6,271 research outputs found

    Software Engineering Timeline: major areas of interest and multidisciplinary trends

    Get PDF
    Ingeniería del software. EvolucionSociety today cannot run without software and by extension, without Software Engineering. Since this discipline emerged in 1968, practitioners have learned valuable lessons that have contributed to current practices. Some have become outdated but many are still relevant and widely used. From the personal and incomplete perspective of the authors, this paper not only reviews the major milestones and areas of interest in the Software Engineering timeline helping software engineers to appreciate the state of things, but also tries to give some insights into the trends that this complex engineering will see in the near future

    Effect of Industry 4.0 on Education Systems: An Outlook

    Get PDF
    Congreso Universitario de Innovación Educativa En las Enseñanzas Técnicas, CUIEET (26º. 2018. Gijón

    Lean manual assembly 4.0: A systematic review

    Get PDF
    In a demand context of mass customization, shifting towards the mass personalization of products, assembly operations face the trade-off between highly productive automated systems and flexible manual operators. Novel digital technologies—conceptualized as Industry 4.0—suggest the possibility of simultaneously achieving superior productivity and flexibility. This article aims to address how Industry 4.0 technologies could improve the productivity, flexibility and quality of assembly operations. A systematic literature review was carried out, including 234 peer-reviewed articles from 2010–2020. As a result, the analysis was structured addressing four sets of research questions regarding (1) assembly for mass customization; (2) Industry 4.0 and performance evaluation; (3) Lean production as a starting point for smart factories, and (4) the implications of Industry 4.0 for people in assembly operations. It was found that mass customization brings great complexity that needs to be addressed at different levels from a holistic point of view; that Industry 4.0 offers powerful tools to achieve superior productivity and flexibility in assembly; that Lean is a great starting point for implementing such changes; and that people need to be considered central to Assembly 4.0. Developing methodologies for implementing Industry 4.0 to achieve specific business goals remains an open research topic

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects

    Design and Planning of Manufacturing Networks for Mass Customisation and Personalisation: Challenges and Outlook

    Get PDF
    AbstractManufacturers and service providers are called to design, plan and operate globalized manufacturing networks, addressing to challenges such as ever-decreasing lifecycles and increased product complexity. These factors, caused primarily by mass customisation and demand volatility, generate a number of issues related to the design and planning of manufacturing systems and networks, which are not holistically tackled in industrial and academic practices. The mapping of production performance requirements to process and production planning requires automated closed-loop control systems, which current systems fail to deliver. Technology-based business approaches are an enabler for increased enterprise performance. Towards that end, the issues discussed in this paper focus on challenges in the design and planning of manufacturing networks in a mass customization and personalization landscape. The development of methods and tools for supporting the dynamic configuration and optimal routing of manufacturing networks and facilities under cost, time, complexity and environmental constraints to support product-service personalization are promoted

    Production Engineering and Management

    Get PDF
    It is our pleasure to introduce the 8th edition of the International Conference on Production Engineering and anagement (PEM), an event that is the result of the joint effort of the OWL University of Applied Sciences and the University of Trieste. The conference has been established as an annual meeting under the Double Degree Master Program “Production Engineering and Management” by the two partner universities. This year the conference is hosted at the university campus in Lemgo, Germany. The main goal of the conference is to offer students, researchers and professionals in Germany, Italy and abroad, an opportunity to meet and exchange information, discuss experiences, specific practices and technical solutions for planning, design, and management of manufacturing and service systems and processes. As always, the conference is a platform aimed at presenting research projects, introducing young academics to the tradition of symposiums and promoting the exchange of ideas between the industry and the academy. This year’s special focus is on Supply Chain Design and Management in the context of Industry 4.0, which are currently major topics of discussion among experts and professionals. In fact, the features and problems of Industry 4.0 have been widely discussed in the last editions of the PEM conference, in which sustainability and efficiency also emerged as key factors. With the further study and development of Direct Digital Manufacturing technologies in connection with new Management Practices and Supply Chain Designs, the 8th edition of the PEM conference aims to offer new and interesting scientific contributions. The conference program includes 25 speeches organized in seven sessions. Two are specifically dedicated to “Direct Digital Manufacturing in the context of Industry 4.0”. The other sessions are covering areas of great interest and importance to the participants of the conference, which are related to the main focus: “Supply Chai n Design and Management”, “Industrial Engineering and Lean Management”, “Wood Processing Technologies and Furniture Production”, and “Management Practices and Methodologies”. The proceedings of the conference include the articles submitted and accepted after a careful double-blind refereeing process

    Sustainable engineering challenges towards Industry 4.0: A comprehensive review

    Get PDF
    This article reviews Industry 4.0, its emerging phase, implementation, challenges, benefits, etc. It combines various fields where it has any influence and leaves some changes and where it requires some adaptation. Papers from the last 4 years are taken and analyzed, what is written about this topic in various countries with different backgrounds and economic development. Industry 4.0 affects the production environment by introducing new technologies which require a better-educated workforce so it affects education and requires some changes in curricula and ways of teaching. It brings new challenges and asks for a new approach from management to be able to handle fast and big changes in the business environment and to implement such innovation in production effectively

    The Effect of Process Improvement Practices on Manufacturing Competitiveness of Apparel Factories

    Get PDF
    Process improvement practices (PIP) are being used as ways to improve manufacturing competitiveness (MC) but their overall effect in apparel factories have not been well quantified. This paper identifies the effects that PIP have on the manufacturing competitiveness of multinational apparel manufacturing plants. The methodology followed uses the Delphi method and exploratory factor analysis for variable selection, the Mann-Whitney test for analyzing the relationship between PIP usage and MC performance and regression analysis for estimating the existing correlation among the variables studied. The results show that factories with a high use of PIP have a higher manufacturing competitiveness and that specific practices related to error detection and waste elimination have a positive effect in cost, delivery time and environmental protection
    corecore