell partition 𝑃 of the 330 Munsell chips, this equals∑𝑖 |𝑃𝑖|/330 × ln(|𝑃𝑖|/330)/(1/𝑛),
where |𝑃𝑖| is the cardinality of the 𝑖-th cell. For example, for Regier, Kay, and Khetarpal’s𝑊-maximal 6-cell
partition, the Kullback–Leibler distance from a completely flat 6-cell partition equals 0.01. An alternative here
would be the Gini coefficient (Gini 1921), which is best known as a measure of income inequality, but has
broader application. For the 6-cell partition, the Gini coefficient is 0.07, which by conventional standards
counts as very low (indicating a highly equal distribution).

12ere are ways to determine an optimal number of clusters, but these are not guaranteed to work, and the
present case is one in which they fail; see Jraissati andDouven (2017). is result, as well as other results related
to Regier and coauthors’ work, might have come out differently if instead of a subset of 330 Munsell chips the
full set of those chips (see Figure 3) had been used in the clustering procedure. On the other hand, naming
data for that set have only recently become available, and then only for the English language; see Jraissati and
Douven (2018).
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Figure 5: e 330 Munsell chips placed into CIELAB space and colored according to Regier, Kay,
and Khetarpal’s (2007) result for the 6-cell partition (top row), and the convex hulls of the chips for
the various cells (bottom row). (e chips in the white category, as well as the hull of those chips,
are shown in light gray.)

antee that this finding generalizes to other domains. Still, Regier et al.’s work is important
evidence that design criteria that were presented purely in the abstract have actually been
operative in shaping some of our concepts.

6 Design principles from a communication perspective
So far, our design principles have been discussed and motivated by the use of concepts
for solving problems of categorization, which includes their use as tools for selecting ap-
propriate actions. In this section, we turn to concepts as tools for communication. is
involves taking a social, rather than an individualistic, perspective on the design of concep-
tual spaces.

A fundamental criterion for a language is that different users mean, more or less, the
same thingwhen they use aword. When learning to speak a language—yourmother tongue
or a foreign language—a “meeting of minds” must be achieved so that the concepts of a
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speaker are aligned, via the words of the language, to the concepts of other speakers. is
leads us to the following desideratum:

C  : ere exists a mapping between the concepts of the speakers
of a language so that the meanings of words are correlated between the speakers.

An example of how such a correlation can be accomplished is presented by Jäger and van
Rooij (2007), who use computer simulations to show how semantic fixed points (in the
form of Nash equilibria) can represent a meeting of minds. ey refer to the domain they
choose—a circular disk—as “the color space,” but there is nothing in the process that de-
pends on relations to colors; in particular, there is no relation between Jäger and van Rooij’s
“color space” and theCIELAB space previously discussed. e problem they examine is how
a common meaning for “color” terms can develop in a communication game. In their ex-
ample, there are only two players: 𝑠 (sender) and 𝑟 (receiver). Jäger and van Rooij assume
that the two players have a common space 𝐶 for “color.” ere is a fixed and finite set of 𝑛
messages (“words”) that 𝑠 can convey to 𝑟.

e communication game unfolds as follows: Nature chooses some point in the color
space, according to some probability distribution over 𝐶. e sender 𝑠 knows the choice of
nature, but the receiver 𝑟 does not. en 𝑠 is allowed to send one of the messages to 𝑟. In
response, 𝑟 picks a point in the color space. In the game, 𝑠 and 𝑟maximize their rewards if
theymaximize the similarity (minimize the distance) between nature’s choice and 𝑟’s choice
of point. e sender can choose a decomposition 𝑆 of 𝐶 in 𝑛 subsets, assigning to each
subset a unique message. For each “color word” sent, there is a prototypical point in the
region corresponding to the point that is 𝑟’s best response. ere are thus 𝑛 prototype points,
corresponding to the typical meanings assigned by 𝑟 to each of the 𝑛 possible messages
from 𝑠.

Following the standard definition in game theory, a Nash equilibrium of the game is a
pair (𝑆, 𝑅), where 𝑆 is the sender’s partitioning (into 𝑛 subsets) of𝐶, and𝑅 is the responder’s
𝑛-tuple of prototype points of 𝐶, such that both are a best response to each other. Jäger and
van Rooij (2007) show how to compute the best response functions for each player. e
central result of their paper can be restated by saying that if the color space is convex and
compact and the similarity function is continuous, then there exists a Nash equilibrium,
and it corresponds to a Voronoi tessellation of the color space that is common to 𝑠 and 𝑟.13
Besides, each prototype point has the property that it minimizes the average distance to
all the points in the cell in which it lies. Hence, their solution is already guaranteed to
satisfy both C and R. Furthermore, the visual presentation of
the solution makes it easy to see that it also satisfies I and C.14

In a theoretical analysis, Warglien and Gärdenfors (2013) have generalized Jäger and
van Rooij’s result by showing how some topological and geometric properties of mental
representations make meetings of minds possible. While Warglien and Gärdenfors already
assume that concepts can be represented as convex regions of conceptual spaces, they as-
sume neither that the spaces of the communicating individuals are identical nor that they
partition the spaces in the same way. Implicitly, their analysis builds on the assumption
that language should preserve the nearness relations among points in conceptual spaces,
which can be thought of as another design constraint.

13at a space is compact means, roughly, that it contains its own borders.
14It also satisfies P, but that is again built in.
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It is to be noted that neither Jäger and van Rooij’s simulations norWarglien andGärden-
fors’ analytical results guarantee that there is a unique best partitioning of any given sim-
ilarity space, or even that partitionings achieving C   are sparse,
where—to repeat Lewis’ point—sparsity is a requirement to maintain that the concepts re-
sulting from the partitioning or partitionings are natural ones.

For instance, even though the shapes of the tessellations of the color space 𝐶 that Jäger
and van Rooij arrive at are highly constrained, there still exist infinitely many equilibrium
solutions. In particular, since 𝐶 is symmetrical, all rotations of a solution will also be solu-
tions. But this is a situation we encountered before, when we remarked that every rotation
of an optimally designed partitioning of the color spindle shown in Figure 1 would also be
optimally designed. It made an important difference, we saw, to consider real perceptual
color space rather than the spindle, which only approximates that space. It is thus reason-
able to ask whether Jäger and van Rooij’s simulations might have resulted in a unique or
near-unique solution had they used CIELAB space instead of the perfectly round disk they
call “color space.”

e answer is that this would probably have made all the difference, as is suggested by
the work of Regier, Kemp, and Kay (2015). ese authors report the results from a sig-
nalling game very similar to that played by the sender and receiver in Jäger and van Rooij’s
computer simulations, with the receiver also trying to reconstruct the sender’s mental rep-
resentations of specific color shades. e main difference is that in Regier, Kemp, and Kay’s
game, the receiver’s representation error is based on the shape of CIELAB space. Regier
and colleagues then show that those partitionings of that space which minimize expected
representation error closely resemble ones lexicalized by the languages in the World Color
Survey (Cook, Kay, & Regier 2005). In addition to this, they show that, conversely, the
partitionings lexicalized by those languages all incur relatively low expected representation
errors.

Further support for the role that design criteria play in structuring similarity spaces,
according to our account, comes from a number of experimental results concerning lan-
guage transmission. In a large-scale laboratory experiment, Xu, Dowman, and Griffiths
(2013) showed subjects examples of how colors of Munsell chips were named, and the sub-
jects then classified other colors on the basis of the examples. ese subjects’ responses
were used to generate examples for the subjects of the next “generation” of learners. is
process continued for thirteen generations. e results reveal that color classifications con-
verge quickly toward color systems similar to those found across human languages. is is
a strong indication that these systems satisfy L.15

In addition to this, Xu and colleagues showed that the final partitionings have the same
“variation of information” (in the sense of Meilă 2007) as languages from the World Color
Survey with the same number of color terms. Visual inspection of the partitionings that re-
sulted aer thirteen generations suggests that these partitionings also fulfill several of the de-
sign criteria that we have presented. For instance, while Xu and colleagues did not consider
the C constraint, the color partitionings of the five learning chains they present in
their Figure 2 (Xu et al. 2013, 4) show clear signs of convexity already aer four generations
of learning. In a related experiment involving ten generations of learners, Carstensen et
al. (2015) obtained similar results concerning spatial relations based on the Topological Re-

15For a similar result concerning artificial agents, see Steels and Belpaeme (2005).
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lations Picture Series (Bowermann & Pederson 1992). ese authors also showed that the
partitionings become increasingly informative over the generations, where informativeness
was measured as in Regier, Kay, and Khetarpal (2007).16 And re-analyzing Xu et al.’s results,
Carstensen et al. found the same increasing informativeness in those results, indicating that
they satisfy W-.

e simulations and experiments discussed here are evidence that the design criteria
and constraints proposed in previous sections are instrumental in facilitating efficient com-
munication of concepts. Hence, our proposal receives support from both individualistic
and social considerations.

7 Conclusion
We started with an open theoretical question for the conceptual spaces framework, namely,
the question of which regions in conceptual spaces represent or could represent natural
concepts. A preliminary answer offered in Gärdenfors’ work—natural concepts are repre-
sented by convex regions—was seen not to suffice. We proposed a different answer in terms
of optimal design: natural concepts are represented by the cells of an optimally designed
similarity space, where we defined the notion of optimal design by reference to a number of
general principles. ese principles were motivated from an engineering perspective that
took into account our cognitive limitations as well as the world we inhabit, as individuals
and as a community of interacting agents.

Although we have not explicitly discussed the use of conceptual systems in artificial
systems such as robots, it is clear that the design perspective we are proposing here has im-
plications for how concept learning in artificial systems can be implemented, in particular
systems that are used in communication with humans.17 We described various computa-
tional procedures for categorization, both in static and in dynamic contexts, that all were
seen to implement several of our design principles. at these procedures then yielded cat-
egorizations remarkably similar to ones lexicalized by various spoken languages was taken
as evidence that those design principles are operative also in human categorization.

Much of themore detailed support for our proposal came from a rather limited domain,
to wit, that of color concepts. To an important extent, this is due to the fact that few other
domains have been explored as thoroughly by cognitive psychologists. As Clark (1993, vii)
remarks, color research is “the success story of scientific psychology thus far.”18 Indeed,
we cannot think of a second field of research that offers data on categorization as rich as
those available through the World Color Survey, mentioned in Section 6. at being said,
a greater variety of evidence is certainly needed to reach a more definite verdict on the idea
that design plays a key role in shaping our concepts generally. At the outset of Section 2,
we listed a number of conceptual spaces besides color space that have drawn the attention
from researchers, and the obvious way to obtain further evidence for our proposal is to
gather more categorization data pertinent to those spaces and see whether and to what
extent they confirm that design principles are operative in forming concepts. e work on

16See Kemp and Regier (2012), Xu and Regier (2014), and Xu, Regier, and Malt (2016) for similar findings
regarding kinship categories, numerical systems, and container categories, respectively.

17A design perspective is to be found in much recent work on biologically-inspired cognitive architectures;
see Lieto et al. (2018) and references given there.

18See in the same vein various chapters in Elliot, Fairchild, and Franklin (2015).
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color discussed in the present paper suggests a variety of ways in which such future work
could be fruitfully conducted.

Another route to take, apart from the psychological one, is to employ methods from
machine learning, including neural networks, to generate similarity spaces that can form
the foundation for the design of conceptual systems. Methods for handling “big data” such
as deep learning (LeCun, Bengio, & Hinton 2015; Goodfellow, Bengio, & Courville 2016)
promise to summarize the data from semantic domains that can be represented in similarity
spaces. In this way, the cumbersome collecting of human similarity judgments may be
circumvented and replaced by more automatized techniques.19
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