6 research outputs found

    Location of leaks in pipelines using parameter identification tools

    Full text link
    This work proposes an approach to locate leaks by identifying the parameters of finite models associated with these fault events. The identification problem is attacked by using well-known identification methods such as the Prediction Error Method and extended Kalman filters. In addition, a frequency evaluation is realized to check the conditions for implementing any method which require an excitation condition.Comment: This paper has some error

    Deep Learning for Pipeline Damage Detection: an Overview of the Concepts and a Survey of the State-of-the-Art

    Get PDF
    Pipelines have been extensively implemented to transfer oil as well as gas products at wide distances as they are safe, and suitable. However, numerous sorts of damages may happen to the pipeline, for instance erosion, cracks, and dent. Hence, if these faults are not properly refit will result in the pipeline demolitions having leak or segregation which leads to tremendously environment risks. Deep learning methods aid operators to recognize the earliest phases of threats to the pipeline, supplying them time and information in order to handle the problem efficiently. This paper illustrates fundamental implications of deep learning comprising convolutional neural networks. Furthermore the usages of deep learning approaches for hampering pipeline detriment through the earliest diagnosis of threats are introduced

    Leak localization in water distribution networks using pressure and data-driven classifier approach

    Get PDF
    Leaks in water distribution networks (WDNs) are one of the main reasons for water loss during fluid transportation. Considering the worldwide problem of water scarcity, added to the challenges that a growing population brings, minimizing water losses through leak detection and localization, timely and efficiently using advanced techniques is an urgent humanitarian need. There are numerous methods being used to localize water leaks in WDNs through constructing hydraulic models or analyzing flow/pressure deviations between the observed data and the estimated values. However, from the application perspective, it is very practical to implement an approach which does not rely too much on measurements and complex models with reasonable computation demand. Under this context, this paper presents a novel method for leak localization which uses a data-driven approach based on limit pressure measurements in WDNs with two stages included: (1) Two different machine learning classifiers based on linear discriminant analysis (LDA) and neural networks (NNET) are developed to determine the probabilities of each node having a leak inside a WDN; (2) Bayesian temporal reasoning is applied afterwards to rescale the probabilities of each possible leak location at each time step after a leak is detected, with the aim of improving the localization accuracy. As an initial illustration, the hypothetical benchmark Hanoi district metered area (DMA) is used as the case study to test the performance of the proposed approach. Using the fitting accuracy and average topological distance (ATD) as performance indicators, the preliminary results reaches more than 80% accuracy in the best cases.Peer ReviewedPostprint (published version

    Pattern Recognition Techniques Implementation on Data from In-Line Inspection (ILI)

    Get PDF
    PresentationOnshore pipeline failure caused by corrosion represents about 16% of the overall number of incidents during the period from 2004 to 2011 according to databases such as CONCAWE and PHMSA. In-Line Inspection (ILI) is one of the available inspection techniques used to determine overall pipeline status, highlighted because it establishes a clear perspective of inner and outer condition of the pipe against the failure modes and wall thickness. Furthermore, it supports measures to prevent risk based on standards such as ASMEB31G or API579-1/ASME FFS-1. However, this approximation could represent a conservative assessment of the pipeline status, taking into account the uncertainty associated with ILI inspection tools such as MFL and UT. Several researches have been conducted to analyze available inspection techniques attempting to reduce noise generated by their inspection tools, and determine procedures in order to establish correct metal loss detection, excelling pattern recognition analysis and reliability concepts. Therefore this work seeks to transform a set of data obtained from two ILI runs, into useful information to support decision making in risk analysis based on pattern recognition techniques and reliability concepts, in order to obtain base failure frequencies for prior analysis from individual and grouped flaws. Moreover, growth corrosion and remaining life models supported on the standards mentioned above were evaluated using a pressure failure criteria. As a result it was obtained that the failure probability of the grouped flaws increases 10% in comparison with the corresponding flaws evaluated individually

    Performance analysis of various machine learning algorithms for CO2 leak prediction and characterization in geo-sequestration injection wells

    Get PDF
    The effective detection and prevention of CO2 leakage in active injection wells are paramount for safe carbon capture and storage (CCS) initiatives. This study assesses five fundamental machine learning algorithms, namely, Support Vector Regression (SVR), K-Nearest Neighbor Regression (KNNR), Decision Tree Regression (DTR), Random Forest Regression (RFR), and Artificial Neural Network (ANN), for use in developing a robust data-driven model to predict potential CO2 leakage incidents in injection wells. Leveraging wellhead and bottom-hole pressure and temperature data, the models aim to simultaneously predict the location and size of leaks. A representative dataset simulating various leak scenarios in a saline aquifer reservoir was utilized. The findings reveal crucial insights into the relationships between the variables considered and leakage characteristics. With its positive linear correlation with depth of leak, wellhead pressure could be a pivotal indicator of leak location, while the negative linear relationship with well bottom-hole pressure demonstrated the strongest association with leak size. Among the predictive models examined, the highest prediction accuracy was achieved by the KNNR model for both leak localization and sizing. This model displayed exceptional sensitivity to leak size, and was able to identify leak magnitudes representing as little as 0.0158% of the total main flow with relatively high levels of accuracy. Nonetheless, the study underscored that accurate leak sizing posed a greater challenge for the models compared to leak localization. Overall, the findings obtained can provide valuable insights into the development of efficient data-driven well-bore leak detection systems.<br/

    Leaks Detection in a Pipeline Using Artificial Neural Networks

    No full text
    corecore