71 research outputs found

    A Parallel Solver for Graph Laplacians

    Full text link
    Problems from graph drawing, spectral clustering, network flow and graph partitioning can all be expressed in terms of graph Laplacian matrices. There are a variety of practical approaches to solving these problems in serial. However, as problem sizes increase and single core speeds stagnate, parallelism is essential to solve such problems quickly. We present an unsmoothed aggregation multigrid method for solving graph Laplacians in a distributed memory setting. We introduce new parallel aggregation and low degree elimination algorithms targeted specifically at irregular degree graphs. These algorithms are expressed in terms of sparse matrix-vector products using generalized sum and product operations. This formulation is amenable to linear algebra using arbitrary distributions and allows us to operate on a 2D sparse matrix distribution, which is necessary for parallel scalability. Our solver outperforms the natural parallel extension of the current state of the art in an algorithmic comparison. We demonstrate scalability to 576 processes and graphs with up to 1.7 billion edges.Comment: PASC '18, Code: https://github.com/ligmg/ligm

    Fast Iterative Solution of the Optimal Transport Problem on Graphs

    Get PDF
    In this paper, we address the numerical solution of the Optimal Transport Problem on undirected weighted graphs, taking the shortest path distance as transport cost. The optimal solution is obtained from the long-time limit of the gradient descent dynamics. Among different time stepping procedures for the discretization of this dynamics, a backward Euler time stepping scheme combined with the inexact Newton-Raphson method results in a robust and accurate approach for the solution of the Optimal Transport Problem on graphs. It is found experimentally that the algorithm requires solving between O(1)\mathcal{O}(1) and O(M0.36)\mathcal{O}(M^{0.36}) linear systems involving weighted Laplacian matrices, where MM is the number of edges. These linear systems are solved via algebraic multigrid methods, resulting in an efficient solver for the Optimal Transport Problem on graphs

    Aggregation-based aggressive coarsening with polynomial smoothing

    Full text link
    This paper develops an algebraic multigrid preconditioner for the graph Laplacian. The proposed approach uses aggressive coarsening based on the aggregation framework in the setup phase and a polynomial smoother with sufficiently large degree within a (nonlinear) Algebraic Multilevel Iteration as a preconditioner to the flexible Conjugate Gradient iteration in the solve phase. We show that by combining these techniques it is possible to design a simple and scalable algorithm. Results of the algorithm applied to graph Laplacian systems arising from the standard linear finite element discretization of the scalar Poisson problem are reported

    HIGH-PERFORMANCE SPECTRAL METHODS FOR COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS

    Get PDF
    Recent research shows that by leveraging the key spectral properties of eigenvalues and eigenvectors of graph Laplacians, more efficient algorithms can be developed for tackling many graph-related computing tasks. In this dissertation, spectral methods are utilized for achieving faster algorithms in the applications of very-large-scale integration (VLSI) computer-aided design (CAD) First, a scalable algorithmic framework is proposed for effective-resistance preserving spectral reduction of large undirected graphs. The proposed method allows computing much smaller graphs while preserving the key spectral (structural) properties of the original graph. Our framework is built upon the following three key components: a spectrum-preserving node aggregation and reduction scheme, a spectral graph sparsification framework with iterative edge weight scaling, as well as effective-resistance preserving post-scaling and iterative solution refinement schemes. We show that the resultant spectrally-reduced graphs can robustly preserve the first few nontrivial eigenvalues and eigenvectors of the original graph Laplacian and thus allow for developing highly-scalable spectral graph partitioning and circuit simulation algorithms. Based on the framework of the spectral graph reduction, a Sparsified graph-theoretic Algebraic Multigrid (SAMG) is proposed for solving large Symmetric Diagonally Dominant (SDD) matrices. The proposed SAMG framework allows efficient construction of nearly-linear sized graph Laplacians for coarse-level problems while maintaining good spectral approximation during the AMG setup phase by leveraging a scalable spectral graph sparsification engine. Our experimental results show that the proposed method can offer more scalable performance than existing graph-theoretic AMG solvers for solving large SDD matrices in integrated circuit (IC) simulations, 3D-IC thermal analysis, image processing, finite element analysis as well as data mining and machine learning applications. Finally, the spectral methods are applied to power grid and thermal integrity verification applications. This dissertation introduces a vectorless power grid and thermal integrity verification framework that allows computing worst-case voltage drop or thermal profiles across the entire chip under a set of local and global workload (power density) constraints. To address the computational challenges introduced by the large 3D mesh-structured thermal grids, we apply the spectral graph reduction approach for highly-scalable vectorless thermal (or power grids) verification of large chip designs. The effectiveness and efficiency of our approach have been demonstrated through extensive experiments
    • …
    corecore