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Relational datasets are often modeled as an unsigned, undirected graph due the nice

properties of the resulting graph Laplacian, but information is lost if certain attributes of the

graph are not represented. This thesis presents two generalizations of Algebraic Multigrid

(AMG) solvers with graph Laplacian systems for different graph types: applying Gremban’s

expansion to extend unsigned graph Laplacian solvers to signed graph Laplacian systems

and generalizing techniques in Lean Algebraic Multigrid (LAMG) to a new multigrid solver

for unsigned, directed graph Laplacian systems.

Signed graphs extend the traditional notion of connections and disconnections to in-

clude both favorable and adverse relationships, such as friend-enemy social networks or social

networks with “likes” and “dislikes.” Gremban’s expansion is used to transform the signed

graph Laplacian into an unsigned graph Laplacian with twice the number of unknowns. By

using Gremban’s expansion, we extend current unsigned graph Laplacian solvers’ to signed

graph Laplacians. This thesis analyzes the numerical stability and applicability of Grem-

ban’s expansion and proves that the error of the solution of the original linear system can

be tightly bounded by the error of the expanded system.

In directed graphs, some subset of relationships are not reciprocal, such as hyperlink

graphs, biological neural networks, and electrical power grids. A new algebraic multigrid

algorithm, Nonsymmetric Lean Algebraic Multigrid (NS-LAMG), is proposed, which uses

ideas from Lean Algebraic Multigrid, nonsymmetric Smoothed Aggregation, and multigrid

solvers for Markov chain stationary distribution systems. Low-degree elimination, intro-

duced in Lean Algebraic Multigrid for undirected graphs, is redefined for directed graphs.
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A semi-adaptive multigrid solver, inspired by low-degree elimination, is instrumented in the

setup phase, which can be adapted for Markov chain stationary distributions systems. Nu-

merical results shows that NS-LAMG out performs GMRES(k) for real-world, directed graph

Laplacian linear systems. Both generalizations enable more choices in modeling decisions for

graph Laplacian systems.

Due the successfulness of NS-LAMG and other various nonsymmetric AMG (NS-AMG)

solvers, a further study of theoretical convergence properties are discussed in this thesis. In

particular, a necessary condition known as “weak approximation property”, and a sufficient

one, referred to as “strong approximation property” as well as the “super strong approx-

imation property” are generalized to nonsymmetric matrices and the various relationships

between the approximation properties are proved for the nonsymmetric case. In NS-AMG,

if P 6= R the two-grid error propagation operator for the coarse-grid correction is an oblique

projection with respect to any reasonable norm, which can cause the error to increase. A

main focal point of this paper is a discussion on the conditions in which the error propagation

operator is bounded, as the stability of the error propagation operator and the approxima-

tion properties play an important role in proving convergence of the two-grid method for

NS-AMG, which was studied in [37].
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Chapter 1

Introduction

Graphs are used to mathematically model the relationships between data in many

real-world networks. Examples include, relationships between people, roads between inter-

sections, connections between neurons, and interactions between protein structures. In a

social network, such as Facebook, people are labeled as vertices and friendships between

people are labeled as edges. Graphs are key in understanding and leveraging big data and

became popular in information retrieval when Google used large graph-based models to rank

web pages. By representing relationships between data as a graph, we can find answers to

various network analysis tasks, such as data mining or simulation. In this work, we consider

real-world graphs which tend to be scale-free and small-world. The traditional definition

of a scale-free graph is that the distribution of the vertices’ degree, the number of edges

connected to the vertex, follow a power-law distribution. This implies, that there are a few

highly connected “hubs”, while most vertices are connected to only one or two other vertices.

Examples of “hubs” in hyperlink graphs are Google and Yahoo since they are connected to

many webpages. A graph is small-world when the average path length, the mean distance

between any two vertices, is relatively small. For example, in a social network, your friends

are typically friends with each other. Scale-free, small-world graphs are known to have ex-

tremely difficult topologies that traditional linear solvers tend to struggle with as the number

of edges grows. Efficient computational tools for real-world graphs are crucial in order to

advance analysis tools for big data.
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1.0.1 Motivation for Efficient Linear Solvers

Often these analysis tasks require solutions to linear systems posed on the underlying

graphs, and efficient solution of these linear equations is a priority. A prototypical example

of these tasks is topological graph ranking, where a set of known data is to be expanded

into a ranked list of all the other data, based on the connectivity with the known set. A

linear-solver-based approach to this problem is to build a matrix associated with the graph

(e.g. the graph Laplacian L, a matrix representation of the connectivity of the graph)

and a right-hand-side vector associated with the known set of data, b. The solution to

Lx = b for a ranking vector x ranks the vertices according to their size. The vector x is

used to order and prioritize data for follow-up analysis. Prominent examples of this flavor

of graph applications are seen in the literature for unsigned graphs models, where all data

relationships are considered similarities ([1],[7],[10],[32],[41]). Other graph applications that

require a solution to a linear system include ([24],[39],[42],[45],[13]).

In aggregate, these works apply linear-solver-based ranking to both undirected graph

models, where all relationships are considered bi-directional, and directed graph models, where

some relationships are not bi-directional. Linear-solver-based ranking is also of interest for

signed graphs, where negative relationships represent dissimilarities ([19],[50]). Due to the

vast size of real-world graphs, many direct solvers become unacceptably slow as the number

of vertices and links in a graph grows. For example, classical Gaussian elimination takes

time O(n3), where n is the number of vertices. Iterative solvers can be used instead, and

multigrid is an attractive option since it has been shown to be a very robust and scalable

solver for many PDE-type problems. The goal of this work is to apply Algebraic Multigrid

(AMG) techniques to efficiently solve

Lx = b, (1.1)

where L is a graph Laplacian for large real-world signed and directed graphs. Due to the
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vast number of applications and continuing growth of the size of graphs, robust and scalable

solvers are needed for graph analysis tasks for various representations of graphs beyond

unsigned, undirected graphs. Before this work, Multigrid algorithms have been demonstrated

as robust for unsigned, undirected graph Laplacian linear systems but have not been shown

to be robust for signed or directed graph models. This thesis presents two extensions to

AMG solvers: an extension of AMG solvers for unsigned, undirected graph Laplacians to

signed, undirected graph Laplacian linear systems using Gremban’s expansion and a new

AMG solver for unsigned, directed graph Laplacian linear systems, called Nonsymmetric

Lean Algebraic Multigrid (NS-LAMG). By combining Gremban’s Expansion and NS-LAMG,

signed, directed graph Laplacian linear systems could then be solved. In this work, we use

acronyms for the four main classes of graphs we consider: unsigned-undirected (UU), signed-

undirected (SU), unsigned-directed (UD), and signed-directed (SD).

1.0.2 Four Graph Classes

Unsigned, Undirected Graph Solvers: Unsigned, Undirected (UU) graph

systems are known to be the simplest of the four problems that are in the scope of this thesis

since the graph Laplacian results in a symmetric, diagonally dominant matrix with a known

null-space. For UU graph Laplacian linear systems, Algebraic multigrid (AMG) provides

an attractive framework due to the robustness and scalability of many multigrid algorithms

and the lack of geometrical structure available for a graph. The success of AMG algorithms

comes from combining two complementary error reducing processes: local relaxation (also

known as smoothing) and coarse-grid correction. Local relaxation quickly reduces the local

oscillatory components of the error. The error that remains after relaxation is usually referred

to as algebraically smooth error. AMG methods use coarse-grid correction to enhance local

relaxation. The aim of the coarse-grid correction is to construct coarse spaces so that the

smooth error left by the relaxation process is accurately represented in the coarse space
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while ensuring that the coarse subspace is of a much smaller dimension than the fine space.

The restriction and prolongation operators, which define the coarse-grid correction, map

the fine space to the coarse space and the coarse space to the fine space, respectively. A

multilevel method is obtained by recursively applying relaxation and coarse-grid correction.

The heart of any multigrid algorithm is constructing the balance between the relaxation

process that quickly attenuates oscillatory components of the error and constructing the

coarse subspaces with adequate approximation properties. Geometric multigrid algorithms

form the coarse subspaces based on the underlying geometry of the problem and inherently

have good approximation properties. However, for most graph applications, the underlying

geometry is either unknown or is lacking altogether. Thus, the coarse subspace needs to be

constructed solely based off of the problem matrix. This case defines Algebraic Multigrid.

There exists a number of AMG solvers for UU graph Laplacian systems, which include Lean

Algebraic Multigrid (LAMG) [23], Combinatorial Multigrid (CMG) [15] and Degree-Aware

Rooted Aggregation ([27], [28]).

Signed, Undirected Graph Solvers Unlike a UU graph, a SU graph has

both positive edges and negative edges. A positive edge of a signed graph is seen as a

similarity or proximity between two vertices, while a negative edge can show dissimilarity

or distance. In the signed graph Laplacian representation, the negative edges correspond to

positive off-diagonal entries while positive edges correspond to negative off-diagonal entries.

As an example, a social network may be represented as a signed graph where positive edges

represent “friends” and negative edges represent “foes.” Or, alternatively, a negative edge

may represent two people whose grouping together should be avoided, as it may cause a

disruption.

Chapter 3 analyzes the extension of unsigned graph Laplacian linear system solvers to

signed graph Laplacian linear systems using Gremban’s expansion. For the signed variants,

SU and SD, Gremban’s expansion [11] allows one to recast signed graph systems into unsigned
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graph systems with twice the number of unknowns and matrix non-zeros. The expansion

decomposes any diagonally dominant matrix, S = M + P , into a diagonally dominant Z-

matrix, M , and a non-negative matrix, P . Then Sx = b maybe solved by using an expanded

system:

Gw =

 M −P

−P M


 x

−x

 =

 b

−b

 = z, (1.2)

in which G is a diagonally dominant Z-matrix and, therefore, amenable to fast solvers de-

signed for this class of matrices. In the case where S is an SU graph Laplacian, G is a UU

graph Laplacian, and fast UU graph Laplacian solvers like LAMG are useful. Under suitable

hypotheses on S, the system G is either nonsingular or has a trivial null space. In either

case, the solution to the original system is found by solving the expanded system and then

extracting x. By applying Gremban’s expansion, the larger linear system, Gw = z, can be

solved using any UU graph Laplacian solver. This thesis shows that Gremban’s expansion

gives theoretical insight into the interpretability of linear-solver-based ranking approaches to

signed graphs. For SU and SD graphs, we show Gremban’s expansion is numerically stable;

in other words, the error of the original linear system is bounded by the error of the linear

system for the expansion. We also demonstrate that the condition number of the expansion

matrix, G, is at least the condition number of S, implying a robust UU solver is needed

for the expanded system to yield a robust SU solver. We also empirically demonstrate that

LAMG in conjunction with Gremban’s expansion yields an efficient solution technique for

several real-world SU graphs: one large set that has real-world topologies and synthetic sign

structure, and another set where the sign structure comes from real-world movie rankings.

By applying Gremban’s expansion in conjunction with a robust UU graph Laplacian solver

(e.g. LAMG), the sign structure does not affect the performance of the solver. This work



6

is novel because we have provided a clean and simple tool to apply solvers that are already

used in the graph community for unsigned graphs to signed graphs. Data scientists are no

longer restricted by solver performance when determining the type of relationships, positive

or negative, they wish to represent.

Unsigned, Directed Graph Solvers A graph is directed if an edge has a

direction; in other words, information flows in one direction from vertex to vertex. For exam-

ple, the World Wide Web is a directed graph, where the vertices are webpages and the edges

represent hyperlinks from one page to another. The direction of edges plays an extremely im-

portant role in the dynamics between the vertices in UD graphs, and important information

is lost if the directionality of the relationship is not represented. Despite the “directedness”

of many real-world graphs, many linear solvers only focus on undirected graphs matrix rep-

resentations. Unlike the graph Laplacian of an undirected graph, the graph Laplacian of a

directed graph is nonsymmetric. Not only are real-world, UD graph Laplacians nonsymmet-

ric, they are typically scale-free and small-world as well, which results in extremely difficult

topologies. The current methods used in the graph community for directed graph Laplacian

systems are direct solvers such as SuperLU [21] and QR Factorization [8] and iterative solvers

such as Generalized Minimal Residual Method with Restart (GMRES(k)) [34] and General-

ized Least Squares QR Method (LSQR) [33]. Multilevel iterative solvers for scale-free, UD

graph Laplacian systems have not been widely studied, but the success of LAMG and CMG

for UU graphs shows promise of developing a robust multilevel solver for UD graphs. A UD

graph Laplacian has a zero column sum but possibly a nonzero row sum. Due to the zero

column sum, the linear systems involving UD graphs, as there are many other linear systems

that are related to directed graphs, are associated with Markov chain stationary distribution

systems. Many techniques from Markov chain solvers can be applied in conjunction with

ideas from LAMG. Again, many applications make use of efficient linear solvers, yet due to

the lack of robust multilevel linear solvers for UD graph Laplacians, many applications for
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UU graph have not been extended to UD graphs.

Chapter 4 describes and discusses our new AMG method, Nonsymmetric Lean Alge-

braic Multigrid (NS-LAMG), for UD graph Laplacians. Our proposed AMG algorithm pulls

ideas from Adaptive Markov Chain AMG [41], Nonsymmetric Adaptive Smoothed Aggre-

gation [37], and LAMG [23]. Low-degree elimination exploits the scale-free property and

eliminates low-degree vertices from the linear system. Low-degree elimination in [23] is ex-

amined for UD graphs, and in many cases it drastically reduces the problem size. AMG

is then applied to the reduced linear system, and the solution is projected back to the fine

space with no error. This thesis numerically shows that low-degree elimination enhances

AMG performance without significantly increasing the complexity of the solver. Due to the

nonsymmetry of directed graph Laplacian systems, we adapt the restriction and prolongation

operators from Nonsymmetric Smooth Aggregation in [37]. The operators in [37] are defined

using near null-space vectors, yet, due to the zero column sum of a UD graph Laplacian, the

Laplacian is singular with a known left null-space vector and a unique, strictly positive, right

null-space vector. The left and right null-space vectors are then used to define the intergrid

transfer operators. Thus, an adequate approximation to the right null-space vector needs to

be found. We propose a semi-adaptive Markov chain stationary distribution system solver to

find the right null-space vector, as Lv = 0, where L is the normalized directed graph Lapla-

cian, is reformulated as a Markov chain stationary distribution system. The semi-adaptive

solver utilizes low-degree elimination and stationary AMG aggregation, and thus, is more

parallelizable than traditional full-adaptive AMG Markov chain solvers. Numerically, this

thesis shows that the semi-adaptive solvers perform similarly to the full-adaptive solvers

due to low-degree elimination. The hierarchy of coarse operators are created by alternating

low-degree elimination and coarse-graph aggregation. Using the constructed hierarchy, the

right null-space vector is approximated using the semi-adaptive Markov chain solver pro-

posed in Chapter 4, and the setup phase is concluded. This thesis compares GMRES(k)

to NS-LAMG numerically and shows that for real-world graphs NS-LAMG out performs
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GMRES(k). NS-LAMG provides a robust solver for UD graph Laplacians linear systems

and is the first algebraic multigrid solver for such systems. NS-LAMG is superior to tradi-

tional nonsymmetric iterative solvers. By providing a robust, scalable solver for UD graph

Laplacian systems, data scientists will have the capability to explore UD graphs without

simplifying to an UU graph or restricting themselves to a subset of real-world graphs with a

small number of vertices.

Signed, Directed Graph Solvers SD graphs are also of interest in the graph

community. SD graphs are a combination between signed graphs and directed graphs, which

typically make their associated linear systems difficult to solve. A simple example of a SD

graph is a rating scheme where individuals of a team rate other members. If each team

member was asked to rate every other team member’s ability with respect to their own

ability, then links between the vertices would be signed, as well as directed with respect

to each member. This thesis also shows how Gremban’s expansion can be generalized to

any (possibly nonsymmetric) diagonally dominant matrix. Gremban’s expansion could then

expand SD graphs to UD graphs. By combining Gremban’s expansion with NS-LAMG we

can efficently solve SD graph Laplacian linear systems.

Data scientists would like to solve graph Laplacian linear systems involving all four

types of graphs: UU, SU, UD, and SD graphs. As the size and availability of data continues

to grow, traditional methods for solving graph Laplacian systems are infeasible and robust,

scalable linear solvers are needed for many data analysis applications. The two extensions

of AMG provided in this thesis are useful in the graph community since they provide robust

solvers for different representations of graph Laplacians linear systems than just UU graphs.

By providing robust solvers for different types of graph representations, new applications

and avenues in the graph community can be scalably explored. Since UU graph Laplacian

solvers were the main graph Laplacian solver available, data scientists were restricted in

their modeling choices. Now, since this thesis has developed robust linear solvers for SU,
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SD, and UD graph Laplacians there is an opportunity in the graph community for UU graph

applications, such as graph ranking, centerpiece subgraph problems, and clustering to be

adapted for different modeling choices.

1.0.3 Nonsymmetric AMG Theory

Due to the successfulness of NS-LAMG for directed graphs, described in Chapter 4,

Chapter 5 fills in gaps in the theory behind AMG for nonsymmetric problems. Algebraic

multigrid is traditionally motivated for symmetric positive definite (SPD) linear systems and

the convergence theory of AMG for SPD matrices is also relatively well-understood. How-

ever, significantly less work has been done studying the convergence of nonsymmetric AMG

(NS-AMG). In this chapter, we build the theory for general, nonsingular, nonsymmetric ma-

trix. The theory can easily be applied to UD graph Laplacian systems where the kernel can

be projected from the linear system. In some cases, applying standard (symmetric) AMG

approach to nonsymmetric problems can be effective. However, often a direct application of

symmetric AMG on a nonsymmetric problem may fail without appropriate modifications of

AMG components, as in [6]. Specialized nonsymmetric AMG techniques have been success-

fully developed for a number of specific applications. For example, Markov chain transition

matrices, though nonsymmetric, have a number of nice properties, and iterative methods

for Markov-chain stationary distribution systems have been widely studied. Various AMG

techniques for Markov chains include [40, 4, 46]. Theoretical convergence results for iter-

ative aggregation/disaggregation methods (IAD) are well known [17, 18, 25, 12], and [17]

showed that IAD is equivalent to the two-grid nonsymmetric AMG (NS-AMG) method [40].

Various other efforts have been made to develop robust AMG solvers applicable to non-

symmetric linear systems [29, 35, 26, 30, 51, 49, 38]. However, despite a number of effective

AMG methods for nonsymmetric problems, there remains a lack of rigorous motivation or

theory explaining why and when the algorithms converge.

Typically the coarse-grid correction for NS-AMG is an oblique (non-orthogonal) pro-
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jection with respect to any reasonable inner product. Meaning that, in some cases, the

coarse-grid correction can actually increase the global error. This makes the convergence

theory much more difficult to achieve, as relaxation must overcome any increase in error

from the coarse-grid correction. Two-grid convergence of NS-AMG in [6] is considered by

studying the application of AMG to an equivalent linear system with respect to the singular

values. Let H be any nonsingular, nonsymmetric matrix. Let H := UΣV ∗ be the singular

value decomposition (SVD) of H and define the orthogonal matrix Q := V U∗. Then the

original system Hx = b can be reformulated as an SPD system in two ways:

QHx = Qb (1.3)

HQy = b for x = Qy. (1.4)

The matrices QH =
√
H∗H and HQ =

√
HH∗ are SPD matrices that have the same

singular-value distribution as H. Analysis of NS-AMG is performed using the energy norm

with respect to QH (‖ · ‖QH =
√
〈QH·, ·〉). In practice, Q is not formed since this would re-

quire computing an SVD of H, but simply provides a framework with which to consider AMG

convergence. Sufficient conditions for two-grid convergence in the energy-norm with respect

to QH is broken into two parts [6]: (i) the prolongation operators satisfies the nonsymmet-

ric strong approximation property, a generalization of the well-known strong approximation

property with respect to the energy norm of QH, and (ii) coarse-grid correction is stable,

i.e the error propagation operator of the coarse-grid correction is bounded, independent of

problem size. This thesis fills in gaps in nonsymmetric AMG convergence theory, building

off of the theory presented in [6]. In particular, the standard AMG approximation proper-

ties are generalized to the nonsymmetric setting by introducing approximation properties

on both the restriction and prolongation operators. Known approximation-property rela-

tions for the SPD case, for example, the strong approximation property implies the weak

approximation property, are then proved in the nonsymmetric setting. The focal point of
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Chapter 5 is quantifying when the error propagation operator of the coarse-grid correction is

stable. A quality measure of the relation between the restriction and prolongation operators

is introduced that ensures stability and, therefore, two-grid convergence, when coupled with

approximation properties. It is the goal of this work to further the theoretical development

of NS-AMG, in the hopes to better understand when and why NS-AMG converges.



Chapter 2

Background

2.1 The Graph Laplacian for Unsigned, Undirected Graphs

A graph is most commonly represented by a unsigned, undirected (UU) relationship

as it results in symmetric matrix representations. A UU graph, G(V , E , w), relates a set of

n vertices, V , by m connections or edges in the set E with weights, w. An edge (i, j) ∈ E

between two vertices i and j is an undirected or symmetric relationship, meaning (j, i) is also

in E and wij = wji. Additionally, edge (i, j) is a positive relationship, with wij > 0, as its

size is proportional to the strength of affinity between i and j. Assume G is connected, i.e.

there exist a path from any two vertices, with no self loops, that is (i, i) 6∈ E . The Laplacian

associated with a UU G is represented by

L = D − A ∈ Rn×n, (2.1)

where the adjacency matrix, A ∈ Rn×n, and diagonal degree matrix, D ∈ Rn×n, are defined

as

Aij =


wji (i, j) ∈ E

0 otherwise

, (2.2)
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and

Dij =


di i = j

0 otherwise

, (2.3)

respectively, and di =
∑

iwij is known as the degree of vertex i.

The matrix L is singular with known kernel, L1 = 0. For the linear system, Lx = b,

if L is symmetric, b is in the range of L only if 1tb = 0. If b is not in the range, we

are interested in L†b, where where L† represents the Moore-Penrose pseudo-inverse of L.

Because L has a known one-dimensional kernel, L† can be calculated by using projections

and a SPD solve,

x =
(
L+

α

n
11t
)−1(

I − 1

n
11t
)

b, (2.4)

for any α > 0. This is an important discussion for the signed case, as the matrices of interest

are not always singular, which will be demonstrated later in this section.

For UU graphs, matrix L can be symmetrically factored using its incidence matrix,

E ∈ Rn×m, which maps the edges to the vertices. Let the e-th edge be (i, j) ∈ E . Then e is

oriented as follows for i < j:

Ek,e =


+1 k = i

−1 k = j

0 otherwise

. (2.5)

Let W be a diagonal matrix such that We,e = wij. This yields the factorization

L = EWEt. (2.6)
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This factorization and the quadratic form,

xtLx =
∑

(i,j)∈E

wij(xi − xj)2, (2.7)

are powerful tools used for deriving properties of solutions to Lx = b, designing numerical

solvers, and performing numerical analysis of such solvers. While conventionally used for

UU graphs, these formulation tools can be generalized to signed graphs as well as directed

graphs. As mentioned in the Section 1, there exists many AMG methods for UU graph

Laplacain linear systems, i.e LAMG [23], CMG [15] and Degree-Aware Rooted Aggregation

([27], [28]). The next section outlines the basics of AMG and LAMG, as LAMG is used in

the numerical testing of Section 3 and is the basis of NS-LAMG, outlined in Section 4.

2.2 Basics of AMG

Multigrid was first developed for PDE-type problems discretized on uniform grids. It

is known for its robustness and scalability, which makes multigrid an attractive option for

graphs since the size of graphs have become increasingly large due to the vast collection and

accessibility of data. Multigrid was first formulated for symmetric, positive-definite (SPD)

matrices. For UU graph Laplacians, L is symmetric, possibly indefinite, but has a known

kernel that can be easily projected from the system. Let B be an n × n SPD matrix. The

two main components of any multigrid algorithm are smoothing and coarse-grid correction.

First, smoothing quickly attenuates the oscillatory components of the error and is typically

a stationary residual-based iterative method, which is typically of the form

x← x +M−1r r := b−Bx,

where M−1 is a computation inexpensive preconditioner that approximates B−1 and r is

the residual. Most stationary (residual-based) iterative methods, e.g. weighted-Jacobi and
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Gauss-Seidel, are easy to implement and require a minimal amount of operations per it-

eration. Second, coarse-grid correction projects the smooth error onto a coarse subspace

to efficiently reduce smooth error components. The coarse-grid correction involves transfer

operators, i.e. the prolongation and restriction operators, that transfer information between

fine and coarse grids. Define the fine and coarse grids as the space Rn and Rnc , respectively.

The interpolation operator, P ∈ Rn×nc , maps the coarse grid to the fine grid while the re-

striction operator, Rt ∈ Rnc×n, maps the fine grid to the coarse grid. If B is symmetric

and R = P , then the coarse operator, Bc = RtBP , is symmetric. The two-grid method for

solving Bx = b is then defined in Algorithm 1. In Algorithm 1, e is the error in the current

iterate and r = b − Bx is the residual. The fine level problem matrix and the residual are

restricted to the coarse subspace and the coarse approximation of the error, ec, is then solved

for. The approximated error is then interpolated to the fine grid to obtain an approximation

to the fine grid error, ẽ = Pec. The two-level coarse-grid correction is

x← x + P (RtBP )−1Rtr (2.8)

and has the associated error propagation operator

e← (I − P (RtBP )−1RtB)e. (2.9)

Define the error propagation operator as (I − Π) := (I − P (RtBP )−1RtB). If B is a

symmetric positive definite matrix and R = P , then the error propagation operator, (I−Π),

is an orthogonal projection in the B-norm (‖ · ‖B =
√
〈B·, ·〉), meaning

(I − Π)2 = (I − Π) (2.10)
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Algorithm 1 Two-Level AMG(x,b, ν1, ν2)

Input: Known right-hand side, b, current iterate, x, number of pre-smoothing iteration, ν1,

and number of post-smoothing iterations, ν2. Implicit input is the two-level hierarchy

(B,P,R).

Output: Updated iterate, x.

repeat

Do ν1 smoothing steps on Bx = b.

Compute residual r = b−Bx = Be.

Solve Bcec = Rtr, where Bc = RtBP.

Correct x← x + Pec

Do ν2 smoothing steps on Bx = b.

until convergence criterion satisfied
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and

〈B(I − Π)y, z〉 = 〈By, (I − Π)z〉. (2.11)

The error propagation operator projects the error in the direction of the range of the inter-

polation operator onto the space spanned by the null-space of RtB. To form a full V-cycle,

Algorithm 1 is recursively called. Multilevel notation for the hierarchy involves K levels,

with k = 1 as the finest, and k = K as the coarsest level. The interpolation and restriction

operators between the levels are denoted by P k
k+1 and (Rk

k+1)
t, respectively, and the coarse

problem matrices can be written as Bk+1 = (Rk
k+1)

tBkP
k
k+1 on each level. The multilevel

method for solving Bx = b is then defined in Algorithm 2.

AMG differs from classical geometric multigrid in the way that the interpolation op-

erators are formed. Geometric multigrid forms P based on the underlying geometry of the

problem. However, for graphs, the underlying geometry is unknown. Thus, P needs to

be defined solely based on the problem matrix B. The coarse-grid correction needs to be

designed to complement the given relaxation process and must attenuated the error that

remains. Classical AMG is based off of the assumption that geometrically smooth error is in

or near the null-space of B. Assuming the problem matrix B is SPD and has been scaled so

that its largest eigenvalue equals one, let e be a small normalized eigenvalue of B such that

Be = λe, thus,

λ = etBe� 1. (2.12)

The constant vector, 1, is a geometrically smooth vector, and from the assumption that

smooth error must be in the near null-space of B, we can assume that B has a row sum of

zero. By using this assumption, we can expand etBe,
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Algorithm 2 MultiLevel AMG(xk,bk, ν1, ν2)

Input: Known right-hand side, bk, current iterate, xk, number of pre-smoothing iteration,

ν1, and number of post-smoothing iterations, ν2. Implicit input is the multilevel hierarchy

(Bk, P
k
k+1, (R

k
k+1)

t).

Output: Updated iterate, xk.

repeat

Do ν1 smoothing steps on Bkxk = bk.

Compute residual bk+1 = (Rk
k+1)

t(bk −Bkxk)

if k = K − 1 then Solve BKxK = bK

else xk+1 ← MultiLevel AMG (xk,bk, ν1, ν2)

end if

Correct xk ← xk + P k
k+1xk+1

Do ν2 smoothing steps on Bkxk = bk.

until convergence criterion satisfied
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etBe =
∑
i<j

(−bij)(ei − ej)2 � 1, (2.13)

which helps define the strength of connection between vertices as smooth error varies slowly

in the direction of relatively large coefficients of the problem matrix. There are many ways

to approach coarsening, but for many AMG algorithms, coarsening is based on a strength-of-

connection matrix. The strength-of-connection matrix, S, is usually defined by a function on

the matrix B, with small connections thrown away by using a strength threshold parameter.

Coarse grid aggregates, where the fine grid degrees of freedom are associated with a one

coarse grid degree of freedom are chosen, such that the grid is coarsened in the direction of

strong connections, i.e. the vertices i and j are aggregated together if the entry Sij is large.

2.3 Lean Algebraic Multigrid

Livne and Brandt modified AMG specifically for UU graph Laplacians to create LAMG.

LAMG was able to exploit information about UU graph Laplacians to create a robust and

scalable multigrid algorithm for a wide variety of UU graphs, including scale-free and mesh-

like graphs. The three main contributions of LAMG are low-degree elimination, caliber-one

interpolation with an energy correction step, and the use of affinity to compute a new type

of strength-of-connection matrix. Many of LAMG’s methods are applied in our NS-LAMG

algorithm for UD graph Laplacians linear systems, which will be discussed Chapter 4.

LAMG’s low-degree elimination phase projects low-degree vertices from the linear sys-

tem using the Schur complement. When a vertex is eliminated, the neighboring vertices

get connected to each other if they were not already connected. The goal of the low-degree

elimination phase is to reduce the problem size while not considerably increasing the num-

ber of nonzeros of the coarsened problem matrix. Recall, the off-diagonal nonzeros represent

the edges in the graph. LAMG eliminates any vertex with degree four or less, meaning
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that the vertex is symmetrically attached to at most four vertices. Figure (2.1) depicts the

elimination of a vertex that has degree one, two, three, and four. The left is the original

system, and the right is after the red vertex is projected out of the system. In Figure (2.1d),

two additional edges were created by eliminating a vertex of degree four. Real-world graphs

are often scale-free, meaning that they have many low-degree vertices. By eliminating low-

degree vertices, the size of the coarsened problem is drastically reduced, while the number

of nonzeros in the problem matrix is maintained. Additionally, after the elimination, the

interpolation of the error from the coarse graph to the fine graph is exact. As a result, if

elimination is performed before each aggregation level, it will significantly reduce the cost of

each cycle with no distortion of the solution.

(a) Degree One (b) Degree Two

(c) Degree Three (d) Degree Four

Figure 2.1: Low-Degree Elimination for UU Graphs

For the aggregation phase, for PDE-type problems, it is known that a second order

or higher interpolation operator [5], meaning a fine vertex is represented on the coarse

subspace by more than one coarse vertex, improves convergence. For graphs, a second

order interpolation operator creates fill-in on the coarser graphs, which is unintuitive. Fill-in

represents adding more edges or connections between the aggregates that cause the coarse
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graphs Laplacians to become dense, requiring more storage for the coarser levels than if a

caliber-one operator was used. To remove this hindrance, a caliber-one or order-one operator

is employed, in which each fine vertex is represented on the coarse subspace by only one coarse

vertex. LAMG is an accelerated, caliber-one, aggregation-AMG algorithm that utilizes an

iterate recombination phase, also know as k-cycles [31], to overcome the inaccuracy of the

order-one interpolation operator.

An effective coarse grid hinges on the choice of good aggregates. LAMG creates an

affinity matrix to describe the “distance” of the vertices in the aggregation phase. Classical

AMG uses the entires in the adjacency matrix A, but makes incorrect decisions for non-local

graphs. The affinity matrix contains the algebraic distance between the vertices, which is

trying to capture aggregates that are strongly coupled together in the low energy or smooth

vectors. To form S, a set of K test vectors, x1, . . . ,xK , is generated. Each test vector is

the result of taking a random vector, randomly containing entries in [−1, 1], and applying ν

relaxation sweeps to Lxi = 0. Let X ∈ Rn×K be a matrix whose columns are x1, . . . ,xK , i.e.

X =

[
x1 . . . xK

]
. (2.14)

Let Xj be the jth row of X and let (Xj, X i) be the inner product between two such rows.

Then define the affinity between vertex u an v, which is denoted by suv, as

Suv = 1− |(Xu, Xv)|2

(Xu, Xu)(Xv, Xv)
. (2.15)

Note that Suv ∈ [0, 1], and it is assumed Suv = 0 if Luv = 0. These key modifications have

been shown to be efficient and robust for most topologies of UU graphs. Our own implemen-

tation of LAMG, implemented in the programming language Julia [36], is an efficient and

robust solver for UU graphs. grid
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Gremban’s Expansion for Signed Graphs

3.1 The Graph Laplacian for Signed Undirected Graphs

Provided in this chapter are the details of Gremban’s expansion. Gremban’s expansion

extends unsigned graph Laplacian solvers to signed graph Laplacian systems with no changes

to the solver. For SU graphs denoted by G±(V , E+∪E−, w), there are both positively weighted

edges, wij > 0 for (i, j) ∈ E+, and negatively weighted edges, wij < 0 for (i, j) ∈ E−. For

simplicity, we assume there are no contradictory edges; that is, (i, j) ∈ E+ ⇒ (i, j) 6∈ E−,

and, conversely, (p, q) ∈ E− ⇒ (p, q) 6∈ E+. Thus, E+ ∩ E− = ∅, and E+ ∪ E− = E . We will

also assume the signed graphs are connected. For SU graphs to be connected, the underlying

UU graph must be connected, i.e. there exists a path from any two vertices. For SD graphs

the underlying UD must be strongly connected, i.e there exists a directed path from any two

vertices. The matrix forms associated with G±, for SU graphs, are easily generalized from

Section 2.1. The signed Laplacian associated of graph G± is represented by

L± = D± − A± ∈ Rn×n, (3.1)
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where the signed adjacency matrix, A± ∈ Rn×n, and signed diagonal degree matrix, D± ∈

Rn×n, are defined as

A±ij =


wji (i, j) ∈ E+ ∪ E−

0 otherwise

, (3.2)

and

D±ij =


di i = j

0 otherwise

, (3.3)

respectively, and di =
∑

j |wij| is known as the total degree, i.e., the sum of the absolute values

of the wighted edges of vertex i. The signed adjacency matrix will have some negative entries

and the signed combinatorial Laplacian has some positive off-diagonal entries. The incident

factorization is extended to signed graphs such that the products of nonzero entries in each

column of the incidence matrix, E, are equal to the negative of the sign of each edge weight.

Let the e-th edge be (i, j) ∈ E . Then e is oriented as follows for i < j:

Ek,e =


1 k = i

±1 k = j such that EieEje = −sign(wij)

0 otherwise

. (3.4)

Let We,e = |wij|. Then the Laplacian is factored as in (2.6),

L± = EWEt. (3.5)

Note that L± of an SU graph is a symmetric, diagonally dominant matrix.

The goal is to apply tools that work well for combinatorial Laplacians of UU graphs
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to solve L±x = b for SU graphs. For G±, we will show that, in special situations, L± is

singular. In real-world datasets, L± is usually nonsingular. We address the singular case first.

When L± is singular, the eigendecomposition is directly related to associated combinatorial

Laplacian, L̃±, that is generated by reversing the sign of all the negative edge weights. To

formalize this, we require the concept of a balanced signed graph.

Definition 3.1.1. A connected signed graph, G±(V , E+ ∪ E−, w), with nonzero edge weights

is balanced if V can be partitioned into the two groups U and W, such that (i, j) ∈ E+

implies either both vertices i, j are in U , or both are in W, and (i, j) ∈ E− implies one of

the two vertices is in U and the other is in W.

Equivalently, unbalanced graphs can be defined as graphs containing a cycle with an

odd number of negative edges. If a graph is balanced, then the spectrum is easily relatable to

the corresponding unsigned Laplacian, as shown in the following Theorem 1. A bipartition,

y, of the set of vertices, V , is defined as yi = 1 for i ∈ U and yj = −1 for j ∈ W , where

U ∪W = V and U ∩W = ∅.

Theorem 1. Let L± be a signed Laplacian matrix of the balanced connected graph, G±,

with bipartition y and eigenvalue decomposition L± = UΛU t. Let L̃± = diag(y)L±diag(y).

Then L̃± is the corresponding Laplacian matrix of the unsigned graph Laplacian of G. The

eigenvalue decomposition of the Laplacian matrix, L̃±, is similar to L±, by L̃± = ŨΛŨ t

where Ũ = diag(y)U . Moreover, y is the kernel of L±.

Proof. Order the vertices so that U is first and W is second and let block L±12 represent the

edges between i ∈ U and j ∈ W . A balanced graph implies that all positive off-diagonal

entries in L± occur in L±12 and L±12 ≥ 0. The similarity transform L̃± = diag(y)L±diag(y)

makes these entries negative (with their symmetric counterparts) and leaves all entries in

the other blocks of L± alone. The rest of the results are derived easily via the similarity

transform and the fact that 1 is the kernel of L̃±.
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The partition of a balanced graph can be found by a depth-first traversal, assigning

each vertex to a partition such that the balance property is fulfilled [19]. Additionally, the

same process can be used to determine if the graph is unbalanced. If G± is balanced, the

spectrally equivalent Laplacian system L̃±x̃ = b̃ can be solved, where b̃ = diag(y)b and the

solution to the original linear system is given by x =diag(y)−1x̃. Therefore, in what follows,

we assume G is unbalanced. Moreover, it is unlikely that a real-world graph is balanced unless

an application has special structure. The incidence factorization for G±, shown in (3.4), is

used to show that L± is always at least positive semi-definite. From the factorization (3.5),

we can derive the quadratic form

xtL±x =
∑

(i,j)∈E+
|wij|(xi − xj)2 +

∑
(p,q)∈E−

|wpq|(xp + xq)
2, (3.6)

which is non-negative for any x. For an unbalanced, connected G±, the quadratic form is

strictly positive, implying matrix L± is strictly positive definite. If xtL±x = 0, then for each

edge (i, j) ∈ E we have

|wij|(xi − sign(wij)xj)
2 = 0 (3.7)

xi = sign(wij)xj. (3.8)

The above equations show that the xi’s are equal, or they must alternate sign depending

if they are connected by a positive edge or negative edge, respectively. Since the graph

is connected, all |xi|’s must be equal, and thus x gives a bipartition of the vertices that

contradicts the definition of an unbalanced graph [19]. Thus, the signed Laplacian of an

unbalanced G± is nonsingular and L±x = b can be solved for any b without projection.

When a connected, signed graph is balanced L± is singular, as shown in Theorem 1,
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and thus the condition number of L± is defined as

κ(L±) =
σn
σ2
, (3.9)

where σn is the largest eigenvalue and σ2 is the smallest eigenvalue greater than zero of L±.

For a connected, unbalanced graph, L± is nonsingular, and the condition number of L± is

defined as

κ(L±) =
σn
σ1
, (3.10)

where σn and σ1 are the largest and smallest eigenvalue of L±, respectively. Thus, if the sign

structure of a balanced graph changes slightly and becomes a weakly unbalanced graph, e.g.

one edge changes sign, the condition number of the unbalanced version of the graph could

potentially be much worse than the balanced version. Thus, SU graph Laplacians can be

arbitrarily poorly conditioned. The condition number is dependent on the sign structure of

the graph, thus the goal is to constuct a solver for SU graph Laplacian systems such that

the performance is independent of the sign structure.

3.2 Gremban’s Expansion

In [11], the author shows that any symmetric diagonally dominant (SDD) matrix can

be expanded into a symmetric Z-matrix. The solution to the linear system involving the

expanded matrix yields the solution of the linear system involving the original matrix. An

important distinction to be made between signed and unsigned graph Laplacians is regarding

the off-diagonal elements. Signed Laplacians have some positive off-diagonal elements while

unsigned Laplacians have strictly nonpositive off-diagonal elements. The following defines a

diagonally dominant Z-matrix, which is a generalization of an unsigned Laplacian:

Definition 3.2.1. A matrix M is a Diagonally Dominant Z-matrix if it is diagonally
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dominant, mii ≥
∑n

j=1 |mij|, with positive diagonal, mii > 0 for every i, and has non-positive

off-diagonal elements, mij ≤ 0 for every i 6= j.

With this definition, M can be strongly diagonally dominant, mii >
∑n

j=1 |mij|, for

some i, but is not required to be symmetric. Note that diagonally dominant M-matrices,

commonly used in the literature, are a subset of diagonally dominant Z-matrices. Any

diagonally dominant matrix can be decomposed into the sum of a diagonally dominant Z-

matrix and a non-negative matrix. Now that the required notation has been provided, we

define the Gremban expansion matrix:

Definition 3.2.2. Let S be diagonally dominant with positive diagonal. We decompose

S = M + P such that M is a diagonally dominant Z-matrix, and P has purely non-negative

entries and zero diagonal. Define the Gremban Expansion matrix G as

G =

 M −P

−P M

 .
Note that G is a diagonally dominant Z-matrix. In the following definition we see that

if S is a signed graph Laplacian, then G is an unsigned graph Laplacian.

Definition 3.2.3. Let L± be the graph Laplacian of a signed graph, G±(V , E = E+ ∪E−, w).

Then Gremban’s Expansion matrix, G, of L± is an unsigned graph Laplacian of graph,

G̃(Ṽ , Ẽ , w̃), where Ṽ = {1, · · ·n, n + 1, · · · , 2n} and the edge set Ẽ is related to the edge sets

E+ and E− as follows. If (i, j) ∈ E+ then (i, j), (i+ n, j + n) ∈ Ẽ with w̃i,j = w̃i+n,j+n = wi,j

and if (i, j) ∈ E− then (i, j + n), (i+ n, j) ∈ Ẽ with w̃i,j+n = w̃i+n,j = |wi,j|.

By expressing the Gremban matrix, G, as graph, G̃ by Definition 3.2.3, the structure

of the matrix can be investigated. Figure 3.1 depicts G̃ where the green ovals represent the

two distinct communities, V1 and V2, that are each connected internally by the associated

positive edges. The negative edges, represented in red, form the connection between the two
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V1 = {1, · · · , n}
E+

V2 = {n + 1, · · · , 2n}
E+

E−

Figure 3.1: Gremban expansion graph G̃

communities, V1 and V2. In order to get from a vertex in V1 to a vertex in V2 an edge in

E− must be transversed. Random walks are used in many ranking algorithm and a similar

study of random walks on Gremban’s expansion matrix can give the user an understanding

of the solution. It is well known that for an unsigned graph, the kth power of the associated

adjacency matrix defines the number of k-length walks connecting the vertices i and j. This

very useful graph mining theorem associated with unsigned graphs can be generalized to

the graph associated with the Gremban expansion matrix and provides interpretability of

signed graphs using traditional graph analytics. Theorem 2 shows that the k powers of

the associated binary adjacency matrix of the Gremban’s graph, Ã, defines an even or odd

number of edges in E− that are in a walk of length k between node i and j. For a ranking

application on a signed graph, a generalization of [10], the vertices are scored by the difference

of two random-walk based rankings: one involving paths with an odd number of negative or

“bad” edges and one with paths with even number of “bad” edges.

Theorem 2. Let G±(V , E = E+ ∪ E−, w) be an SU graph and G̃(Ṽ , Ẽ , w̃) be the associated

Gremban’s graph as defined in Definition 3.2.3. Let Ã be the associated binary adjacency

matrix of G̃. If i, j ∈ {1, · · · , n}, then
(
Ãk
)
i,j

is the number of walks of length k with an

even number of negative edges and
(
Ãk
)
i,j+n

is the number of walks of length k with an odd

number of negative edges.
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Proof. Let A = A+ − A− be the binary adjacency matrix of graph G± where A+ and A−

represent the positive and negative edges, respectfully. Then,

Ã =

A+ A−

A− A+


is the binary adjacency matrix associated with, G̃. If i, j ∈ {1, · · · , n} and there exists a

walk of length one between the vertices then,

Ãi,j =

[
eti 0

]
Ã

ej

0

 = etiA
+ej = 1,

and zero negative edges exist in the walk. If ĵ = j + n and there exists a walk of length one

between the vertices then,

Ãi,ĵ =

[
eti 0

]
Ã

0

eĵ

 = etiA
−eĵ = 1,

and one negative edge exists in the walk. Thus, for k = 1 the theorem holds. Assume for

i, j ∈ {1, · · · , n} and there exists a path of length k − 1 between the vertices that
(
Ãk−1

)
i,j

is the number of walks of length k − 1 that has an even number of negative edges and(
Ãk−1

)
i,j+n

is the number of walks of length k − 1 that has an odd number of negative
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edges. We will show that for k,

Ãki,j =

[
eti 0

]
Ãk−1Ã

ej

0

 (3.11)

=
∑

q∈{1,··· ,n}

[
eti 0

]
Ãk−1

eq

0

 etqA
+ej (3.12)

+
∑

p=q+n,q∈{1,··· ,n}

[
eti 0

]
Ãk−1

 0

ep

 etpA
−ej, (3.13)

(3.14)

is a walk of length k with an even number of negative edges. In the left sum, Ãk−1i,q is a walk

of length k − 1 from vertex i to q that has an even number of negative edges and only a

positive edge was transversed to get from vertex q to j, thus, an even number of negative

edges are in the walk. In the right sum, Ãk−1i,p is a walk of length k − 1 from vertex i to p

that has an odd number of negative edges and one negative edge was transversed to get from

vertex p to j, thus, again an even number of negative edges are in the walk. If ĵ = j +n the

Ãk
i,ĵ

is a walk of length k with an odd number of negative edges as seen by,

Ãk
i,ĵ

=

[
eti 0

]
Ãk−1Ã

0

eĵ

 (3.15)

=
∑

q∈{1,··· ,n}

[
eti 0

]
Ãk−1

eq

0

 etqA
−eĵ (3.16)

+
∑

p=q+n,q∈{1,··· ,n}

[
eti 0

]
Ãk−1

 0

ep

 etpA
+eĵ, (3.17)

(3.18)

with similar logic as above.
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A simple application of Theorem 2 on a real-world signed graph is a friend-enemy social

network. When k = 2, Theorem 2 simplifies to the classic phrase “a enemy of my enemy is

my friend.” For ranking applications, as in [10], for an unsigned graph, one ranking method

ranked a vertex j on how similar is to vertex i by etj(L
±)†ei. The same process could be

generalized for signed graph Laplacians. By Theorem 2,

[
etj 0

]
G†

ei

0

 is a ranking that

scores vertex j by how close it is to vertex i along walks that cross zero or any even number

of negative edges (a friendly ranking) and the

[
etj 0

]
G†

0

ei

 is a ranking that scores vertex

j by how close it is to vertex i along walks that cross an odd number of negative edges (an

unfriendly ranking). Then

eti(L
±)†ej =

[
ej 0

]
G†

ei

0

− [ej 0

]
G†

0

ei

 ,
is the difference of the friendly ranking and the unfriendly ranking. To generalize, Theorem 2

shows that the solution to Gw = z, where zt = [bt,−bt], is the difference of the solution with

respect to the two communities, V1 and V2. The community V1 can be seen as the “good”

community and V2 as the “bad” community, and the solution can be seen as a difference of

a “good” score and a “bad” score as seen by

w = G†

b

0

−G†
0

b

 =

 M −P

−P M


† b

0

−
 M −P

−P M


† 0

b

 .
Theorem 2 gives us insight on the interpretability of the solution to various applications

with respect to Gremban’s expansion matrix. For ranking algorithms, we can extend Katz

and personalized pagerank to signed graphs by involving slightly different graph-associated
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matrices, and one could easily derive versions of Gremban’s expansion for these related

calculations on signed graphs. In the next section we will investigate the numerical stability

of the expansion matrix G.

3.2.1 Numerically Stability of Gremban’s Expansion

The following demonstrates the relationships between the spectra of the expansion

matrix and the original matrix. It is also shown that the expansion is numerically stable,

meaning that a small residual for the expanded system implies a small residual for the

original system. Although not the primary focus of this thesis, the expansion and some of

the theory are relevant for the nonsymmetric matrices associated with SD graphs. Note that

we are not assuming S is a signed Laplacian.

Theorem 3. Let S be diagonally dominant with positive diagonal entries, and let G be a

Gremban expansion of S. Employ the decomposition, S = M + P , with M a diagonally

dominant Z-matrix, and P ≥ 0 with zero diagonal. Let σ and ψ denote the eigenvalues and

singular values respectively. Then, σ(G) = σ(S) ∪ σ(M−P ) and ψ(G) = ψ(S) ∪ ψ(M−P ).

Proof. Let (λ,p) be any eigenpair of S. Then, (λ, [pt,−pt]t) is an eigenpair for G as indicated

by,

G

 p

−p

 =

 M −P

−P M


 p

−p

 =

 (M + P )p

−(M + P )p

 = λ

 p

−p

 . (3.19)

Similarly, let (µ,u) be any eigenpair of (M −P ). Then, (µ, [ut,ut]t) is an eigenpair for G as

indicated by,

G

 u

u

 =

 M −P

−P M


 u

u

 =

 (M − P )u

(M − P )u

 = µ

 u

u

 . (3.20)

This shows that σ(G) ⊃ σ(S) ∪ σ(M − P ). To show, σ(G) ⊂ σ(S) ∪ σ(M − P ), let
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φ ∈ σ(G) with the corresponding eigenvector v = [vt1,v
t
2]
t. Then

G

 v1

v2

 =

 M −P

−P M


 v1

v2

 (3.21)

=

 Mv1 − Pv2

−Pv1 +Mv2

 = φ

 v1

v2

 =

 φv1

φv2

 . (3.22)

This implies, Mv1 − Pv2 = φv1 and −Pv1 + Mv2 = φv2. Adding these equations demon-

strates that (φ,v1 + v2) is an eigenpair of (M − P ). Subtracting the second equation

from the first demonstrates that (φ,v1 − v2) is an eigenpair of S = M + P . Therefore,

σ(G) ⊂ σ(S) ∪ σ(M − P ) and σ(G) = σ(S) ∪ σ(M − P ).

We will now show that the singular values are related. Let (γ, z,y) be any singular

value triplet of S such that, Sz = γy and ytS = γzt. Then, (γ, [zt,−zt]t, [yt,−yt]t) is a

singular value triplet of for G as indicated by,

G

 z

−z

 =

 M −P

−P M


 z

−z

 =

 (M + P )z

−(M + P )z

 = γ

 y

−y

 (3.23)

and

[
yt −yt

]
G =

[
yt −yt

] M −P

−P M

 (3.24)

=

[
yt(M + P ) −yt(M + P )

]
= γ

[
zt −zt

]
. (3.25)

Similarly, let (β,w,q) be any singular value triplet of (M −P ). Thus, (β, [wt,wt]t, [qt,qt]t)
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is a singular value triplet for G as indicated by,

G

 w

w

 =

 M −P

−P M


 w

w

 =

 (M − P )w

(M − P )w

 = β

 q

q

 (3.26)

and

[
qt qt

]
G =

[
qt qt

] M −P

−P M

 =

[
qt(M + P ) qt(M + P )

]
= β

[
wt wt

]
.

To show, σ(G) ⊂ σ(S) ∪ σ(M − P ), let π ∈ σ(G) with the corresponding right and

left singular vectors k = [kt1,k
t
2]
t and h = [ht1,h

t
2]
t. Then

G

 k1

k2

 =

 M −P

−P M


 k1

k2

 =

 Mk1 − Pk2

−Pk1 +Mk2

 = π

 h1

h2

 =

 πh1

πh2


and

[
ht1 ht2

]
G =

[
ht1 ht2

] M −P

−P M


=

[
ht1M − ht2P −ht1P + ht2M

]
= π

[
kt1 kt2

]
=

[
πkt1 πkt2

]
.

This implies, (π,k1 + k2,h1 + h2) is a singular triplet of (M − P ) as shown by,

(M − P )(k1 + k2) = (Mk1 − Pk2) + (Mk2 − Pk1) = λ(h1 + h2)

and

(h1 + h2)
t(M − P ) = (ht1M − h2) + (ht2M − ht1P

t) = λ(v1 + v2)
t,



35

and similarly (λ,k1 − k2,h1 − h2) is also as a singular triplet S as shown by,

S(k1 − k2) = (M + P )(k1 − k2) = (Mk1 − Pk2) + (−Mk2 + Pk1) = λ(h1 − h2)

and

(h1 − h2)
tS = (h1 − h2)

t(M + P ) = (ht1M + ht2P ) + (−ht2M + ht1P ) = λ(k1 − k2)
t.

Therefore, ψ(G) ⊂ ψ(S) ∪ ψ(M − P ) and thus, ψ(G) = ψ(S) ∪ ψ(M − P ).

For any S, let S = ZΓY t and (M −P ) = W∆Qt be the singular value decompositions

of the smaller matrices, then the singular value decomposition of G is

G =
1√
2

 Z W

−Z W


 Γ

∆


 1√

2

 −Y Q

Y Q



t

.

For S symmetric, let S = Y ΓY t and (M−P ) = Q∆Qt, then the singular value decomposition

of G can be simplified

G =
1√
2

 Y Q

−Y Q


 Γ

∆


 1√

2

 Y Q

−Y Q



t

.

It is often the case that G is singular even though S is nonsingular. If S is a signed

graph Laplacian associated with an unbalanced G±, then it is nonsingular, as shown in the

previous section. However, M − P is singular, and thus G is singular with constant kernel.

Note that nonsingular S does not imply an unbalanced sign structure of the off-diagonal

elements. For example, consider a signed Laplacian of a balanced G± shifted by a non-

negative diagonal matrix. In such cases, the graph of G is not connected, but each of the
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two components are strictly diagonally dominant and G is nonsingular.

Lemma 3.2.1. Assume S is nonsingular, strongly connected, and diagonally dominant. Let

G be the Gremban expansion of S. Consider the systems Sx = b and Gw = z where

z = [bt,−bt]t. If G is nonsingular then w = [xt,−xt]t. If G is singular then the null-space

of G is dimension one and the solution is found via w = [xt,−xt]t + α[1t,−1t]t for some

α > 0.

Proof. If S is nonsingular and strongly connected, then by Theorem 3, G is only singular

if (M − P ) is singular. By the Perron-Frobenius theorem, for (M − P ) to be singular, S

needs to be only weakly diagonally dominant, and there exists unique right and left kernel

components, (M − P )v = 0 and ut(M − P ) = 0t. In this case, [vt,vt]t and [ut,ut]t is the

unique right and left kernel components of G. If S is symmetric u = v = 1 and the solution

is computed by the process described in (2.4) applied to Gw = z where z = [bt,−bt]t is

orthogonal to the kernel. For nonsymmetric S, the solution is found in a similar way and is

left as an exercise for the reader. We see that

Gw =

 M −P

−P M


 x

−x

 =

 (M + P )x

−(M + P )x

 =

 Sx

−Sx

 =

 b

−b

 = z. (3.27)

In the case of nonsingular G, w = [xt,−xt]t is the unique solution.

The results of Theorem 3 and Lemma 3.2.1 are extremely powerful. Given a robust

linear solver for unsigned Laplacians, we can solve any diagonally dominant system, Sx = b,

by transforming it into the associated diagonally dominant Z-matrix system, Gw = z =

[bt,−bt]t. Then x is easily found by solving for w and extracting x. Note that the solvers

use the expanded matrix G, however, the actual interest is for the solution to the smaller

system involving S. The following theorem shows that if given an approximate solution to

the Gremban expansion system, we can tightly bound the norm of the residual of the original

system by the norm of the residual of the expansion.
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Theorem 4. Let S be any diagonally dominant matrix and G be the Gremban expansion

of S. Let y be an approximate solution to Gw = z = [bt,−bt]t. Define P1 = [I O] and

P2 = [O I] . Let v = αP1y + βP2y, where α, β are chosen so that ‖Sv − b‖ is minimized,

be the approximate solution to Sx = b. Then,

‖Sv − b‖ ≤ Cs ‖Gy − z‖

where Cs = 1/
√

2. This bound is tight.

Proof. Let R = 1
2
[I,−I] be a restriction operator, then Rz = b and Rw = x. We also have

Ry = 1
2
P1y − 1

2
P2y. It follows that then

‖Sv − b‖ ≤ ‖SRy − b‖

=
‖SR(y −w)‖
‖G(y −w)‖

‖Gy − z‖

=
‖SRe‖
‖Ge‖

‖Gy − z‖

= Cs‖Gy − z‖,

where

Cs = max
e6=0,

e⊥N (G)

√
〈RtStSRe, e〉
〈GtGe, e〉

,

which is equivalent to the maximum eigenvalue of the generalized eigenvalue problemRtStSRq =

λGtGq. Let S = ZΓY t and (M − P ) = W∆Qt be the singular value decompositions of the



38

smaller matrices. From Theorem 3 we have,

RtStSRq = λGtGq

1

2

 I

−I

Y Γ2Y t1

2

[
I −I

]
q = λ

1√
2

 −Y Q

Y Q


 Γ2

∆2


 1√

2

 −Y Q

Y Q



t

q.

Let p =

 1√
2

 −Y Q

Y Q



t

q. Then,

1

4

 Y

−Y

Γ2

[
Y t −Y t

]
1√
2

 −Y Q

Y Q


 1√

2

 −Y Q

Y Q



t

q = λ
1√
2

 −Y Q

Y Q


 Γ2

∆2

p,

 1√
2

 −Y Q

Y Q



t

1

4
√

2

 Y

−Y

Γ2

[
Y t −Y t

] −Y Q

Y Q

p = λ

 Γ2

∆2

p,

1

8

−2I

0

Γ2

[
−2I 0

]
p = λ

 Γ2

∆2

p,

1

2

Γ2 0

0 0

p = λ

 Γ2

∆2

p,

1

2

I 0

0 0

p = λ

 I

I

p.

Thus, the eigenvalues of the generalized eigenvalue problem, RtStSRq = λGtGq, are 1/2

and 0, and Cs = 1√
2
.

In Section 3.3 we validate this result by empirically demonstrating numerical stabil-

ity of Gremban’s expansion with LAMG, a known robust multilevel solver for symmetric,
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diagonally dominant Z-matrix systems.

3.3 Numerical Results

A Julia implementation of the LAMG algorithm was developed to serve as a platform

for the investigations described in this section. There are several measurements that are used

to assess the efficiency of a multigrid scheme: convergence factor, cycle complexity, effective

convergence factor and total work. The convergence factor, ρ, measures the asymptotic

reduction in the 2-norm of the residual for a single V-cycle. To estimate ρ, we calculate the

convergence factor after the k-th cycle, ρk, and then report the geometric mean for a solve

containing K multigrid cycles,

ρk =
‖Gyk+1 − z‖2
‖Gyk − z‖2

and ρ ≈

(
K∏
k=1

ρi

)1/K

.

Define one work unit to be the cost of one fine grid matrix-vector multiplication, in other

words one work unit is the number of nonzeros of the fine grid matrix. The cycle com-

plexity, γ, is the number of work units required for a single multigrid cycle. The effec-

tive convergence factor, (ECF), is the average reduction in residual per work unit cost,

ECF = ρ1/γ. The total work, work = γ ∗ ν, where ν is the number of V-cycles, is the

amount of total work units required to solve the linear system to a numerical tolerance using

multigrid cycles.

3.3.1 Comparison of Preconditioners on Generated Signed Graphs

In this section, we compare a variety of preconditioners with Preconditioned Conjugate

Gradient (PCG), mainly weighted Jacobi, Incomplete LU (ILU(0)) and Symmetric Gauss-

Seidel to LAMG on the larger Gremban’s expansion system. Note that PCG is not used in

conjunction with LAMG. LAMG is a non-stationary algorithm due to its use of a iterative

recombination phase at every aggregation level [23]. For the graph as-cadia with n = 26, 475
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and m = 53, 381, a percentage, p ∈ [.001, .9], of the graphs edges were randomly chosen to

be negative. For a random vector b the goal is to solve L±x = b. The Gremban expansion,

G, of L± was formed and we set z = [bt,−bt]t. LAMG then solved the system Gw = z with

V-cycles with (1, 2) pre- and post- Gauss-Seidel smoothing iterations, with a cut off of 100

nodes for the coarsest graph and a residual tolerance of 10−7. Figure 3.2a and 3.2b depicts

the of work (log-scale) and effective convergence factor required to solve the linear system

L±x = b to a tolerance of 10−7 with same initial guess and right-hand side with the a small

percentage, p ∈ [.001, .1]. In Figure 3.2a, it is clear that the work required for LAMG with

the expansion is significantly smaller than any of the three preconditioner’s even though

the system has twice the number of degrees of freedom. As the number of negative edges

increases we see that each method begins to level out to be a constant amount of work units

despite the number of negative edges. We see a similar trend in Figure 3.2b for the effective

convergence factor. When the percentage of negative edges increases to p ∈ [.1, .9], as shown

in Figure 3.2c and 3.2d, a similar trend continues. LAMG with Gremban’s expansion results

in less work and lower effective convergence factors. In both cases, LAMG with Gremban’s

expansion is robust as it is unaffected by the number of negatively signed edges. This is

beneficial to the user since no analysis of the SU graph is needed. However, depending

on the sign structure, PCG may have difficulties. The user needs to carefully select the

preconditioner when using PCG. In the next section we analyze LAMG with Gremban’s

expansion and compare it to PCG with Gauss-Seidel preconditioning for a large suite of

generated signed graphs.

3.3.2 Feasibility Testing on Generated Signed Graphs

For feasibility testing, we tested on a large set of graph topologies with random sign

structure. A set of UU graphs were obtained from the SNAP graph database [20] and for

each graph, a randomly chosen percentage, p ∈ [0.1, 0.8], of the edges were turned into

negatively signed edges. For a random vector b the goal is to solve L±x = b. The Gremban
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Figure 3.2: Percentage of Randomly Signed Edges
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expansion, G, of L± was formed and we set z = [bt,−bt]t. LAMG then solved the system

Gw = z with V-cycles with (1, 2) pre- and post- Gauss-Seidel smoothing iterations, with a

cut off of 100 nodes for the coarsest graph and a residual tolerance of 10−7. Figures 3.3a,

3.3b, and 3.3c show the convergence factor, cycle complexity and effective convergence factor

respectively. Note that, due to the Gremban expansion, the size of the problem is twice the

size of the original problem. Table 3.1 displays the graphs that had an effective convergence

factor greater than 0.85.

Graph 2n 2m nlevel Solve Time(s) Setup Time(s) ρ γ ECF

eu-2005(p = .20) 862664 16138468 6 348.1473 177.4885 0.5515 10.4608 0.9447
in-2004(p = .20) 1353703 13126172 29 416.9488 58.4933 0.1519 13.2174 0.8671
amazon-2008(p = .30) 735323 3523472 16 169.6135 29.0520 0.1189 14.8830 0.8667
web-NotreDame(p = .60) 325729 1090108 21 44.0882 8.0447 0.2538 9.5660 0.8664
wb-edu(p = .80) 8863287 44185251 33 1835.4726 214.4549 0.2528 9.3903 0.8637
web-Stanford(p = .60) 255265 1941926 23 66.3343 12.7228 0.1868 10.3757 0.8507

Table 3.1: Constructed Signed Graphs with ECF > 0.85

From Figure 3.3a, one graph has a particularly high convergence factor compared to

the rest of the test set, eu-2005, with 20% of the edges turned to negatively signed edges.

The graph is a small subset of a large web graph. A negative edge in this context is not

natural and this may be the cause of the high convergence factor compared to the other

graphs tested. A convergence factor of ≈ 0.55 is not high for LAMG involving real-world

graph structures.

After the system Gw = z was solved, an approximation to x was found as a weighted

average, x = αP1w + βP2w, as determined by Theorem 4. The solution was found in two

different ways: the true minimum of the residual, x = minα,β ||L±x − b||2, and a simple

averaging, x = 1
2
P1w + 1

2
P2w. Define the ratio of relative residuals, τ , as τ = ||L±x −

b||2 / ||Gw − z||2. Figure 3.3d shows the ratio of relative residuals for both the minimum

constant using the optimal α and β for x and the averaging constant. The average solution

still produce ratios of relative residuals that are less than Cs = 1√
2
. From a data-science

perspective, the average solution will give a good approximation without the extra cost of
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finding the minimum.

We compare LAMG with Gauss-Seidel smoothing on the Gremban’s expansion matrix

with Symmetric Gauss-Seidel preconditioned CG (PCG-SGS). We ran each test to a tolerance

of 10−7 and a maximum number of iterations of 1, 000. Figures 3.4a, 3.4b, 3.4c, 3.4d, 3.4e,

and 3.4f compares the convergence factor, number of V-cycles verses number of iterations

(log-scale), the ratio of total time to setup and solve (log-scale), ratio of only solve time (log-

scale), ratio of total work (log-scale), and ratio of effective convergence factor (log-scale), for

PCG with Symmetric Gauss-Seidel with respect to LAMG.

LAMG clearly provides better convergence factors and fewer iterations for most graphs.

This finding is not surprising. Multigrid algorithms were created to improve the convergence

of the basic iterative methods by incorporating coarse-grid correction. The amount of work

and the effective convergence factor are better measures for comparing the two algorithms.

Figures 3.4e and 3.4f depict the ratio of work (log-scale) and the ratio of effective convergence

factor of PCG with respect to LAMG. LAMG with Gremban’s expansion required less work

for 63.2% of the graphs tested and lower effective convergence factors for 61.7% of the graphs

tested. LAMG has both setup and solve phase. The solve phase clearly out performs PCG-

SGS but the time and work taken to create the solver must be considered. LAMG resulted

in faster total times than PCG for 7.4% of the graphs tested. For only solve time, LAMG

was faster than PCG for 94.1% of graphs. Thus, if solving systems involving the same matrix

with various right-hand sides, LAMG would be the better choice since the coarse-grids at

each level could be saved. If only one right-hand side is needed for the application either

solver would suffice

The above testing has shown that by using Gremban’s expansion we are able to extend

current UU graph Laplacian solvers to SU graph Laplacian systems without modifying the

solvers. In some cases, depending on the sign structure, degree-distribution, size of a given SU

graph, and the application, PCG in conjunction with a more advanced preconditioner may

be an optimal solver. However, without the proper analysis of the graph and understanding
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the requirements of the application, PCG may struggle and be unacceptably slow. The

above tests were performed on manufactured signed graphs. The random switching of the

edges may have led to a harder topology than real-world signed graphs.

3.3.3 Scalability Testing on Real-World Signed Graph

For further analysis on how the expansion works for real-world graphs, testing was

performed on bipartite user-movie rating matrices, R, from the Grouplens research1 group.

The adjacency matrix of the data can be described as,

A =

 0 R

Rt 0

 . (3.28)

Grouplens provides four different size data sets, 100k, 1M, 10M and 20M. For each

movie the user rated the movie from 1 to 5 with 5 being a high score. To transform the data

to an SU graph we looked at four different scalings:

• User Average: If a user rates every movie high, then ratings are not proportional.

The users average rating, µi, is subtracted from every movie that they have rated.

The adjacency matrix is then:

A
(user)
ij = A

(user)
ji = Rij − µi. (3.29)

• Movie Average: If a movie is rated highly by all users, then the rating is not

proportional. The the movie average rating, µj, is subtracted from all users who

have rated that movie. The adjacency matrix is given by:

A
(movie)
ij = A

(movie)
ji = Rij − µj. (3.30)

1 http://grouplens.org/datasets/movielens/
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• Full Average: If a movie and/or user rating is high, again the rating is not pro-

portional. The entries are scaled by both the user and movie average rating. The

adjacency matrix is defined as:

A
(full)
ij = A

(full)
ji = Rij −

µj + µi
2

. (3.31)

• Zero-Centered Shift: The entries are shifted so that negative entries represent

a low rating while a positive entry is a high rating. The entries of the adjacency

matrix are mapped as follows:

[1, 2, 3, 4, 5]→ [−2,−1, 1, 2, 3]. (3.32)

For the following numerical tests LAMG was performed with V-cycles with (1, 2) pre-

and post- weighted Jacobi smoothing iterations with weight 2/3, with a cut off of 100 nodes

for the coarsest graph and a residual tolerance of 10−7. Table 3.2 presents the convergence

factor, cycle complexity, and effective convergence factor for all four shifts. In the last two

columns, the ratio of relative residuals for the solution using the minimum α and β, and the

average are presented.

LAMG performed well on all the graphs, with effective convergence factors less than

0.80. This indicates that the expansion, though it doubles the size of the problem, resulted

in systems that were solvable. The shifted scaling produced the worse performance for

LAMG. Table 3.3 compares the convergence factor as well as the solve time for LAMG with

Gremban’s expansion and PCG with Jacobi without Gremban’s expansion. PCG without

the expansion resulted in convergence factors that are much higher than LAMG with the

expansion as expected. When solve time is considered, LAMG with the expansion out-

performed PCG for all scalings. While different weighting schemes affect the preconditioners

differently, LAMG’s performance is less-correlated with the condition number than PCG.
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Graph m Setup Time(s) Solve Time(s) ρ γ ECF τmin τaverage

ml-100k average.txt 100000 1.5682 0.3986 0.0362 13.2118 0.7779 0.5479 0.5504
ml-100k moive.txt 100000 1.3171 0.2949 0.0409 12.8255 0.7794 0.5528 0.5627
ml-100k shift.txt 100000 1.5804 0.4097 0.0484 13.5393 0.7995 0.3890 0.4351
ml-100k user.txt 100000 1.3673 0.3466 0.0376 13.0424 0.7777 0.4115 0.4162

ml-1m average.txt 1000209 13.2945 2.2286 0.0253 13.7554 0.7653 0.5426 0.5426
ml-1m moive.txt 1000209 12.4908 2.1539 0.0287 13.3893 0.7671 0.4868 0.4873
ml-1m shift.txt 1000209 14.4251 3.1774 0.0429 13.5637 0.7928 0.4681 0.4681
ml-1m user.txt 1000209 12.5042 2.2269 0.0311 13.5223 0.7736 0.4900 0.4902

ml-10m average.txt 10000054 111.2039 21.6781 0.0279 13.2540 0.7634 0.4951 0.5040
ml-10m moive.txt 10000054 110.1602 21.9756 0.0249 13.0803 0.7541 0.5073 0.5439
ml-10m shift.txt 10000054 118.0933 31.1836 0.0510 12.9736 0.7950 0.3620 0.3629
ml-10m user.txt 10000054 268.3608 63.9702 0.0273 13.0465 0.7588 0.5369 0.5528

ml-20m average.txt 20000230 234.3954 46.8042 0.0244 13.3901 0.7578 0.4478 0.4491
ml-20m moive.txt 20000230 238.6919 46.7372 0.0256 13.3183 0.7594 0.5161 0.5341
ml-20m shift.txt 20000263 252.7742 70.7810 0.0434 12.7273 0.7815 0.4815 0.4842
ml-20m user.txt 20000230 230.9860 47.2896 0.0287 12.9946 0.7609 0.5644 0.5645

Table 3.2: LAMG with w-Jacobi smoothing performance on Movielens Graphs

PCG w/o LAMG PCG w/o Expansion
Graph LAMG(ρ) Expansion(ρ) (SolveTime) (SolveTime)

ml-100k full 0.0362 0.8844 0.3986 0.8548
ml-100k movie 0.0409 0.9087 0.3986 1.0951
ml-100k shift 0.0484 0.7740 0.4097 0.3889
ml-100k user 0.0376 0.8971 0.3466 0.8812

ml-1m full 0.0253 0.8941 2.2286 9.2640
ml-1m movie 0.0287 0.9005 2.1539 12.4039
ml-1m shift 0.0429 0.7880 3.1774 4.9282
ml-1m user 0.0311 0.9123 2.2269 11.3779

ml-10m full 0.0279 0.9021 21.6781 301.9563
ml-10m movie 0.0249 0.8973 21.9756 479.5299
ml-10m shift 0.0510 0.7858 31.1836 213.9651
ml-10m user 0.0273 0.8951 63.9702 357.2703

ml-20m full 0.0244 0.8950 46.8042 370.1953
ml-20m movie 0.0256 0.8963 46.7372 186.1037
ml-20m shift 0.0434 0.7905 70.7810 109.1963
ml-20m user 0.0287 0.9120 47.2896 175.2370

Table 3.3: LAMG with w-Jacobi smoothing and PCG-Jacobi performance on Movielens
Graphs

For PCG, the zero-centered shift gave the best solve times while the same scaling was the

slowest for LAMG. For the largest graph (20M) with the full average scaling, LAMG was
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eight times faster than PCG. For the shifted scaling, LAMG was only 1.5 times faster. For

the problems tested, it can be concluded that Gremban’s expansion is numerically stable

when the right-hand side is restricted to z = [bt,−bt]t. It must be noted that the condition

number of the expansion cannot be bounded by the condition number for the original graph

Laplacian. Thus, when using the expansion, a robust UU solver is required to be confident

about efficiency across a diverse set of graphs.
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3.3.4 Real-world Motivation of Theorem 2

For the user-movie rating graphs, Theorem 2 can give us an interpretation of rankings

involving signed graphs. Using the 100k user-movie rating matrix described above, we first

discuss the changes in a personalized ranking [10] when the unsigned graph and the signed

graph Laplacian are used. We will then discuss the impact of Theorem 2 on determining the

ranking with respect to the signed graph Laplacian. Let A be the original, unsigned graph

adjacency matrix of the 100k user-movie rating matrix, described in equation (3.28). We

will compute the ranking, r, for user i, by solving the system

L±r = ei,

where L± is a (unsigned or signed) graph Laplacian. The top ten ranked movies, for

user i = 1, using the unsigned graph Laplacian are depicted in Table 3.4. All movies are

either documentary, drama, or comedy. If instead the signed graph Laplacian is used (full-

average shift represent by equation (3.31)) the ranking changes considerably. Table 3.5 list

the top ten ranked movies using the signed Laplacian. One difference between the ranking

are the genres that appear in the top ten. When the signed graph is used, the movies

Faster Pussycat! Kill! Kill!, Turbo: A Power Rangers Movie, Free Willy 2: The Adventure

Home, and All Dogs Go to Heaven 2 appear in the top ten which are all either action,

adventure, animation, or children’s movie. These genres were not present in the unsigned

graph Laplacians rankings. Another aspect to consider is that the signed graph rankings

overlap with the unsigned ranking. The movies Maya Lin: A Strong Clear Vision, Brother

Minister: The Assassination of Malcolm X , The Horseman on the Roof, Nadja, Theodore

Rex, and The Doom Generation appear in both rankings but are ranked in a different order.

The ranking involving the signed graph Laplacian have more variability and could enhance

movie recommendation systems.

When the signed graph Laplacian ranking is found, we are inherently also solving the
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Ranking Movie Genras
1 Maya Lin: A Strong Clear Vision (1994) Documentary
2 Brother Minister: The Assassination of Malcolm X (1994) Documentary
3 Unhook the Stars (1996) Drama
4 White Balloon, The (1995) Drama
5 Horseman on the Roof, The (Hussard sur le toit, Le) (1995) Drama
6 unknown unknown
7 Nadja (1994) Drama
8 Theodore Rex (1995) Comedy
9 Doom Generation, The (1995) Comedy, Drama
10 Haunted World of Edward D. Wood Jr., The (1995) Documentary

Table 3.4: Ranking with Unsigned Graph Laplacian

system with respect to the Gremban expansion system, i.e.

(L±)†ei = G†

ei

0

−G†
0

ei

 .
The solution to the signed graph Laplacian system is the same as scoring vertices based on

the difference of two random-walk based rankings. One random-walk involving paths with

an odd number of negative edges and one walk with an even number of negative edges. By

Theorem 2, the ranking of vertex j with respect to vertex i is a sum of a friendly score and

an unfriendly score, since the value

[
ej 0

]
G†

ei

0

 scores vertex j by how close it is to

vertex i along walks that cross zero or an even number of negative edges (a friendly ranking)

and the value

[
ej 0

]
G†

0

ei

 scores vertex j by how close it is to vertex i along walks that

cross an odd number of negative edges (a unfriendly ranking). Ranking is one application

where Theorem 2 provides a logical interpretation of the ranking of a signed graph using a

classical interpretation of the ranking of unsigned graphs. We hope to motivate data analysts

to consider using a signed graph representation by providing a robust solver and presenting

various relationships between the signed and unsigned variants.

Gremban’s expansion matrix shows promise to be able to show information about the
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Ranking Movie Genras
1 Faster Pussycat! Kill! Kill! (1965) Action, Comedy, Drama
2 Theodore Rex (1995) Comedy
3 Maya Lin: A Strong Clear Vision (1994) Documentary
4 Turbo: A Power Rangers Movie (1997) Action, Adventure, Children’s
5 Horseman on the Roof, The (Hussard sur le toit, Le) (1995) Drama
6 Free Willy 2: The Adventure Home (1995) Adventure, Children’s
7 Doom Generation, The (1995) Comedy, Drama
8 All Dogs Go to Heaven 2 (1996) Animation, Children’s, Musical
9 Brother Minister: The Assassination of Malcolm X (1994) Documentary
10 Nadja (1994) Drama

Table 3.5: Ranking with Signed Graph Laplacian

signed graph from both the signed and signless perspective. Gremban’s expansion matrix

gives us a way to interpret a SU graph in terms of an UU and many applications could be

applied to Gremban’s expansion matrix that are similar to the UU graph applications, such

as graph ranking and spectral clustering.

3.4 Conclusions

This chapter outlines an algorithm that relates signed graphs to unsigned graphs, which

implicitly extends the solution space of current UU graphs Laplacian linear solvers to include

SU graphs. We generalized Gremban’s expansion to include any diagonally dominant matrix,

thus Gremban’s expansion can also be used to extend the UD graph Laplacian solver NS-

LAMG, described in Chapter 4, to SD graph Laplacian systems. The Gremban expansion

matrix, G, relates the signed graph to the respective unsigned graph in a meaningful way.

Theorem 2 and 3 show that the Gremban’s expansion matrix could be useful in understanding

the underlaying graph as Theorem 2 generalizes a well known UU graph theorem to SU

graphs and Theorem 3 relates spectrum and singular values of the expansion matrix to the

spectrum and singular values of the signed and signless Laplacian. The Gremban’s expansion

matrix could be applied to a variety of applications, e.g. community detection with spectral

clustering, an another analysis tool for understand signed graphs. In Theorem 4, we showed

that we can tightly bound the norm of the residual of the original system by the norm of
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the residual of the expansion given z = [bt,−bt]t. Numerical tests indicated that Gremban’s

expansion with an adequate solver is numerically stable without prior knowledge of the sign

structure. Though PCG with an adequate preconditioner may be faster for a single right-

hand side, as LAMG has a setup phase, applications that require multiple right-hand sides

would benefit from multigrid algorithms as the setup cost is amortized. Applications for

graphs that require multiple right-hand sides include the centerpiece subgraph problem [45]

and community detection with spectral clustering [48]. Thus, depending on the application

the user must select an appropriate solver.



Chapter 4

Nonsymmetric Lean Algebraic Multigrid (NS-LAMG): An AMG Method for

Directed Graph Laplacian Linear Systems

4.1 The Graph Laplacian for Unsigned, Directed Graphs

As mentioned in Chapter 1, the current methods used to solve linear systems for UD

graphs are direct solvers such as SuperLU and QR Factorization, and iterative solvers such

as Generalized Minimal Residual Method with Restart (GMRES(k)) and Generalized Least

Squares QR Method (LSQR). Provided in this chapter are the details of NS-LAMG, an

algebraic multigrid solver for UD graph Laplacian linear systems that was developed for UD

graphs, including scale-free and mesh-like graphs. NS-LAMG is the only known multilevel

iterative solver that has been adapted specifically for real-world UD graph Laplacians linear

systems. For UD graphs, G(V , E , w), an edge (i, j) ∈ E is given a direction where information

can flow from vertex i to vertex j, while the weight, wij > 0, defines the “importance” of

an edge. The adjacency matrix A of a UD graph is defined by the same formula as a UU

graph in (2.2). Since the edges are a not bi-directional, each vertex has an out-degree and an

in-degree. The out-degree, douti , of vertex i is the sum of the edge weights of edges directed

out of the vertex, the columns of A, while the in-degree, dini , is the sum of the edge weights

of edges directed into the vertex, the rows of A. The diagonal degree matrix, D, associated

with graph G has the out-degree, douti , of each vertex along the diagonal. Similarly to UU

graphs, a UD graph is scale-free if either the out-degree, in-degree, or total degree of the

graph follows a power-law distribution. The difference between the adjacency and diagonal
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degree matrix form the combinatorial Laplacian, as before in (2.1). The combinatorial graph

Laplacian of a UD graph is nonsymmetric with a column-sum of zero. It is not necessarily

true that it will have a row-sum of zero.

It is assumed that the graph is strongly connected. We define strongly connected more

concretely than in the pervious section. To define a strongly connected graph, we first must

define a directed path in a graph.

Definition 4.1.1. For vertices u and v in a UD graph, G(V , E , w), a directed walk in G is a

finite sequence of vertices {u = v0, v1, . . . , vk−1, vk = v} beginning at u and ending at v, such

that (vi−1, vi) ∈ E for i = 1, . . . , k. A directed path is a directed walk such that no vertex

is repeated [40].

Definition 4.1.2. A UD graph, G(V , E , w), is strongly connected ⇔ ∃ a directed path

from vi to vj for any two distinct vertices vi, vj ∈ V.

The graph Laplacian of a strongly connected UD graph is inherently an irreducible

matrix. We now define singular M-matrices and show that if a directed graph, G, is strongly

connected then the associated normalized Laplacian,

L = I − AD−1, (4.1)

is an irreducible, singular M-matrix. For the remainder of this thesis, for UD graphs, the

normalized Laplacian will be used.

Definition 4.1.3. H ∈ Rn×n is a singular M-matrix if and only if there exists B ∈ Rn×n,

with bij ≥ 0 for all i, j, such that H = ρ(B)I −B, where ρ(B) is the spectral radius of B.

The matrix decomposition shows thatAD−1 is a column stochastic matrix with ρ(AD−1) =

1 by the Gershgorin theorem applied to (AD−1)t. With the definition of a singular M-

matrix defined above, it is easy to see that L is an irreducible, singular M-matrix. The

Perron-Frobenius theorem provides the following properties of singular M-matrices:
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Theorem 5. (Properties of singular M-matrices)[40]

(1) Irreducible, singular M-matrices yield a unique solution to Ax = 0, up to a scaling,

which can be chosen such that all components of x are strictly positive.

(2) Irreducible, singular M-matrices have nonpositive off-diagonal elements and strictly

positive diagonal elements.

(3) If A has a strictly positive vector in its left or right null-space and its off-diagonal

elements are nonpositive, then A is a singular M-matrix.

The constant vector 1 is a left null-space vector of L. Since L is nonsymmetric, there

exists a right null-space vector v such that Lv = 0. From Theorem 5, the right null-space

vector v is strictly positive and unique up to a scaling. The right null space vector can be

found using linear solvers for Markov chain stationary probability systems since Lv = 0 can

be reformulated as

Lv = 0, (4.2)

(I − AD−1)v = 0, (4.3)

v = AD−1v. (4.4)

The matrix AD−1 for a normalized UD graph Laplacian can be seen as a Markov chain

transition matrix and the eigenvector associated with an eigenvalue of one is referred to as

the stationary probability vector. Many solvers exist for solving the above eigensystem (e.g.

[41], [16], [44], [42]). The right null-space vector will be a key component in our NS-LAMG

algorithm. Again, our goal is to find a robust solver for linear system

Lx = b. (4.5)

For a solution to exist for the linear system, Lx = b, it must be the case that b is in the
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range of L and 1tb = 0. If b is not in the range of L, one can project out the null-space of

L∗ from b by removing the constant vector.

4.2 NS-LAMG

In this section, we describe the building blocks of NS-LAMG, an algebraic multigrid

algorithm for UD graph Laplacian linear systems, Lx = b. Like in LAMG, NS-LAMG

uses low-degree elimination to reduce the problem size before forming the AMG coarse

grid aggregation, which is especially useful for scale-free graphs. We now describe the AMG

components of NS-LAMG. Let L be the normalized graph Laplacian of a strongly connected,

UD graph, G. Since L is nonsymmetric, the restriction and prolongation operators need not

to be equal, i.e. P 6= R. First, the nf fine level degrees of freedom of L are aggregated into

nc groups. This generates the aggregation matrix, T ∈ Rnf×nc , where tij = 1 if the fine level

vertex i is a member of the coarse aggregate j, and tij = 0, otherwise. It is assumed that

there is no overlap between the aggregates; thus, each row of the aggregation matrix, T , will

contain only one nonzero term, i.e.

T =



1

1

1

1

1

. . .


. (4.6)

In [37], P and R are scaled by the near null-space singular vectors. For a strongly connected,

UD graph, the Laplacian is singular, and the kernel is of dimension one. We adapt the

restriction and prolongation operators from [37] by defining the operators by the associated

null-space vectors. Let v and u be the associated right and left null-space vector of L. From
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Section 2, the scaled adjacency matrix, AD−1, of a UD graph is a column stochastic matrix,

such that

1tAD−1 = 1t. (4.7)

The left null-space vector of L is then

1tL = 1t(I − AD−1) = 0t. (4.8)

From Theorem 5, the right null-space vector, v, is unique up to a scaling with strictly positive

components. Define the interpolation operator as

P := diag(v)T, (4.9)

and the restriction operator as

R := diag(u)T, (4.10)

where diag(v) and diag(u) are diagonal matrices with the elements of the right and left

null-space vectors along the diagonal. The restriction operator can be simplified to R = T

since u = 1. An approximation to the right null-space vector, v, is used to form P . The

right null-space vector will be found using a semi-adaptive Markov chain AMG solver that

will be discussed in Section 4.2.3. Assuming v is the exact right null-space vector, the coarse

graph Laplacian is Lc = RtLP, and the coarse graph correction is then given by

x← x + P (RtLP )†Rtr, (4.11)
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where r = b − Lx and (RtLP )† is the Moore-Penrose pseudoinverse of the coarse graph

Laplacian. The error propagation of this iteration is

e← (I − P (RtLP )†RtL)e. (4.12)

Traditional smooth aggregation multigrid algorithms smooth the columns of R and P to

enhance convergence. However, as in LAMG, R and P are kept unsmoothed since smoothing

may create additional edges in the coarse graph representation. If the right null-space vector,

v, used to create P , is not scaled correctly, then this results in the coarse graph Laplacian to

be scaled improperly as well. The decomposition of the coarse graph Laplacian can no longer

be described as I −AD−1, where AD−1 is a Markov chain transition matrix. To ensure that

the coarse graph Laplacian remains a normalized graph Laplacian, the prolongation operator

is redefined as

P := diag(v)Tdiag(T tv)−1. (4.13)

This ensures that over each aggregate the columns of P sum to one. The coarse graph

correction remains unchanged since the scaling is undone when the coarse graph correction

is interpolated to the fine level, i.e. the current iterate is updated such that

x← x + Pdiag(Rtv)−1ec. (4.14)

Notice, by definition, that RtP = I, which implies that PRt is a projection, i.e.

(PRt)2 = PRt, (4.15)
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and PRtv = v, where v is the right null-space vector of L. It is easy to show that the right

and left null-space vectors of Lc = RtLP are 1c and Rtv, respectively,

1tcLc = 1tcR
tLP = 1tfLP = 0tf , (4.16)

and

LcRtv = RtLPRtv = RtLv = 0f . (4.17)

Thus, Lc is a directed, normalized graph Laplacian because it can be decomposed as the

identity and a column stochastic matrix:

Lc = RtLP, (4.18)

= T t(I − AD−1)diag(v)Tdiag(T tv)−1, (4.19)

= Ic − T tAD−1diag(v)Tdiag(T tv)−1. (4.20)

NS-LAMG can be called recursively to form the multigrid hierarchy. As in LAMG, low-

degree elimination is used to enhance the AMG algorithm by reducing the system before

every aggregation level. The solution to the problem coarsened by low-degree elimination

can be projected up to the finest level with zero error. The details of low-degree elimination

will be discussed in the following section.

In NS-LAMG, it is assumed that the right null-space vector, v, is given. However,

it is unlikely that v is known. A good approximation of the right null-space vector is

needed to build the coarse graph Laplacians in the NS-LAMG algorithm. To find the right

null-space vector of L, we need to solve the normalized Laplacian system, Lv = 0, which

can be rewritten as AD−1v = v. This system can be treated as a Markov chain stationary

distribution system. Thus, in order to solve Lx = b, we must first solve Lv = 0. There exists
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a number of AMG algorithms for Markov chain stationary distribution systems (e.g. [4], [40],

[41], [46], [47], [43]). However, the algorithms referenced are fully adaptive algorithms that

update the multigrid hierarchy for every V-cycle, and thus are not easily parallelizable. We

propose a semi-adaptive AMG solver that utilizes low-degree elimination. In order to use

low-degree elimination effectively, the hierarchy must remain stationary.

Section 4.2.1 will discuss the details of low-degree elimination for directed graphs.

Section 4.2.2 describes the coarse graph aggregation process. Section 4.2.3 describes solving

for the right null-space vector using low-degree elimination and coarse graph aggregation.

4.2.1 Low-Degree Elimination

Due to the scale-free nature of most real-world graphs, many graphs have a large

proportion of vertices that can be categorized as “low-degree”. In LAMG, low-degree elimi-

nation effectively removes the 1-D part of the graph and enhances the efficiency of the AMG

coarse grid aggregation level. Low-degree elimination is shown to significantly reduce the

problem size for real-world undirected graphs. A similar procedure can be done for directed

graph Laplacians. For UU graphs, the degree is the number of symmetric edges incident

to the vertex. For UD graphs, the degree is not as simple. Each vertex has edges directed

towards the vertex and/or away from the vertex and an in-degree, dini , and out-degree, douti ,

respectively.

Figure 4.1: In-Degree One

For a vertex i, denote the in-neighborhood as the set of vertices that has an edge going
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toward i, i.e. N in
i = {j ∈ V|(j, i) ∈ E}, and the out-neighborhood of vertex i as N out

i =

{j ∈ V|(i, j) ∈ E}. Define the unweighted in- and out-degree of a vertex as d̂ini = |N in
i |

and d̂outi = |N out
i |. If vertex i is removed from the linear system, then every vertex j ∈ N in

i

becomes attached to every vertex k ∈ N out
i . The goal is to eliminate vertices from the

linear system without drastically increasing the nonzeros of the reduced problem matrix.

The number of nonzeros added to the coarsened graph Laplacian, called τi, depends on the

number of bi-directional edges vertex i has, i.e. |N in
i ∩N out

i |.

Figure 4.2: In-Degree Two

The reduced graph from low-degree elimination can be seen in Figure 4.1 and 4.2. In

Figure 4.1, the left column depicts a vertex with one in-degree with the top having no bi-

directional edges and the bottom having one bi-directional edge. The right column shows

the coarsened graph when the center vertex is eliminated from the system. One can see

that if a vertex with one in-degree is removed, at most d̂outi edges are added to the coarse

graph representation that were not part of the original graph. If counting the nonzeros,

d̂outi + d̂ini edges were removed and at most d̂outi edges were added. Thus, the number of

nonzeros in coarse graph Laplacian representation either remains the same or is reduced.

The same occurs if the eliminated vertex has one out-degree. Figure 4.2 depicts the removal
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of a vertex with an in-degree of two. From the top, Figure 4.2 depicts the elimination with

zero, one, and two bi-directional edges respectively. As the in-degree increases, the potential

for additional nonzeros increases as well. Again, if the direction of the edges are reversed,

the elimination of the vertex results in a similar formation. The number of nonzeros added,

τi, can be classified as

τi ≤ (d̂ini − 1)d̂outi − (d̂ini + |N in
i ∩N out

i |) = (d̂outi − 1)d̂ini − (d̂outi + |N in
i ∩N out

i |). (4.21)

The number of nonzeros, τi, may be less, as the additional edges may already be present in

the matrix representation. The above relations are difficult to compute, as |N in
i ∩ N out

i | is

hard to calculate quickly for each vertex. By removing vertices with a “total-degree,” sum

of out-degree and in-degree (dtotali ), less than or equal to eight, we can guarantee τi to be

less than four, which is equivalent to the undirected case. Vertices with an out-degree or

in-degree of one will also be removed since the number of nonzeros of the problem matrix

will always be reduced.

Let Ve be the set of vertices in V that are “low-degree”, i.e. the vertices will be

eliminated from the linear system. Let Vn = V\Ve and let P be a permutation matrix such

that P tx lists all the Ve vertices values then all the Vn vertices values. Then the graph

Laplacian and the associated linear system can be rewritten as

L = P tLP =

Lee Len
Lne Lnn

 , b = P tb =

be

bn

 , and x = P tx =

xe

xn

 . (4.22)

Let

Re =

[
−LneL−1nn I

]
and Pe =

−L−1ee Len
I

 . (4.23)



64

The linear system, Lx = b, reduces to the Schur complement system,

Lcxc = bc, Lc = ReLPe , bc = Reb, (4.24)

and the solution is projected to the fine level by x = Qbc + Pexc where

Q =

[
L−1ee 0

]t
. (4.25)

Unlike in LAMG, Re and Pe must be constructed separately since L is nonsymmetric. When

a vertex i is identified as a vertex that will be removed, its neighbors, j ∈ N = {N out
i ∪

N in
i }, become ineligible to be eliminated. This guarantees that the eliminated vertices are

independent of each other, which ensures Lee is a diagonal matrix, and thus is invertible.

Low-degree elimination for UD graphs modifies Algorithm 1 in [23] by choosing the fine

vertices by looking at the total-degree and an in- or out-degree of one. Low-degree elimination

decreases the problem size with minimal cost, and the solution to the coarse representation

of the linear system is projected back to the fine space with no error.

4.2.2 AMG Aggregation

In order to effectively use low-degree elimination, the aggregates formed by traditional

AMG methods must remain stationary; thus, the construction of an effective aggregate set is

crucial. The NS-LAMG algorithm described here uses the affinity matrix described in LAMG

as the strength of connection matrix, S, defined by equation (2.15). Once the affinity matrix

has been determined, an approximation of the right singular vector, vi, is found by choosing

the largest absolute value of each row of the test vector matrix, X, defined in equation (2.14),

i.e

vu := max
j
|Xuj|. (4.26)
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The approximate right null-space vector, vi, is then smoothed by applying θ relaxation

sweeps to Lvi = 0. The following algorithm aggregates the vertices into aggregate sets,

S1, . . . , Sq, encoded by a status vector, such that status(i) := −1 denotes an undecided

vertex and status(i) > 0 indicates that vertex i will be aggregated with seed status(i), such

that |Si| ≤ η. The value η is an input in the algorithm and ensures that the aggregate size

is not exceedingly large, since aggregate size affects the cycle complexity of NS-LAMG. The

algorithm for forming the aggregates is defined as follows:

For u = sortperm(vi). (4.27a)

Let Nin ← {v : svu 6= 0, status(v) = −1}, (4.27b)

Nout ← {v : suv 6= 0, status(v) = −1}, (4.27c)

N = Nout ∪Nin. (4.27d)

If status(u) = −1, add η strongest connected j ∈ N to aggregate u. (4.27e)

(4.27f)

In the above algorithm, among the unassigned vertices, the vertex with the largest value in

vi is the seed vertex of a new aggregate. The sorting of vi could be done with a partition sort

or another type of sorting algorithm to increase speed and parallelism. From the unassigned

vertices that are strongly connected to the seed vertex, η vertices are added to the aggregate.

Vertices are chosen preferentially with respect to the strength of connection matrix. The

process is repeated until every vertex has been assigned an aggregate. For the numerical

results in Section 4.3, we set K = 5, η = 4, θ = 2, and ν is a function of the current multigrid

level, i.e. for the finest level (l = 1), ν = 2 while on the coarser levels ν = 1 + l. We limit

ν ≤ 10 for all levels because, in our tests, more than ten test vectors does not improve

performance.
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4.2.3 Setup Phase

An adequate approximation to the right null-space vector v, of L needs to be found.

In this section, we will describe a semi-adaptive AMG algorithm that takes advantage of

low-degree elimination for solving for the right null-space vector. To find the right null-

space vector of L, we need to solve the normalized Laplacian system, Lv = 0, which can be

rewritten as

Lv = 0, (4.28)

(I − AD−1)v = 0, (4.29)

AD−1v = v. (4.30)

This system can be treated as a Markov chain stationary distribution system since AD−1

is a column stochastic matrix. By using low-degree elimination and quality coarse graph

aggregates, a semi-adaptive multigrid algorithm is used to find the right null-space vector.

Recall that we can rewrite the exact solution, v, in terms of the current approximation, vi,

and its multiplicative error, ei, as diag(vi)ei, to obtain

Ldiag(vi)ei = 0. (4.31)

It is assumed that the current approximation, vi, has nonzero elements, a property that

the exact solution v has. Below is the two-level AMG algorithm for solving Lv = 0 with
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multiplicative error correction:

Do ν1 smoothing steps on Lv = 0. (4.32a)

Compute residual Lc = T tLdiag(v)T tdiag(T tv)−1 (4.32b)

Solve Lcvc = 0 (4.32c)

Correct v← diag(Tdiag(T tv)−1vc)v (4.32d)

Do ν2 smoothing steps on Lv = 0. (4.32e)

Due to the singularity of L, the approximate null-space vector, vi, must be normalized.

To effectively use low-degree elimination, the aggregates must remain stationary (i.e. T at

every level will remain the same), otherwise, low-degree elimination must be reconstructed

for every cycle, which adds extra cost. If the aggregates are stationary, only the current

iterate, vi, will be updated. The nonzero elements of Lc will change for every cycle, but the

dimension and sparsity pattern will remain constant, and thus, a semi-adaptive algorithm is

more parallelizable than traditional AMG methods for Markov chain stationary distributions

systems.

4.2.4 Solve Phase

Once an adequate approximation to the right singular vector is found, the hierarchy

of NS-LAMG remains stationary, i.e. the nonzero elements of the coarse graph Laplacians

and transfer operators for both the AMG algorithm and low-degree elimination will remain

the same. The solve phase uses k-cycles [31], also known as an iterate recombination phase

in [23], at every aggregation level before the solution is projected to the fine graph. Details

can be found in Section 3.4.5 in [23]. The next section will test the numerical validity of

NS-LAMG described above.
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4.3 Numerical Results

A set of UD graphs was obtained from the Konect graph database1 . For each graph,

the largest strongly connected component was found and used to perform numerical testing.

An implementation of the NS-LAMG algorithm, written in the language Julia was developed

to serve as a platform for the investigations described in this section. Convergence factor,

cycle complexity, effective convergence factor, and total work, as described in Section 3.3, are

used to assess the performance of NS-LAMG. Unlike AMG methods for symmetric problems,

the error propagation matrix for the coarse grid correction, (I−Π) = (I−P (RtLP )−1RtL),

derived in equation (4.11), is an oblique projection with respect to any reasonable inner

product. Since (I − Π) is an oblique projection, convergence is not guaranteed. A two-grid

convergence proof for this approach for nonsymmetric problems is found in [37]. In the first

set of numerical tests, we will look at the reduction of dimension and sparsity that results

from low-degree elimination on a set of UD graphs.

4.3.1 Low-Degree Elimination

The graphs from the Konect graph database are pulled from real-world models. Thus,

many of them are scale-free. Figure 4.3a shows the fraction of vertices remaining for each

graph after low-degree vertices are eliminated on the finest level and the first coarse level

of the algorithm. The graphs are plotted with respect to the number of edges. The circles

represent the fraction of vertices remaining after low-degree elimination is performed on

the original graph. The triangles represent the fraction of vertices remain after low-degree

elimination is performed after the first elimination level and a coarse graph aggregation

level. For the first low-degree elimination level, over 47% of graphs have less than 60% of

the vertices remaining after low-degree elimination. On the second low-degree elimination,

level after a low-degree elimination level and aggregation level, only 18% of graphs have less

1 konect.uni-koblenz.de



69

104 105 106 107 108

Number of Edges

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
V

e
rt

ic
e
s 

R
e
m

a
in

in
g

Fine
Coarse

(a) Fraction of Vertices

104 105 106 107 108

Number of Edges

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f 
E
d
g
e
s 

R
e
m

a
in

in
g

Fine
Coarse

(b) Fraction of Edges

Figure 4.3: Low-Degree Elimination: Circles represent the fraction of vertices/edges remain-
ing after low-degree elimination on the original graph. Triangles represent the fraction of
vertices/edges remaining for each graph (plotted with respect to the number of vertices on
the finest level) after low-degree elimination is performed after a coarse graph aggregation
level.

that 80% of vertices remaining. There are a handful of graphs where low-degree elimination

reduced the problem to less than 60% of the vertices remaining. Figure 4.3b depicts the

fraction of edges remaining, which is the fraction of nonzeros in the coarse graph Laplacian

after low-degree elimination compared with the number of nonzeros of fine graph Laplacian

before low-degree elimination. A similar analysis shows that the number of nonzeros is

reduced more aggressively on the finest level than on the coarse levels. It is apparent that

low-degree elimination reduces the size of the graph significantly on the finest level, while

also reducing the number of nonzeros in the coarse graph Laplacian, but may not be as

effective on the coarser levels. However, once the vertices are labeled as low-degree, there

is minimal cost in reducing the system, and thus, low-degree elimination is advantageous if

it increases NS-LAMG’s performance. In the first set of numerical tests, we will compare

NS-LAMG’s performance with and without low-degree elimination.
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4.3.2 Performance with and without Low-Degree Elimination

The next test will compare the performance of NS-LAMG when using low-degree elimi-

nation with the performance of NS-LAMG without low-degree elimination. Using NS-LAMG

method described above, with a “good” approximation to the right singular vector, we solved

the system Lx = b for each graph with V-cycles that employed two pre- and post- weighted

Jacobi smoothing iterations, a cut off of 100 vertices for the coarsest graph, and a residual

tolerance of 10−7 in the one-norm. Figure 4.4a(log-scale) plots the constant K such that

ρ
elim

= ρK
no-elim

,

with respect to the convergence factors of NS-LAMG with and without elimination. Figure

4.4b depicts the ratio of the total work of NS-LAMG without and without low-degree elim-

ination. For each measure, if the graph is above the red line, this indicates that low-degree

elimination improved the measure. It is clear from the figures that for all graphs tested,

low-degree elimination improved NS-LAMG’s performance. The graphs depicted in red are

the graphs for which NS-LAMG failed to converge without low-degree elimination. Thus,

for the remainder of this section, all numerical testing will be performed with low-degree

elimination.

4.3.3 Performance of NS-LAMG Semi-Adaptive Markov Chain Solver

In the following tests we will compare NS-LAMG’s semi-adaptive Markov Chain sta-

tionary distribution system solver to a traditional full-adaptive AMG Markov chain solver

describe in [41]. Using the same problem parameters as the previous section, we will solve

Lv = 0. Note that, for the full-adaptive solver the total work is with respect to the final

cycle. Figure 4.6a(log-scale) plots the constant K such that

ρ
semi−adaptive

= ρK
full-adaptive

,
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Figure 4.4: Low-Degree Elimination
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where ρ
semi−adaptive

and ρ
full−adaptive

are the convergence factors for the semi-adaptive and full-

adaptive algorithms, respectively. Figure 4.6b(log-scale) depict the ratio of the total work

of full-adaptive versus semi-adaptive Markov chain solver for each graph in the dataset.

Again, for each figure, if the graph is above the red horizontal line, the semi-adaptive solver

results in a better measurement than the full-adaptive solver. For 76% of the graphs tested

the semi-adaptive solver resulted in lower convergence factors and for 72% of the graphs

tested the semi-adaptive solver resulted in less total work. For the full-adaptive solver,

the total work is only taking into account the work involved of applying the operators for

the last V-cycle. However, the full-adaptive solver updates the hierarchy for every cycle

which add cost. The semi-adaptive solver performs slightly better and is more parallelizable.

Low-degree elimination is the reason the semi-adaptive solver performs well. If low-degree

elimination was not used, the performance would drastically suffer. Due to the effectiveness

of the semi-adaptive solver, in the next section we will test the semi-adaptive solver on

traditional Markov chain stationary distribution systems.
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Figure 4.5: Performance of semi-adaptive verse full-adaptive Markov Chain solver
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4.3.4 Tolerance of Null-Space Vector

The accuracy of the right null-space vector, v, determines how well the NS-LAMG

algorithm converges. The range of the interpolation operator should include v or at least

contain a good approximation of it. However, a less accurate v results in a convergent NS-

LAMG algorithm if there is a gap between the smallest and the second smallest singular

values. Given a residual tolerance, β = ‖Lv‖1, Table 4.1 depicts the percent of graphs that

converged using the NS-LAMG algorithm. The two graphs that require a higher tolerance

are amazon0601 and web-NotreDame. Table 4.2 depicts the performance measurements of

the two graphs. An adaptive procedure could be implemented to increase the tolerance for

v if the NS-LAMG algorithm begins to stall.

β % of Graphs
10−3 17.5%
10−4 68.4%
10−5 89.5%
10−6 94.7%
10−7 96.5%
10−8 98.2%
10−10 100%

Table 4.1: Tolerance of v

Graph : β its ρ γ ECF Work
web-NotreDame 10−10 74 0.7522 6.2681 0.9555 463.84
amazon0601 10−8 55 0.6686 10.4439 0.8586 574.41

Table 4.2: Graph with a tolerance β ≥ 10−8

4.3.5 Performance of NS-LAMG and Comparison to GMRES

With the same parameters as the previous test, we compare NS-LAMG’s performance

to Generalized Minimal Residual Method with Restart (GMRES(20)) [34]. GMRES is a
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classical Krylov iterative solver for nonsymmetric problems. The average work unit per

iteration for GMRES(20) for a matrix size n and number of nonzeros nnz is WU = (20 +

3 + 1/20) n
nnz

+ 1 and the total work is WU ∗ iterations. Figure 4.6a(log-scale) plots the

constant K such that

ρ
NS-LAMG

= ρK
GMRES

,

where ρ
NS-LAMG

and ρ
GMRES

are the convergence factors for NS-LAMG and GMRES, respec-

tively for each graph. Figure 4.6b(log-scale) depict the ratio the total work of GMRES(20)

versus NS-LAMG for each graph in the dataset. Above the red horizontal line, NS-LAMG

results in a better measurement than GMRES(20). For the graphs that are depicted in

red, GMRES(20) failed to converge in 20, 000 iterations (Graphs: amazon0601, dbpedia-

all, digg-friends, soc-LiveJournal1, trec-wt10g, web-Google, web-NotreDame, wikipedia-

discussions-de, wiki-talk-en, wiki-talk-es). Figure 4.6a shows that NS-LAMG produces

much better convergence factors than GMRES(20). In Figure 4.6b, NS-LAMG requires less

total work for 85.2% of the graphs tested. The most notable results where in Figure 4.6b.

In some cases, GMRES(20) required over 10 or even 100 times more work than NS-LAMG.

4.4 Conclusions

A highly successful AMG algorithm, NS-LAMG, for UD graph Laplacian systems was

developed. NS-LAMG utilized low-degree elimination and stationary aggregates with Petrov-

Galerkin transfer operators. Low-degree elimination in [23] was generalized for UD graphs

and was shown to enhance the performance of NS-LAMG algorithm as well as substantially

reduces the problem size on the finest level. Numerical tests showed that NS-LAMG resulted

in lower effective convergence factors and less work than GMRES(20). In the setup phase, we

have developed a semi-adaptive AMG solver for Markov chain stationary distribution systems

that is highly parallelizable. The semi-adaptive AMG solver for Markov chain systems was
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shown to be robust for solving for the right null-space vector for real-world graph Laplacian

systems. These results suggest that for Markov chain stationary distribution systems low-

degree elimination used in conjunction with an adequate coarse graph-aggregation process

creates a highly parallelizable solver than traditional AMG Markov chain solvers for real-

world, scale-free Markov chains. By providing a robust multilevel iterative solver, NS-LAMG,

for UD graph Laplacian linear systems, we hope that new applications and research on UD

graphs can be studied.



Chapter 5

Nonsymmetric Algebraic Multigrid Theory

5.1 NS-AMG and Generalizations of Approximation Properties

Even though there exist many nonsymmetric AMG algorithms that have been devel-

oped for Markov chains, PDEs involving convection-diffusion, and various other applications,

there is a lack in the theoretical development for nonsymmetric AMG (NS-AMG). This chap-

ter provides theoretical tools for NS-AMG with the hope to further the convergence theory.

Let H = UΣV ∗ ∈ Rn×n be the SVD of a nonsingular, nonsymmetric matrix. Let Q = V U∗

and order the singular values such that 0 < σ1 ≤ σ2 ≤ · · · ≤ σn with the associated left and

right QH-normalized singular vector pairs (ui,vi). Let R ∈ Rn×nc and P ∈ Rn×nc be the re-

striction and prolongation operators, respectively. Now, consider applying symmetric AMG

to the SPD linear system in (1.3) or (1.4). To satisfy any of the symmetric approximation

properties, the minimal eigenvectors should be well represented by the coarse grids. The

minimal eigenvectors of QH are the minimal right singular vectors of H, and the minimal

eigenvectors of HQ are the minimal left singular vectors of H. If we have R := P , the

two-grid error propagator for the linear systems (1.3) and (1.4) is given by

(I − Π1) = I − P (P ∗QHP )†P ∗QH,
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and

(I − Π2) = (QR)((QR)∗QHQR)†(QR)∗QH,

respectfully. In the QH-norm (‖ · ‖QH =
√
〈QH·, ·〉), Π1 and Π2 are orthogonal projections.

Though either projection would lead to a convergent AMG algorithm in the QH-norm, as

the symmetric AMG applies, neither projection should be used in practice since QH results

in a dense matrix. Instead, (I − Π1) and (I − Π2) are approximated by

(I − Π) = I − P (Hc)
−1R∗H, (5.1)

where Hc = R∗HP is the traditional coarse-grid AMG operator. In the QH-norm, Π results

in an oblique projection with respect to any reasonable norm. See [6] for details. We will

assume that Hc is nonsingular. Note that Hc maybe singular even if P and R are full

rank and H is nonsingular. In Theorem 6, we show sufficient conditions to ensure the error

propagation operator is stable, i.e. ‖Π‖QH ≤ C for some small constant C > 1, which ensures

Hc is nonsingular given H is nonsingular. We first generalize the symmetric approximation

properties to NS-AMG in the following definitions with respect to the interpolation operator

and QH:

Definition 5.1.1 (Nonsymmetric Strong Approximation Property (NSAP) on P with re-

spect to QH). An interpolation operator, P , satisfies the NSAP with constant KP with

respect to QH if, for any v on the fine grid, there exists an ec on the coarse grid such that

‖v − Pec‖2QH ≤
KP

‖QH‖
‖QHv‖2. (5.2)
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Due to orthogonality in the QH-norm we have,

‖(I − Π1)v‖2QH = inf
vc

‖v − Pvc‖2QH ≤
KP

‖QH‖
‖QHv‖2. (5.3)

Definition 5.1.2 (Nonsymmetric Weak Approximation Property (NWAP) on P with respect

to QH). An interpolation operator, P , satisfies the NWAP with constant Kw if, for any v

on the fine grid, there exists an ec on the coarse grid such that

‖v − Pec‖2 ≤
Kw

‖QH‖
‖v‖2QH . (5.4)

Definition 5.1.3 (Nonsymmetric Super Strong Approximation Property (NSSAP) on P

with respect to QH). An interpolation operator, P , satisfies the NSSAP with constant Ks

if, for any v on the fine grid, there exists an ec on the coarse grid such that

‖v − Pec‖2 ≤
Ks

‖QH‖2
‖QHv‖2. (5.5)

When H is symmetric, QH = V ΣV ∗ = H and NWAP, NSAP, and NSSAP are equiv-

alent to their respective symmetric definitions. It is known, in the symmetric case, that

the Super Strong Approximation Property implies Weak Approximation Property and is

equivalent to Strong Approximation Property. Lemma 5.1.1 proves the same result for the

nonsymmetric approximation properties for the interpolation operator with respect to QH.

Lemma 5.1.1 (Equivalence of approximation properties).

(1) Assume P has a NSSAP with respect to QH. Then, P also has a NWAP with respect

to QH, with constant Kw = Ks.

(2) Assume P has a NSSAP with respect to QH. Then, P also has a NSAP with respect

to QH, with constant KP = Ks.



80

(3) Assume P has a NSAP with respect to QH. Then, P also has a NWAP with respect

to QH, with constant Kw = K2
P .

(4) Assume P has a NSAP with respect to QH. Then, P also has a NSSAP with respect

to QH, with constant Ks = KwKP

Proof.

(1) Assume P has a NSSAP with respect to QH. Let ec be the vector such that Defi-

nition 5.1.3 is satisfied. Then for any v on the fine grid, we have

‖v − Pec‖2 ≤
Ks

‖QH‖2
‖QHv‖2, (Definition 5.1.3)

=
Ks

‖QH‖2
‖(QH)1/2(QH)1/2v‖2,

≤ Ks

‖QH‖2
‖(QH)1/2‖2‖(QH)1/2v‖2,

=
Kw

‖QH‖
‖v‖2QH ,

which satisfies the NWAP on P with respect to QH with Kw = Ks.

(2) Assume P has a NSSAP with respect to QH. Let ec be the vector such that Defi-

nition 5.1.3 is satisfied. Then for any v on the fine grid, we have

‖v − Pec‖2QH ≤ ‖QH‖‖v − Pec‖2,

≤ KP

‖QH‖
‖QHv‖2, (Definition 5.1.3)

which satisfies the NWAP with respect to P and QH with KP = Ks.

(3) Assume P has a NSAP with respect to QH. Let wc be the vector such that Definition

5.1.1 is satisfied for (QH)−1(v−Pec). Let ec be the vector such that infec ‖v−Pec‖ =

‖(I−Π1)v‖ is satisfied and, thus, ec implicitly satisfies Definition 5.1.1 for v. Thus,
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v − Pec is QH-orthogonal to R(P ) and we have

‖v − Pec‖2 = 〈QH(v − Pec), (QH)−1(v − Pec)〉,

= 〈QH(v − Pec), (QH)−1(v − Pec)− Pwc〉,

≤ ‖(v − Pec)‖QH‖(QH)−1(v − Pec)− Pwc‖QH ,

≤ ‖(v − Pec)‖QH

√
KP

‖QH‖
‖QH(QH)−1(v − Pec)‖, (Definition 5.1.1)

= ‖(v − Pec)‖QH

√
KP

‖QH‖
‖(v − Pec)‖.

This implies

‖v − Pvc‖ ≤

√
KP

‖QH‖
‖(v − Pvc)‖QH ,

≤ KP

‖QH‖
‖QHv‖. (Definition 5.1.1 )

Squaring the results yields,

‖v − Pvc‖2 ≤
Kw

‖QH‖2
‖QHv‖2,

≤ Kw

‖QH‖
‖v‖2QH ,

which satisfies the NWAP on P with respect to QH with Kw = K2
P .

(4) Assume P has a NSAP with respect to QH. From Part 3, the NSAP on P implies

the NWAP on P with respect to QH. Let xc be the vector that satisfies Definition

5.1.2 for v− Pyc and let yc be the vector that satisfies Definition 5.1.1 for v. Then
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we have

‖(v − Pyc)− Pxc‖2 ≤
Kw

‖QH‖
‖(v − Pyc)‖2QH , (Definition 5.1.2)

≤ KwKP

‖QH‖2
‖QHv‖2. (Definition 5.1.1)

Let Ks = KwKP and ec = yc + xc, which yields the result,

‖v − Pec‖2 ≤
Ks

‖QH‖2
‖QHv‖2.

which satisfies the NSSAP on P with respect to QH with Ks = KwKP .

For nonsymmetric problems, it is often the case that the restriction and prolongation

operators are chosen such that P 6= R. Thus, the approximation properties on R should

also be considered. Definition 5.1.4 and 5.1.5 define the NSAP on QR and R with respect

to QH and HQ, respectively. Definition 5.1.4 and 5.1.5 are interchangeable, which is shown

in Lemma 5.1.2.

Definition 5.1.4 (Nonsymmetric Strong Approximation Property (NSAP) on QR with

respect to QH). An restriction operator, QR, satisfies the NSAP with constant KR with

respect to QH if, for any v on the fine grid, there exists an ec on the coarse grid such that

‖v −QRec‖2QH ≤
KR

‖QH‖
‖QHv‖2. (5.6)

Due to orthogonality in the QH-norm we have,

‖(I − Π2)v‖2QH = inf
vc

‖v −QRvc‖2QH ≤
KR

‖QH‖
‖QHv‖2. (5.7)
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Definition 5.1.5 (Nonsymmetric Strong Approximation Property (NSAP) on R with re-

spect to HQ). A restriction operator, R, satisfies the NSAP with constant KR with respect

to HQ if, for any v on the fine grid, there exists an ec on the coarse grid such that

‖v −Rec‖2HQ ≤
KR

‖HQ‖
‖HQv‖2. (5.8)

Due to orthogonality in the HQ-norm we have,

‖(I −R(R∗HQR)−1R∗H)v‖2HQ = inf
vc

‖v −Rvc‖2HQ ≤
KR

‖HQ‖
‖HQv‖2. (5.9)

Lemma 5.1.2. The NSAP on QR with respect to QH holds if and only if the NSAP on R

with respect to HQ holds.

Proof. Let u = Q∗v. We then have the following equalities:

‖(I −Π2)v‖2QH = ‖(I −QR((QR)∗QHQR)−1)QR)∗H)v‖2QH , (5.10)

= ‖Q(I −R(R∗HQR)−1R∗HQ)Q∗v‖2QH , (5.11)

= ‖(I −R(R∗HQR)−1R∗H)u‖2HQ, (5.12)

‖v −QRvc‖2QH = ‖Q(Q∗v −Rvc)‖2QH , (5.13)

= ‖Q(u−Rvc)‖2QH , (5.14)

= ‖u−Rvc‖2HQ, (5.15)

and

‖QHv‖2 = ‖QHQQ∗v‖2, (5.16)

= ‖HQu‖2. (5.17)
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Thus, NSAP on QR with respect to QH is equivalent to the NSAP on R with respect to

HQ

Remark 5.1.1. The NSAP, NWAP, NSSAP on QR with respect to QH can be defined

similarly as the approximation properties with respect to the interpolation operator P , i.e.

Definition 5.1.1, 5.1.2, and 5.1.3. The same relations as in Lemma 5.1.1 can be shown for

the restriction operator QR with respect to QH, by similar proof.

In addition to the approximation properties, it is important that coarse-grid correction

is stable, that is, coarse-grid correction can only increase the error by some small constant

C > 1 (Definition 5.1.6). For SPD matrices, we have an orthogonal coarse-grid correction,

which implicitly implies C = 1 and means that the error cannot be increased. In the

nonsymmetric setting, we typically do not have an orthogonal coarse-grid correction and

must ensure that this constant is bounded.

Definition 5.1.6 (Stability of Π).

‖Π‖2QH ≤ C (5.18)

Thus far, in looking at the approximation properties, we have only assumed that there

is some vector v that satisfies the given property. In fact, the best v will be given by an

orthogonal projection onto the range of P in the appropriate norm. Again, for nonsymmetric

problems, the error propagation operator of the coarse-grid correction is typically not an

orthogonal projection. For an effective method, in conjunction with stability, we also need

an approximation property on the error propagation operator used in practice, (I−Π). In [6],

sufficient conditions for an approximation property for (I−Π) are shown to be stability and

the NSAP on P with respect to QH ([6] Lemma 2.2). It was further shown in [6] that stability

and the NSAP on P with respect to QH result in two-grid convergence for a sufficient number

of smoothing iterations ([6], Theorem 2.3). Because a non-orthogonal coarse-grid correction
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can increase the total error in some cases, additional smoothing iterations are necessary

to ensure that iterations are reducing the error; something which is not necessary in the

symmetric setting. Building on the work from [6], we further explore sufficient conditions for

two-grid convergence, along with the relation of stability of Π and approximation properties

on P and R. Example 5.1.1 shows that no two imply the third.

Example 5.1.1.

(1) The NSAP on P with respect to QH and stability 6⇒ the NSAP on QR with respect

to QH.

(2) The NSAP on QR with respect to QH and stability 6⇒ the NSAP on P with respect

to QH.

(3) The NSAP on P and NSAP on QR with respect to QH 6⇒ stability of Π.

Proof.

(1) Let H ∈ R4×4 with the associated singular value triplets, (σi,ui,vi), where the

singular vectors are QH-normalized. Assume σi ≤ 1 ∀i, σi < 1/2 for i = 1, 2, 3, and

σ4 ≥ 1/2. Define P and R by the following columns:

P =

[
v1/
√
σ1,v2/

√
σ2,v3/

√
σ3

]
,

R =

[
u1+u4√

σ1
,u2/
√
σ2,u3/

√
σ3,

]
.
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Then P ∗QHP = I and (QR)∗QH(QR) =


2

1

1

. We can verify that Π is stable:

‖Π‖2QH = ‖P ((QR)∗QHP )−1(QR)∗QH‖2QH ,

= sup
x 6=0

〈QHP ((QR)∗QHP )−1(QR)∗QHx, P ((QR)∗QHP )−1(QR)∗QHx〉
‖x‖2QH

,

= sup
x 6=0

〈((QR)∗QHP )−1(QR)∗QHx, ((QR)∗QHP )−1(QR)∗QHx〉
‖x‖2QH

,

≤ ‖(QR)∗QHP )−1‖2 sup
x 6=0

‖(QR)∗QHx‖2

‖x‖2QH
,

≤ ‖(QR)∗QHP )−1‖2‖(QR)∗(QH)1/2‖2 sup
x 6=0

‖(QH)1/2x‖2

‖x‖2QH
,

= ‖(QR)∗(QH)1/2‖2, (‖A‖2 = ‖AA∗‖)

= 2,

and the NSAP on P is easily satisfied with KP = 2. However, for QR we have

‖(I−Π2)v1‖2QH = 1 and ‖QHv1‖2 = σ1. Thus, KR = C
σ1

which could be unbounded,

as we could have σ1 << 1.

(2) A similar construction to Part 2 shows the NSAP on R with respect to QH and

stability do not imply the NSAP on P with respect to QH.

(3) Let H ∈ R4×4 with the associated singular value triplets, (σi,ui,vi), where the singu-

lar vectors are QH-normalized. Assume σi ≤ 1 ∀i, σi < 1/2 for i = 1, 2, and σi ≥ 1/2

for i = 3, 4. Let P =

[
v1/
√
σ1,v2/

√
σ2,v3/

√
σ3

]
andR =

[
u1/
√
σ1,u2/

√
σ2,u4/

√
σ4,

]
,

then P ∗QHP = (QR)∗QH(QR) = I. The NSAP on P and on QR with respect to
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QH are satisfied with KP = KR = 2. However, Π is not stable:

‖Π‖2QH = ‖P ((QR)∗QHP )−1(QR)∗QH‖2QH

= sup
x 6=0

〈QHP ((QR)∗QHP )−1(QR)∗QHx, P ((QR)∗QHP )−1(QR)∗QHx〉
‖x‖2QH

= sup
x 6=0

〈((QR)∗QHP )−1(QR)∗QHx, ((QR)∗QHP )−1(QR)∗QHx〉
‖x‖2QH

≤ ‖(QR)∗QHP )−1‖2 sup
x 6=0

‖(QR)∗QHx‖2

‖x‖2QH

≤ ‖(QR)∗QHP )−1‖2‖(QR)∗(QH)1/2‖2 sup
x 6=0

‖(QH)1/2x‖2

‖x‖2QH

= ‖(QR)∗QHP )−1‖2,

and (QR)∗QHP =


1

1

0

. Thus, ‖Π‖2QH is unbounded.

As we have shown, another condition must be satisfied to ensure stability besides the

NSAP on P and QR with respect to QH. In the following section, we will explore a quality

measure for R and P that ensures Π is stable.

5.2 Conditions for Stability

The crux of convergence theory for NS-AMG is in dealing with a non-orthogonal coarse-

grid correction that can increase the error. In particular, if R∗HP ends up being a singular

or near-singular matrix, then the resulting solver will likely diverge. In [6], this was handled

by simply assuming that the oblique projection Π is stable, with the norm bounded by some

small constant greater than one. Given that approximation properties alone are not sufficient

for stability or two-grid convergence (Example 5.1.1), it is clear that some further conditions

must be satisfied. We will introduce a quality measure on P and R, in conjunction with
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the approximation properties, that gives sufficient conditions for stability and thus, two-grid

convergence. In particular, the basis matrices W and Z based on Π1 and Π2 are introduced,

which correspond to the action of P and R, respectively. After proving several results on W

and Z, a stability bound for ‖Π‖QH is established.

Suppose we have scaled H such that σn = 1, and let {v}ni=1 be the set of right singular

vectors of H, normalized in the QH-norm, i.e. ‖vi‖QH = 1. For a right singular vector, vi,

of H, the NSAP’s on P and QR with respect to the QH-norm (Definition 5.1.1 and 5.1.4)

simplify to:

‖(I − Π1)vi‖2QH ≤ KP 〈QHvi, QHvi〉 ≤ KPσi‖vi‖2QH ,

‖(I − Π2)vi‖2QH ≤ KR〈QHvi, QHvi〉 ≤ KRσi‖vi‖2QH ,

for all i. Define M := max{KR, KP} and pick k such that Mσi < θ � 1 for all i = 1, . . . , k,

where θ will be chosen later. That is, we pick k such that the first k singular values are

smaller than θ
M
� 1

M
. Denote V1 = [v1, ...,vk] as the an n×k matrix whose columns are the

QH-normalized right singular vectors of H associated with the k smallest singular values.

Definition 5.2.1. Consider two matrices W,Z ∈ Rn×nc in block form

W =

[
W1,W2

]
, Z =

[
Z1, Z2

]
,

where W1 and Z1 make up the first k columns, and W2 and Z2 the remaining (nc − k)

columns. Define W1 and Z1 as

W1 = Π1V1 and Z1 = Π2V1.

Then, define W2 as a QH-orthonormal basis for R(Π1)\R(W1) such that W1 ⊥QH W2 and

R(W1) ∪R(W2) = R(Π1), and likewise for Z2 and Π2.
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From the definition above, we have the following useful properties:

W ∗
2QHW2 = Z∗2QHZ2 = I,

W ∗
2QHW1 = Z∗2QHZ1 = 0,

Π1W = W,

and

Π2Z = Z.

Lemmas 5.2.1 and 5.2.2 go on to show that W2 and Z2 are QH-orthogonal to V1 and if the

NSAP condition is satisfied for P and QR respectively, then the columns of W1 and Z1 are

linearly independent with respect to QH.

Lemma 5.2.1. The matrix V1 is QH-orthogonal to W2 and Z2, that is, V ∗1 QHW2 =

V ∗1 QHZ2 = 0.

Proof. From the definition of W1 and W2, we have W ∗
2QHW1 = 0, which implies

0 = W ∗
1QHW2,

= (Π1V1)
∗QHW2,

= (V1 − (I − Π1)V1)
∗QHW2,

= V ∗1 QHW2 − V ∗1 (I − Π1)
∗QHW2,

= V ∗1 QHW2 − V ∗1 QH(I − Π1)W2,

= V ∗1 QHW2. (Π1W2 = W2).

By a similar argument, we have V ∗1 QHZ2 = 0.

Lemma 5.2.2. If the NSAP on P with respect to the QH-norm holds, then the columns of
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W1 form a linearly independent set in the QH-norm. Likewise, If the NSAP on QR with

respect to the QH-norm holds, holds then the columns of Z1 form a linearly independent set

in the QH-norm.

Proof. Assume there exists a ∈ Rn such that a 6= 0 for which ‖W1a‖QH = 0. Then,

‖W1a‖2QH = ‖Π1V1a‖2QH

= ‖V1a− (I − Π1)V1a)‖2QH

= ‖V1a‖2QH − ‖(I − Π1)V1a‖2QH

≥
∥∥a∥∥2

QH
−Mσk

∥∥V1a∥∥2QH (Definition 5.1.1)

≥ (1− θ)
∥∥a∥∥2

QH

(5.19)

Since (1 − θ) > 0 and a 6= 0, we have ‖W1a‖2QH > 0. Thus, columns of W1 form a linearly

independent set. By similar proof, if Definition 5.1.4 holds then the columns of Z1 are

linearly independent.

We will now bound ‖(W ∗QHW )‖, which is needed to bound ‖Π‖QH . Noting that

W ∗QHW =

W ∗
1

W ∗
2

QH [W1 W ∗
2

]

=

W ∗
1QHW1 0

0 I


we have

‖W ∗QHW‖ = max
{
‖W ∗

1QHW1‖, 1
}
.
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Similarly, one can show

‖Z∗QHZ‖ = max
{
‖Z∗1QHZ1‖, 1

}
.

Which, by Lemma 5.2.3, we have ‖W ∗QHW‖ ≤ 1 and ‖Z∗QHZ‖ ≤ 1.

Lemma 5.2.3. If Π1 is an QH-orthogonal projection then ‖W ∗
1QHW1‖ ≤ 1. Similarly, if

Π2 is an QH-orthogonal projection then ‖(Z∗1QHZ1)‖ ≤ 1.

Proof. From wi = Π1vi for i = 1, . . . , k we have,

‖W ∗1QHW1‖ = sup
x6=0

〈W ∗1QHW1x,x〉
‖x‖2

,

= sup
x6=0

〈QHΠ1V1x,Π1V1x〉
‖x‖2

,

= sup
x6=0

〈QH(V1 − (I −Π1)V1)x, (V1 − (I −Π1)V1)x〉
‖x‖2

,

= sup
x6=0

‖V1x‖2QH − ‖(I −Π1)V1x‖2QH

‖x‖2
, (⊥-projections)

= sup
x6=0

‖x‖2 − ‖(I −Π1)V1x‖2QH

‖x‖2
,

≤ 1 .

By a similar argument we have,

‖(Z∗1QHZ1)‖ ≤ 1.

As a consequence of Lemma 5.2.2, we have a bound on ‖(W ∗
1QHW1)

−1‖ and ‖(Z∗1QHZ1)
−1‖.

Lemma 5.2.4. If Definition 5.1.1 holds then ‖(W ∗
1QHW1)

−1‖ ≤ 1
1−θ . Similarly, if Defini-

tion 5.1.4 holds then ‖(Z∗1QHZ1)
−1‖ ≤ 1

1−θ .
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Proof. If Definition 5.1.1 holds, from equation (??) we have

‖(W ∗
1QHW1)

−1‖ ≤ 1

(1− θ)
. (5.20)

By a similar argument, if Definition 5.1.4 holds then ‖(Z∗1QHZ1)
−1‖ ≤ 1

1−θ .

Note that Π is invariant of any change of basis for P and QR. To see this, let GP and

GR be nonsingular nc × nc square matrices such that P = WGP and QR = ZGR. We then

have

Π = P (RtHP )−1RtH (5.21)

= P ((QR)tQHP )−1(QR)tQH (5.22)

= WGP ((ZGR)tQHWGP )−1(ZGR)tQH (5.23)

= W (ZtQHW )−1ZtQH. (5.24)

(5.25)

If Π1 and Π2 areQH-orthogonal projections, we can bound the norm of ‖Π‖QH by ‖(ZtQHW )−1‖,

as seen below.

Lemma 5.2.5. If Π1 and Π2 are QH-orthogonal projections then

‖Π‖2QH ≤ ‖(ZtQHW )−1‖2.
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Proof. From Lemma 5.2.3, we have

‖Π‖2QH = sup
x 6=0

‖W (ZtQHW )−1ZtQHx‖2QH
‖x‖2QH

,

= sup
x 6=0

〈QHW (ZtQHW )−1ZtQHx,W (ZtQHW )−1ZtQHx〉
〈QHx,x〉

,

= sup
x 6=0

〈W tQHW (ZtQHW )−1ZtQHx, (ZtQHW )−1ZtQHx〉
〈QHx,x〉

,

≤ ‖W tQHW‖‖(ZtQHW )−1‖2 sup
x 6=0

‖ZtQHx‖2

〈QHx,x〉
,

= ‖W tQHW‖‖(ZtQHW )−1‖2 sup
x 6=0

‖Zt(QH)1/2(QH)1/2x‖2

〈QHx,x〉
,

≤ ‖W tQHW‖‖(ZtQHW )−1‖2‖Zt(QH)1/2‖2 sup
x 6=0

‖(QH)1/2x‖2

〈QHx,x〉
,

= ‖W tQHW‖‖(ZtQHW )−1‖2‖ZtQHZ‖, (‖A‖2 = ‖AA∗‖)

≤ ‖(ZtQHW )−1‖2.

Stability is dependent on how Z and W interact with each other. We will see that in ad-

dition to Definition 5.1.1 and 5.1.4, Z andW must perform similarly on the right singular vec-

tors associated with the smallest singular values. We will study this phenomenon by bound-

ing ‖(Z∗QHW )−1‖. In order to bound ‖(Z∗QHW )−1‖ we must bound ‖(Z∗1QHW1)
−1‖,

‖Z∗1QHW2‖, and ‖Z∗2QHW1‖.

Lemma 5.2.6. If Definition 5.1.1 and 5.1.4 hold and θ < 1
3

then

‖(Z∗1QHW1)
−1‖ ≤ 1

1− 3θ
.
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Proof. By expanding W1 and Z1 in terms of V1 we have,

1

‖(Z∗1QHW1)−1‖
= inf

x 6=0
sup
y 6=0

〈Z∗1QHW1x,y〉
‖x‖‖y‖

,

≥ inf
x 6=0

〈QHW1x, Z1x〉
‖x‖2

,

= inf
x 6=0

〈QH(V1 − (I − Π1)V1)x, (V1 − (I − Π2)V1)x〉
‖x‖2

,

≥ inf
x 6=0

‖x‖2 − ‖(I − Π1)V1x‖2QH − ‖(I − Π2)V1x‖2QH
‖x‖2

− sup
x 6=0

‖(I − Π1)V1x‖QH‖(I − Π2)V1x‖QH
‖x‖2

.

By Definition 5.1.1 and 5.1.4 we have,

1

‖(Z∗1QHW1)−1‖
≥ inf

x 6=0

‖x‖2 − 2θ‖x‖2 − (θ1/2‖x‖)(θ1/2‖x‖)
‖x‖2

,

= 1− 3θ.

Thus,

‖(Z∗1QHW1)
−1‖ ≤ 1

1− 3θ
.

Lemma 5.2.7. If Definition 5.1.4 holds, we have

‖Z∗1QHW2‖ ≤ θ1/2

and if Definition 5.1.1 holds, we have

‖Z∗2QHW1‖ ≤ θ1/2.
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Proof. From the definition of W2 we have,

Z∗1QHW2 = (V1 − (I − Π2)V1)
∗QHW2,

= V ∗1 QHW2 − V ∗1 QH(I − Π2)W2,

= −V ∗1 QH(I − Π2)W2. (V ∗1 QHW2 = 0)

Thus, if Definition 5.1.4 holds, we have

‖Z∗1QHW2‖ = ‖V ∗1 QH(I − Π2)W2‖, (5.26)

= sup
x 6=0

sup
y 6=0

〈V ∗1 QH(I − Π2)W2x,y〉
‖x‖‖y‖

, (5.27)

= sup
x 6=0

sup
y 6=0

〈QHW2x, (I − Π2)V1y〉
‖x‖‖y‖

, (5.28)

≤ sup
x 6=0

sup
y 6=0

‖W2x‖QH‖(I − Π2)V1y‖QH
‖x‖‖y‖

, (5.29)

≤ sup
x 6=0

sup
y 6=0

‖x‖(θ1/2‖y‖)
‖x‖‖y‖

, (Definition 5.1.4) (5.30)

= θ1/2. (5.31)

From the definition of Z2, we have

Z∗2QHW1 = Z∗2QH(V1 − (I − Π1)V1),

= Z∗2QHV1 − Z∗2QH(I − Π1)V1,

= −Z∗2QH(I − Π1)V1. (Z∗2QHV1 = 0)
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By similar argument, if Definition 5.1.1 holds, we have

‖Z∗2QHW1‖ = θ1/2. (5.32)

We can then bound ‖Π‖2QH by bounding ‖(Z∗QHW )−1‖, shown in Theorem 6. To

bound ‖(Z∗QHW )−1‖, first reformulate in block form,

ZtQHW =

Z∗1
Z∗2

QH [W1 W2

]
,

=

Z∗1QHW1 Z∗1QHW2

Z∗2QHW1 Z∗2QHW2

 ,
=

Z∗1QHW1 0

0 Z∗2QHW2

−
 0 −Z∗1QHW2

−Z∗2QHW1 0

 .
Theorem 6. Assume Definition 5.1.1 and 5.1.4 hold. Assume k is chosen such that 1 −

3θ − θ1/2 > 0 and γ − θ1/2 > 0, where γ = σ1(Z
∗
2QHW2), then we have the following:

‖(ZtQHW )−1‖ ≤ 1

min{1− 3θ − θ1/2, γ − θ1/2}

and

‖Π‖QH ≤
1

min{1− 3θ − θ1/2, γ − θ1/2}
.
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Proof. From Lemma 5.2.7 we have,

1

‖(Z∗QHW )−1‖
= inf

x 6=0

‖Z∗QHWx‖
‖x‖

,

≥ inf
x 6=0

∥∥∥∥∥∥∥
Z∗1QHW1 0

0 Z∗2QHW2

x

∥∥∥∥∥∥∥−
∥∥∥∥∥∥∥
 0 −Z∗1QHW2

−Z∗2QHW1 0

x

∥∥∥∥∥∥∥
‖x‖

,

≥ inf
x 6=0

∥∥∥∥∥∥∥
V ∗1 QHΠ2Π1V1 0

0 Z∗2QHW2

x

∥∥∥∥∥∥∥
‖x‖

,

− sup
x 6=0

∥∥∥∥∥∥∥
 0 V ∗1 QH(I −Π2)W2

Z∗2QH(I −Π1)V1 0

x

∥∥∥∥∥∥∥
‖x‖

,

= min{σ1(Z∗1QHW1), σ1(Z
∗
2QHW2)} −max{‖Z∗1QHW2‖, ‖Z∗2QHW1‖}.

≥ min{1− 3θ, γ} − θ1/2,

= min{1− 3θ − θ1/2, γ − θ1/2}.

Then,

‖Π‖QH ≤
1

min{1− 3θ − θ1/2, γ − θ1/2}
follows from Lemma 5.2.5.

We can choose θ to be smaller by choosing k to be smaller. But, γ also gets smaller as

k gets smaller. Our assumption is that there exists some k for which both terms 1−3θ−θ1/2

and γ − θ1/2 are positive. Thus, if R and P satisfy their respective approximation property,

we have found a quality measure that relates the action of P and R that ensures stability

of the two-grid error propagation operator of the coarse-grid correction, and thus, two-grid

convergence.

5.2.1 Conclusions

In this chapter, the standard AMG approximation properties are generalized to the

nonsymmetric setting by introducing approximation properties on both the restriction and
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prolongation operators. Known approximation property relations for the SPD case, for ex-

ample, the strong approximation property implies the weak approximation property, are then

proved in the nonsymmetric setting. Counter-examples are presented showing that a number

of natural assumptions on a NS-AMG solver are not sufficient for two-grid convergence. An

investigation of stability is then discussed and a quality measure of the relation between the

restriction and prolongation operators is introduced that ensures stability. As seen in [6],

two-grid convergence is proved when stability of the error propagation operator is coupled

with the strong approximation property on P with respect to the QH-norm.



Chapter 6

Conclusion and Future Work

This thesis encompasses two main extensions of AMG: extending UU graph Laplacian

solvers to SU graph Laplacian systems using Gremban’s expansion and developing an AMG

solver for UD graph Laplacian systems. Each focus was to develop and extend linear solvers

for graph Laplacian systems for a variety of modeling decisions. This ensures that informa-

tion and attributes of a graph that data scientists wish to represent can stay intact and not

be diluted due to the restrictiveness of current solvers. We conclude by summarizing what

has been accomplished in this thesis and then discuss possible future work.

Chapter 3 generalized Gremban’s expansion to be applicable to any diagonally dom-

inant matrix, not just symmetric matrices as was in first introduced in [11]. We have pro-

vided various theorems for Gremban’s expansion including a generalization of the classical

UU graph walk theorem to SU graphs, the relationship of the spectrum and singular val-

ues of the Gremban expansion matrix of S := M + P to the spectrum and singular values

of S and M − P , and given an approximate solution to the Gremban expansion system

with z = [bt,−bt]t, we can tightly bound the norm of the residual of the original system

by the norm of the residual of the expansion. Without prior knowledge of the sign struc-

ture, LAMG, in conjunction with Gremban’s expansion, provided a robust solver and it

performed well on the constructed signed graphs as well as the movielens user-movie rating

graphs. By applying Gremban’s expansion we have expanded any UU graph Laplacian linear

system solver’s solution space to include SU graphs. Gremban’s expansion provides a nice



100

meaningful relationship between signed graphs and unsigned graphs.

Chapter 4 develops a highly successful AMG algorithm, NS-LAMG, for UD graph

Laplacian systems. Low-degree elimination in [23] was generalized for UD graphs and was

shown to enhance the performance of NS-LAMG as well as substantially reduces the problem

size on the finest level, especially for scale-free graphs. A highly parallelizable semi-adaptive

AMG solver for Markov chain stationary distribution systems was developed that uses low-

degree elimination and stationary coarse-graph aggregation. In the setup phase of NS-

LAMG, the semi-adaptive AMG solver for Markov chain stationary distribution systems

was shown to be a robust solver for finding an adequate approximation to the right singular

vector of a scale-free UD graph Laplacian. Numerical tests showed that NS-LAMG resulted

in lower effective convergence factors and less work than GMRES(20), a traditional well-

known iterative solver for nonsymmetric systems.

Chapter 5 fills in gaps in nonsymmetric AMG convergence theory, building off of the

theory presented in [6]. The standard AMG approximation properties were generalized to

the nonsymmetric case for both the prolongation and restriction operators. The well known

relations between the approximation properties for the symmetric case were also shown to

be true in the nonsymmetric case. It was shown that the approximation properties on

the restriction and prolongation operators do not imply stability of the error propagation

operator of the coarse-grid correction. In order to address this issue, we introduce a new

quality measure on the action of the prolongation and restriction operators, thus ensuring

stability of the coarse-grid correction.

6.0.1 Future Work

For SD graph Laplacian systems, a combination of Gremban’s expansion in conjunc-

tion with NS-LAMG could be explored. The theory for using Gremban’s expansion for

nonsymmetric problems was developed in Chapter 3, but a robust solver is still needed as

the condition number of the expanded system is not bounded by the condition number of
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the original matrix. NS-LAMG has been shown to be a robust, scalable solver for UD graph

Laplacian systems and thus, is an adequate solver that can be used in conjunction with

Gremban’s expansion to solve SD graph Laplacian systems. Gremban’s expansion matrix

could provide insight into the structure of the underlying graph. Further research could be

done to investigate the uses of Gremban’s expansion matrix in applications involving signed

graphs. Work should also include further research into NS-LAMG to enhance the scalabil-

ity and robustness of the solver. Lastly, the semi-adaptive AMG solver for Markov chain

stationary distribution systems could provide a parallel solver that has not be previously

studied.

Solvers for large, real-world graph related systems are becoming highly important as

the size and availability of data continues to grow. These two extensions of AMG provided in

this thesis are useful in the graph community since it provides robust and scalable solvers for

graph Laplacians linear systems that represent different relationships than just UU graphs.

By providing adequate solvers for SU, UD, and SD graph Laplacian systems, we have allowed

more modeling choices for graph representations, resulting in an increased opportunity in

the graph community for UU graph applications to be adapted for more diverse modeling

choices than the classical positively weighted, symmetric relationships between vertices.
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