2,783 research outputs found

    Requirements analysis in the implementation of integrated PLM, ERP and CAD systems

    Get PDF
    Product Lifecycle Management (PLM) system implementation is a major investment when the technology is used in manufacturing companies. This paper provides an analysis of the requirements for the integration of PLM systems with Enterprise Resource Planning (ERP) systems incorporating the design aspects of Computer Aided Design and Manufacturing (CAD/CAM) within the product development process. PLM implementation deals with various existing product data and information generated over years both from CAD and ERP systems. Data integration is very challenging and has important impact on future decisions while creating new processes. The information management plays very important role not only in PLM implementation but also in the way this will be used in future production. Therefore it is very important to analyse how product information is transferred to PLM system. It also need to be investigated that what, when and how the data will flow from and to PLM systems

    Enterprise modelling : building a product lifecycle (PLM) model as a component of the integrated vision of the enterprise

    Get PDF
    Enterprise modelling has proved to be an efficient tool to study organisations structure and facilitate decision making. The enterprise is a complex system that is required to use its processes to generate value in a given environment (concurrent, market, suppliers and humanity). We focus on three management disciplines: Product Lifecycle Management (PLM), Supply Chain Management (SCM) and Customer Relationship Management (CRM). These business processes are so intertwined that the enterprise has to concentrate on the three to attain its economic objectives. To enhance the development of PLM, SCM and CRM models, the enterprise needs to capitalise the knowledge necessary to adapt and apply modelling techniques. Knowledge Management (KM) is a key factor to give a unified enterprise vision. Firstly, we propose an integrated enterprise model depicting the interactions between PLM, SCM, CRM and KM models. But a state of the art showed that PLM models are scarce. Most of the PLM models found depends strongly on the particular case studied and can not be used with other enterprises. After defining the most important components of the PLM vision, we propose to organise these components into a formalised way. The study of SCM and CRM models proved to be helpful to structure these components. Finally the validation methodology that is to be established in our coming research works is not only to be used with the PLM model presented in this paper but with SCM and CRM models also.Product Lifecycle Management (PLM), Enterprise modelling, Enterprise systems

    An approach to control collaborative processes in PLM systems

    Full text link
    Companies that collaborate within the product development processes need to implement an effective management of their collaborative activities. Despite the implementation of a PLM system, the collaborative activities are not efficient as it might be expected. This paper presents an analysis of the problems related to the collaborative work using a PLM system. From this analysis, we propose an approach for improving collaborative processes within a PLM system, based on monitoring indicators. This approach leads to identify and therefore to mitigate the brakes of the collaborative work

    Knowledge creation and visualisation by using trade-off curves to enable set-based concurrent engineering

    Get PDF
    The increased international competition forces companies to sustain and improve market share through the production of a high quality product in a cost effective manner and in a shorter time. Set‑based concurrent engineering (SBCE), which is a core element of lean product development approach, has got the potential to decrease time‑to‑market as well as enhance product innovation to be produced in good quality and cost effective manner. A knowledge‑based environment is one of the important requ irements for a successful SBCE implementation. One way to provide this environment is the use of trade‑off curves (ToC). ToC is a tool to create and visualise knowledge in the way to understand the relationships between various conflicting design parame ters to each other. This paper presents an overview of different types of ToCs and the role of knowledge‑based ToCs in SBCE by employing an extensive literature review and industrial field study. It then proposes a process of generating and using knowledg e‑based ToCs in order to create and visualise knowledge to enable the following key SBCE activities: (1) Identify the feasible design space, (2) Generate set of conceptual design solutions, (3) Compare design solutions, (4) Narrow down the design sets, (5) Achieve final optimal design solution. Finally a hypothetical example of a car seat structure is presented in order to provide a better understanding of using ToCs. This example shows that ToCs are effective tools to be used as a knowledge sou rce at the early stages of product development process

    Cloud computing as business perspectives for product lifecycle management systems

    Get PDF
    In a dynamic economic environment, the company’s survival may depend on the ability to focus on core business and quick adaptation. Yesterday’s profitable business model can’t be counted on to translate into future growth and profits. As the business adapts to changing government and industry regulations, evaluates new business partnerships and anticipates competitive threats, IT needs to help the business find new ways to respond of such of fastchanges. At the same time, plans for change must often be made in the context of limited resources for finances, people, technology, and power

    PLM in design and engineering education: International perspectives

    Get PDF
    Technological advances in the last decade have influenced changes in the design and engineering industries on a global scale. Lean and collaborative product development are approaches increasingly adopted by the industry and seen as the core of product lifecycle management. These trends have created the need for new skilled professionals, and universities should adapt their curricula in response. There is an increased need for academia to work with industry in order to meet these challenges. This article reports on the Parametric Technology Corporation Academic Research Symposium held in April 2011. The topics were centred around understanding the essence of product lifecycle management and its impact on design and engineering education. Furthermore, examples of implementing product lifecycle management and collaborative practices in higher education were presented from the United States and France. This article concludes with a discussion of the recommendations made at the symposium for the future development and support of key skills across university curricula

    IE 655-851: Concurrent Engineering

    Get PDF

    IE 655-852: Concurrent Engineering

    Get PDF
    • …
    corecore