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A B S T R A C T   

The effective detection and prevention of CO2 leakage in active injection wells are paramount for safe carbon 
capture and storage (CCS) initiatives. This study assesses five fundamental machine learning algorithms, namely, 
Support Vector Regression (SVR), K-Nearest Neighbor Regression (KNNR), Decision Tree Regression (DTR), 
Random Forest Regression (RFR), and Artificial Neural Network (ANN), for use in developing a robust data- 
driven model to predict potential CO2 leakage incidents in injection wells. Leveraging wellhead and bottom- 
hole pressure and temperature data, the models aim to simultaneously predict the location and size of leaks. 
A representative dataset simulating various leak scenarios in a saline aquifer reservoir was utilized. The findings 
reveal crucial insights into the relationships between the variables considered and leakage characteristics. With 
its positive linear correlation with depth of leak, wellhead pressure could be a pivotal indicator of leak location, 
while the negative linear relationship with well bottom-hole pressure demonstrated the strongest association 
with leak size. Among the predictive models examined, the highest prediction accuracy was achieved by the 
KNNR model for both leak localization and sizing. This model displayed exceptional sensitivity to leak size, and 
was able to identify leak magnitudes representing as little as 0.0158% of the total main flow with relatively high 
levels of accuracy. Nonetheless, the study underscored that accurate leak sizing posed a greater challenge for the 
models compared to leak localization. Overall, the findings obtained can provide valuable insights into the 
development of efficient data-driven well-bore leak detection systems.   

1. Introduction 

The urgent need to combat climate change has led to the exploration 
of various strategies, including but not limited to carbon capture and 
storage (CCS), the development of renewable energy sources and the 
adoption of hydrogen, as well as better energy efficiency measures 
(Hong, 2022; Su et al., 2022; Harati et al., 2023b). Among these stra-
tegies, CCS stands out as a promising solution. It involves the capture of 
carbon dioxide (CO2) emitted from industrial processes or power plants 
and its storage in, for example, deep underground geological formations 
such as saline aquifers in order to prevent their release into the atmo-
sphere (Bickle, 2009). The injection of CO2 into these geological 

reservoirs has demonstrated immense potential for the secure seques-
tration of large quantities of CO2, thereby mitigating greenhouse gas 
emissions. 

CO2 injection wells play a central role in the success of CCS opera-
tions because they serve as conduits through which the captured CO2 is 
injected into subsurface reservoirs (Kim et al., 2023). Sequestration 
projects typically operate over several decades, involving the continuous 
and constant injection of CO2 (null et al., 2020). However, this pro-
longed operational duration brings with it the challenge to ensure the 
consistent and reliable containment of the injected CO2. Over time, the 
potential for wellbore integrity issues such as leaks may emerge as a 
primary concern. Leaks from CO2 injection wells can occur due to 
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various factors, including failures of casing, tubing or packer material, 
cement degradation, or fractures in geological formations (Bachu and 
Watson, 2009; Benge, 2009; Le Guen et al., 2009; Bai et al., 2015). If not 
promptly detected and mitigated, CO2 leaks could compromise the 
overall effectiveness of CCS operations and pose significant environ-
mental, safety, and economic risks. Preventing and addressing such in-
cidents becomes critical not only to safeguard the surrounding 
environment but also to maintain public confidence in CCS as a viable 
climate change mitigation strategy (Chen et al., 2015). 

The evolution of leak detection systems in wellbores and pipelines 
has been closely intertwined, with advancements in one field often 
inspiring innovations in the other. For several decades, leak detection in 
both wellbores and pipelines was primarily a reactive process, relying on 
manual inspection and visual observation (Sandberg et al., 1989). This 
approach was prone to human error and often resulted in delayed re-
sponses to leaks. As the oil and gas industry grew and regulations 
tightened, the need for more reliable and proactive leak detection 
methods became increasingly apparent. For the wellbore systems, as 
downhole technologies advanced, their integration into leak detection 
systems became more prevalent. For instance, temperature logs, 
downhole cameras, thermal-decay logs, noise logs or mechanical ap-
proaches such as spinners, calipers, and isolation packers became reg-
ular measures for leak detection in wellbores (Johns et al., 2009; Johns 
et al., 2011; Julian et al., 2007; Yang et al., 2019; Bilotu Onoabhagbe 
et al., 2020). However, these methods often involve a combination of 
manual labor and equipment deployment which can incur substantial 
expenses. Additionally, they require periodic checks and data collection 
which can lead to delays in the identification of leaks and appropriate 
responses. More recent leak detection systems consist of distributed 
coverage sensors, such as acoustic waves, pressure, or temperature 
sensor systems, which can detect any anomalies indicative of leakage 
along the pipeline or wellbore length. However, the robustness of these 
systems can be a concern (Meribout et al., 2020). 

With industry’s rapid moves toward automation and digitization, the 
integration of advanced technologies such as artificial intelligence and 
particularly, machine learning, can significantly enhance the efficiency 
and effectiveness of leak detection processes. Machine learning algo-
rithms excel at identifying patterns, relationships, and trends in large 
and diverse datasets (Mahesh, 2020). The analysis of large volumes of 
data collected from sensors and wellbore instrumentation using machine 
learning algorithms can identify subtle patterns and anomalies that may 
indicate leakages at the early stages. The integration of machine 
learning could enable continuous, real-time monitoring, which is a 
notable departure from periodic manual checks and data collection (Li 
et al., 2022). The ability to monitor wellbore conditions without inter-
ruption means that any deviation from normal conditions can be 
immediately flagged, allowing for quick intervention and preventive 
measures (Manikonda et al., 2021). The cost implications are significant 
as well. While traditional methods involve both human resources and 
the deployment of specialized equipment, machine learning-based sys-
tems have the potential to reduce these expenses once trained and 
deployed. 

In recent years, the predominant focus of data-driven leak detection 
system advancements has centered on the piping sector, with signifi-
cantly less attention directed toward wellbore systems in the available 
literature. This imbalance highlights a gap in research and innovation, 
underscoring the need for increased exploration and advances in the 
application of machine learning methodologies to enhance wellbore 
leak detection systems. Numerous studies have so far noted the precision 
of machine learning algorithms in identifying, pinpointing, or catego-
rizing leaks in pipeline systems with a high degree of accuracy. Early 
studies, such as (Barradas et al., 2009) demonstrated the effectiveness of 
employing the artificial neural network (ANN) algorithm to predict leak 
location in a simple-structured pipeline model using inlet and outlet 
pressure. Similarly, (Mandal et al., 2012) proposed a model for leak 
identification based on rough set theory and support vector machine 

(SVM) classifier algorithms using pressure distribution data along a 
pipeline and achieved a good accuracy in prediction of leakage. How-
ever, their model was unable to quantify the location and size of the 
leak. Studies by (Giunta et al., 2019) and (Xiao et al., 2019) explored the 
utilization of acoustic wave patterns, demonstrating the capability to 
differentiate between leak situations and normal operations based on 
the Gaussian Mixture models and the SVM algorithm, respectively. 
However, as with previous methodologies, these models encountered 
limitations in precisely quantifying a leak’s dimension and location 
along the pipeline. More recent studies have tried to address these 
challenges by incorporating more input data features to the predictive 
models. For instance, (Kim et al., 2021) developed an ANN model to 
accurately predict leak location and size using pressure, temperature, 
and mass flowrate data in a gas pipeline model, though the correlation of 
leak characteristics with input features was not investigated. Similarly, 
(Yang et al., 2022) proposed an integrated approach for leak localization 
and sizing, leveraging pressure and vibration input data in a convolu-
tional neural network (CNN) algorithm. (Eastvedt et al., 2022) also 
employed a supervised regression algorithm to predict various leak sizes 
in a pipeline model based on temperature and flowrate input data. 

Despite these extensive studies, the existing literature still lacks a 
comprehensive comparative analysis of various machine learning algo-
rithms tailored specifically for quantitative leak characterization in 
pipeline systems, notably in terms of localization or sizing. While some 
researchers have examined the performance of different data-driven 
models, these evaluations have often been more generalized for leak 
identification rather than characterization (Kampelopoulos et al., 2020, 
Liu et al., 2022,Ullah et al., 2023). The literature is even more sparse in 
terms of detailed investigations of the application and performance of 
machine learning algorithms for leak detection and characterization in 
the context of data-driven wellbore leak detection systems. A few studies 
have investigated the effectiveness of data-driven models for fluid loss 
detection during drilling operations (Moazzeni et al., 2012; Sabah et al., 
2019; Abbas et al., 2019; Osarogiagbon et al., 2021; Chi et al., 2023). 
However, the existing literature still lacks studies of the application of 
these methodologies for the detection and characterization of leaks in 
wellbores during gas injection processes. 

Active wellbores, particularly in CCS projects, operate under unique 
conditions that demand constant surveillance in order to ensure the 
uninterrupted injection of CO2. The established capabilities of machine 
learning in recognizing patterns and identifying anomalies offer sub-
stantial potential in safeguarding wellbores against leaks and other 
integrity challenges. Given the demonstrated successes in other perti-
nent areas of leak detection, specifically in the piping sector, the present 
study aims to extend this paradigm into the domain of wellbore leak 
detection. The methodological approach used in this study represents a 
pioneering effort in leveraging machine learning for the prediction of 
potential leak incidents in an active injection well during geological CO2 
sequestration. 

The methodology of this study diverges from previous approaches in 
several key aspects. Firstly, we focus explicitly on wellbore systems, 
which have received relatively scant attention in the existing literature 
on leak detection methodologies. The principal objective of this paper is 
to develop a robust data-driven model as an efficient alternative to 
costly, time-consuming, and resource-intensive traditional wellbore leak 
detection methods. For this purpose, a comprehensive comparative 
analysis of the performance of various machine learning algorithms was 
conducted, following an approach similar to that described by (Li et al., 
2022). The algorithms considered are Support Vector Regression (SVR), 
K-Nearest Neighbor Regression (KNNR), Decision Tree Regression 
(DTR), Random Forest Regression (RFR), and the Artificial Neural 
Network (ANN). The approach taken in this study is innovative in its 
utilization of only wellhead and bottom-hole pressure and temperature 
data for leak detection. This represents a departure from traditional 
manual monitoring methods in emphasizing a transition towards 
cost-effective, digitalized methodologies within wellbore contexts. 
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Moreover, the holistic nature of this study and its focus on quantitative 
leak characterization in active CO2 injection wells contribute signifi-
cantly to the evolving landscape of machine learning applications for 
wellbore integrity management. Additionally, the paper comprehen-
sively investigates the correlation between leak characteristics and input 
features (pressure and temperature data), establishing the importance of 
these factors for precise leak detection and quantification in CO2 injec-
tion wells. 

2. Methodology 

2.1. Development of CO2 injection well model and data generation 

The dataset required for the training and evaluation of the predictive 
models was generated using the Schlumberger Pipesim steady-state flow 
simulator package. The simulator incorporates essential physical and 
operational variables such as those relating to well design and reservoir 
and fluid properties in order to accurately simulate the behavior 
involved in the CO2 injection process. Given the absence of real-world 
data specifically pertaining to CO2 leakage from an active injection 
well, this study focused on developing a realistic CO2 injection well 
model. This model was meticulously created based on authentic data 
sourced from a prospective CO2 storage site located in the Bunter 
Sandstone Formation in the Southern North Sea, as outlined by (James 
et al., 2016). This storage site represents a deep saline aquifer and has 
been suggested for CO2 storage in several previous studies (Noy et al., 
2012; Williams et al., 2013; Aminu et al., 2017). The geological and 
reservoir properties of this site have been comprehensively documented 
elsewhere (Harati et al., 2023a). Table 1 provides a summary of the key 
parameters characterizing the created injection well model. 

The thermodynamic properties and behavior of CO2 were simulated 
using the GERG-2008 equation of state within Pipesim software based 
on the characteristics of CO2 shown in Table 2. The injection fluid was 
assumed to be pure (100%) CO2. Two critical physical properties that 
significantly impact the flow and transport of CO2 in the injection well 
are its density and viscosity. Accordingly, to validate the accuracy of the 
pressure-volume-temperature (PVT) model created in Pipesim, the 
predicted densities and viscosities of CO2 were compared against those 
of pure CO2 calculated using the ‘Thermophysical properties of fluid 

systems’ (Lemmon, 2010) published by the National Institute of Stan-
dards and Technology (NIST), for a range of possible operational con-
ditions corresponding to the simulation case, including temperatures 
from 0 to 60 ◦C and pressures from 1 to 200 bar. The results of the 
comparison indicate that the densities and viscosities predicted by the 
model differ from those calculated from the NIST by averages of only 
0.4% and 0.8% respectively, thus lying within a perfectly acceptable 
range. 

In the developed well model, the representation of leaks was ach-
ieved by introducing small perforations along the CO2 injection well. 
These artificial leaks were strategically generated at various locations in 
the well, with a depth interval of 100 m from the surface. To capture a 
range of potential leak magnitudes, each location was evaluated with six 
different leak sizes, defined in terms of the mass flow rate of CO2 from 
the leak point, as shown in Table 3. The leak sizes increase logarithmi-
cally from 0.0001 to 10 kg/s. 

The parameters used to simulate leaks in this study were deliberately 
chosen to encompass a diverse range of potential leak scenarios. It should 
be noted that prior studies, and particularly those focusing on leak 
detection systems in pipelines, often represented leaks as holes within the 
body of the piping and hence, related the leak size to the radius of the hole. 
However, this method is not always directly applicable to real-world 
scenarios and lacks the versatility needed for generalization. An innova-
tive approach is introduced in this study, which represents leak size as a 
rate. By quantifying leak sizes in terms of mass flow rate (ranging from 
0.0001 to 10 kg/s), we aimed to create a dataset that closely mimics a 
variety of potential leak scenarios in order to offer a more versatile and 
scalable model applicable to real-world cases. This rate-based represen-
tation can facilitate the assessment of the performance of predictive 
models across various magnitudes of leaks. 

For each leak scenario created, the CO2 pressure and temperature 
profiles were recorded along the entire wellbore length from the well-
head down to the bottom-hole. The resulting dataset was structured so 
as to enable the association of each recorded pressure and temperature 
profile with its corresponding leak scenario specified in terms of leak 
location and size. This dataset served as the foundation for the training 
of the predictive models in the next stage of the study. It encompasses 
three input features of wellhead pressure, bottom-hole pressure, and 
bottom-hole temperature, each being paired with two target labels of 
leak location and leak size. 

The correlations between input features and output parameters were 
determined using the Pearson correlation coefficient, which is a statis-
tical measure that quantifies the strength and direction of a linear 
relationship between two continuous variables and can be expressed as 
follows (Xu and Deng, 2018): 

r =

∑n

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2 ∑n

i=1
(yi − y)2

√ (1)  

where r is the Pearson correlation coefficient, n is the number of ob-
servations, x and y are the values of the two variables, and x and y are 
the means of those two variables. 

All data were normalized before being used by the machine learning 
models. 

Table 1 
Field and well data for injection well model development (based on (James et al., 
2016)).  

Category Parameter Value Unit 

Reservoir properties Pressure 1.479 × 107 pa 
Temperature 317.35 K 
Depth 1450 m 
Thickness 189.5 m 
Permeability 1.618 × 10− 13 m2 

Drainage area 13.739 km2 

Mechanical skin factor 10 - 
Injection well design Tubing size 0.1397 m 

Wellhead temperature 4 ◦C 
Well deviation angle 0 degree 
CO2 injection rate target 63.29 kg/s  

Table 2 
CO2 properties adopted for PVT model generation in Pipesim.  

Parameter Value Unit 

Critical temperature 277.13 K 
Critical pressure 7.377 × 106 pa 
Critical volume 0.0939 m3/kg mol 
Acentric factor 0.239 - 
Molecular weight 44.01 kg/mol 
Specific gravity 1.53 - 
Boiling point 194.7 K  

Table 3 
Leak size cases defined for simulation.  

Leak type Leak rate [kg/s] Main flow stream loss [%] 

Very small  0.0001  0.000158 
Small  0.001  0.00158 
Moderate  0.01  0.0158 
Large  0.1  0.158 
Very large  1  1.58 
Extreme  10  15.80  

S. Harati et al.                                                                                                                                                                                                                                   



Process Safety and Environmental Protection 183 (2024) 99–110

102

2.2. Development of the machine learning model 

2.2.1. Comparison of models 
Five different well-established machine learning algorithms were 

selected for predictive model development: Support Vector Regression 
(SVR), K-Nearest Neighbor Regression (KNNR), Decision Tree Regres-
sion (DTR), Random Forest Regression (RFR), and the Artificial Neural 
Network (ANN). Each algorithm offers unique strengths that could 
potentially improve the accuracy of predictions made by the leak 
identification system. These algorithms are briefly described below. 

SVR is a variant of the SVM classification algorithm adapted for 
regression tasks (Smola and Schölkopf, 2004). Its main goal is to find a 
hyperplane in a higher-dimensional feature space that best fits the data 
points while restricting error to within a certain tolerance limit, ε. Un-
like traditional linear regression which aims to minimize error, SVR 
focuses on minimizing the number of training points that fall outside an 
ε-insensitive tube around the regression line (Cristianini and 
Shawe-Taylor, 2000). Data points outside this tube contribute to the loss 
function, while those inside are considered to fall within an acceptable 
margin of error. 

Given a training data set with n data points, each of which has m 
features and a corresponding target value yi, the SVR estimator function 
can be expressed as: 

f(x) = yi = w x+ b (2) 

where w is the weight vector, and b is the bias or deviation. SVR finds 
the hyperplane that best fits the data while keeping the errors within the 
specified tolerance level ε. The optimization problem for linear SVR can 
be formulated as: 

Minimize :

[
1
2
‖w‖2

+C
∑n

i=1
(ξi + ξ∗i )

]

(3)  

Subject to :

⎧
⎪⎪⎨

⎪⎪⎩

yi − w xi − b ≤ ε + ξi

w xi + b − yi ≤ ε + ξi

ξi, ξ∗i ≥ 0
(4)  

where C is the regularization parameter that controls the trade-off be-
tween the maximization of the margin and minimization of error, ε is the 
width of the ε-insensitive tube, and ξi and ξ∗i are slack variables that 
allow data points to lie inside the ε-tube or on the wrong side of the 
margin respectively. By introducing Lagrange multipliers and exploiting 
optimality constraints, the estimator function given by Eq. (2) can be 
expressed in the following explicit form (Thissen et al., 2004): 

f(x) =
∑n

i=1
(αi − α∗

i )K(xi, x)+ b (5)  

where αi and α∗
i are Lagrangian multipliers and K(xi, x) is the kernel 

function. It must be noted that the performance of SVR generalization 
depends on appropriate settings of the hyperparameters and the kernel 
function. The SVR parameters C and ε, control the complexity of the 
prediction (regression) model, and kernel functions change the dimen-
sionality of the input space in order to perform the regression task with 
more confidence. In this paper, a linear kernel function is used for the 
SVR model and the hyperparameters were tuned using a comprehensive 
grid search. 

KNNR is a non-parametric algorithm used for regression tasks. Un-
like other regression algorithms that involve fitting a model to data, 
KNNR makes predictions based on the proximity of a new data point to 
its K-nearest neighbors in the feature space. The ‘K′ in KNNR refers to the 
number of neighbors that will be considered during the prediction, and 
this is an important hyperparameter that needs to be determined before 
applying the algorithm. The distance between data points is typically 
calculated using the Euclidean distance metric, which calculates the 

distance, d, between two data points xi and xj as follows: 

d
(
xi, xj

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

r=1
wr
(
xir − xjr

)2

√

(6)  

where m is the number of features, xir and xjr are the rth feature values of 
the data points, and wr is the weight assigned to the rth feature. The 
weight value of a feature reflects its relative importance. 

Given a new data point for which a prediction must be made, KNNR 
looks at the ‘K′ nearest neighbors in the training dataset based on the 
distance obtained from Eq. (6) and calculates the weighted average of 
the output variables of these neighbors using the following equation: 

ŷi =

∑K

i=1
(wi yi)

∑K

i=1
wi

(7) 

DTR is a non-linear algorithm that constructs a tree-like model by 
recursively splitting the data in a top-down manner based on the values of 
the input features in order to make predictions (Czajkowski and Kretowski, 
2016; Pathak et al., 2018). The process involves the selection of the best 
feature and its corresponding value to split the data at each node so as to 
minimize the impurity or variance in the target values. The decision tree 
continues to split the data into subsets until a stopping criterion is met, 
which could be a maximum tree depth, a minimum number of samples in a 
leaf node, or a minimum decrease in variance achieved by a split. To make 
a prediction for a new data point, the algorithm traverses the decision tree 
from the root node to a leaf node, where it provides the predicted output 
value. For regression, the predicted value is typically the average of the 
values of the target variable in that leaf node. 

RFR is an ensemble learning technique that builds multiple decision 
trees and combines their outputs to make predictions (Breiman, 2001; 
Segal, 2004). Each decision tree is constructed from a bootstrapped 
subset of the training data, and at each split only a random subset of 
features is considered. This randomization introduces diversity in the 
trees, which helps to reduce overfitting and improves the model’s 
generalization (Grömping, 2009). Each decision tree is constructed 
using the same process as described for the DTR algorithm. The algo-
rithm selects the best feature and split point at each node so as to 
minimize the error metric being used, and the trees grow until a stopping 
criterion is met. The final prediction in RFR is typically the average of 
the predictions from all individual decision trees. 

ANN is a type of deep learning model inspired by the structure and 
function of the human brain. It consists of interconnected layers of nodes 
(neurons) that process and propagate information (Jain et al., 1996). In 
regression tasks, the ANN typically has an input layer, one or more 
hidden layers, and an output layer. The input layer receives the input 
features, the hidden layers process the data, and the output layer pro-
duces the predicted target value. The information flow in a neural 
network is a typically unidirectional process from the input layer 
through the hidden layers to the output layer called feed-forward 
propagation (Svozil et al., 1997). Each neuron in the network takes in-
puts from the neurons in the previous layer, performs a weighted sum of 
these inputs, adds a bias term, and then passes the result through an 
activation function. Mathematically, the output or activation of a 
neuron (y) can be expressed as: 

y = f

(

b+
∑n

i=1
xiwi

)

(8)  

where f is the activated function, b is the bias term which is an additional 
parameter that allows the neuron to learn an offset from the weighted 
sum, n is the number of input features from the previous layer connected 
to the current neuron, xi is the ith input feature, and wi is the weight 
associated with the ith input feature and the current neuron. 
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The activation function is applied to introduce nonlinearity, which 
helps the ANN to increase its ability to learn complex mapping re-
lationships. In this study, we used the rectified linear unit (ReLU) 
function which is typically employed for regression tasks. This function 
outputs the input value if it is positive, and zero if it is not positive 
(Agarap, 2018). This introduces sparsity in the network by setting 
negative values to zero, thereby making it more computationally 
efficient. 

ReLU(x) = max(0, x) (9)  

where x is the input vector which needs to be activated. 
During the training process, the ANN learns the optimal weights and 

biases for each neuron so as to minimize the prediction error, in most 
cases using optimization techniques such as gradient descent. 

The choice of the above-explained algorithms in this study was 
driven by the aim to provide a thorough assessment of diverse machine 
learning approaches, taking into consideration their effectiveness in 
regression tasks. Each selected algorithm represents a distinct approach 
to training and prediction in regression problems. For example, SVR 
operates according to the concept of hyperplanes, KNNR utilizes 
instance-based learning, DTR constructs decision trees, RFR aggregates 
decision trees, and the ANN employs multi-layer perceptrons. By 
including a variety of approaches, we sought to evaluate if and how 
different algorithmic methodologies perform better in predicting CO2 
leakage characteristics in injection wells in the context of this study. 
Furthermore, these algorithms are widely implemented and studied, and 
are readily accessible in machine learning libraries, thus ensuring 
accessibility and ease of implementation. 

2.2.2. Optimization, selection, and evaluation of models 
The dataset was initially split into two subsets for training and testing 

at a ratio of 80:20. In order to ensure the robustness and generalization 
ability of the machine learning models and reduce the risk of overfitting, 

the training process was performed within a five-fold cross-validation 
framework. In this process, the training data were divided into five 
subsets or folds, maintaining the distribution of target classes in each 
fold. During training, four subsets were used for training, while the fifth 
subset was used for validation in each fold. The iterative training and 
evaluation cycles during the cross-validation process are depicted in  
Fig. 1. An evaluation of the performance of the models was conducted 
using three key metrics typically used for regression tasks: root mean 
squared error (RMSE), mean absolute error (MAE), and the coefficient of 
determination (R2). These are expressed as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yi − ŷ i̇

)2

√

(10)  

MAE =
1
n

∑n

i=1

(
yi − ŷ i̇

)
(11)  

R2 = 1 −

∑n

i=1
(yi − ŷ i̇)

2

∑n

i=1
(yi − y)2

(12)  

where n is the number of data points, yi is the actual target value of the ith 

datapoint, ̂yi̇ is the predicted value of the ith datapoint, and y is the mean 
value of yi. MAE, RMSE, and R2 are standard metrics in regression 
problems and their selection for the evaluation of CO2 leak prediction 
aligns with the nature of the problem, in the sense that we are predicting 
continuous values of leak size and location. MAE focuses on the absolute 
average magnitude of error, while RMSE emphasizes larger errors due to 
its squaring mechanism. In the context of this study, where the accurate 
detection of even small CO2 leaks is critical, this combined approach 
allows us to gauge both typical and larger deviations in prediction ac-
curacy. Furthermore, R2 complements MAE and RMSE by quantifying 

Fig. 1. Machine learning model development process.  
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the model’s explanatory power. It indicates how well each machine 
learning model captures the variations in CO2 leak sizes or locations 
based on the input parameters. This can help in understanding of how 
effectively the models capture the underlying patterns in leak prediction 
and can fit on the dataset. Accordingly, the integration of these metrics 
can facilitate a more precise and comprehensive assessment of the ma-
chine learning models. In addition to the evaluation metrics mentioned 
above, the performance of the models was also compared using the 
Taylor diagram (Taylor, 2001). 

For all algorithms, an exhaustive grid search was conducted over the 
hyperparameters in order to optimize the performance of the models 
before training. This process involved the exploration of a predefined 
range of hyperparameter values for each algorithm so as to identify the 
best hyperparameter configuration that would yield the best model 
performance. The five-fold cross-validation process was also employed 
during hyperparameter tuning in order to avoid bias and ensure a fair 
evaluation of each hyperparameter configuration. Sets of parameters 
resulting in the lowest average value of mean squared error (MSE) across 
all folds were included in the modelling. Table 4 presents the hyper-
parameters evaluated and their corresponding values for each 
algorithm. 

The SVR model was created using the Multi Output Regressor 
wrapper from the scikit-learn library in order to allow a multi-output 
regression model for the simultaneous prediction of both the location 
and size of a leak. The model used a linear kernel with values of the 
optimum regularization parameter, epsilon, and tolerance of 100, 0.001, 
and 0.001 respectively. In addition, the shrinking heuristic was acti-
vated in order to enhance the speed and precision of the SVR model. For 
the KNNR model, the K-value was optimally set to 2, which means that 
the model considers the two nearest neighbors in making predictions. 
Moreover, the distance weight function and brute-force algorithm were 
selected to provide better model performance. The DTR and RFR models 
were both optimized with values of maximum tree depth, minimum 
sample split, and minimum sample leaf of 15, 2, and 1 respectively, with 
no minimum impurity decrease considered. For the RFR model, the 
optimum number of trees was found to be 10. Finally, the ANN model 
was created with two hidden layers containing 128 neurons each. As 
mentioned earlier, the layers used the ReLU activation function which 

introduces non-linearity into the network. The output layer of the ANN 
consisted of two nodes corresponding to the predicted leak location and 
leak size. The model was compiled using the MSE loss function and the 
Adam optimizer and trained with a batch size of 8 for a total of 200 
epochs. The number of epochs was optimized against MSE values, as 
illustrated in Fig. 2. 

After the cross-validated hyperparameter optimization, the perfor-
mance of the models was evaluated based on values of RMSE, MAE, and 
R2 in the cross-validation and test phases. As depicted in Fig. 1, the cross- 
validation process involved five iterations, each of which involved 
training and validation. Once the cross-validation loop was completed, 
the average values of the evaluation metrics across all folds were 
calculated for each model to allow the comparison of model perfor-
mance. Thereafter, the evaluation metrics for each model were assessed 
against the testing data subset consisting of 20% of the total original 
data which had not yet been seen by the models. 

3. Results and discussion 

3.1. Analysis of the data generated 

Fig. 3 depicts the dataset generated and utilized for the machine 
learning modelling. Leakage in the wellbore clearly resulted in a 
noticeable pressure drop at both the wellhead and bottom-hole. How-
ever, a rise in the bottom-hole temperature was observed to be associ-
ated with the leakage, which can be explained by the Joule-Thompson 
effect as a result of a sudden CO2 pressure drop and volume expansion at 
the point of leakage (Ziabakhsh-Ganji and Kooi, 2014). Fig. 3 also shows 
values of the Pearson correlation coefficient for the features, from which 
the linear relationship between each pair of input and output variables 
can be determined. As observed, the data points illustrate a coherent 
pattern without apparent outliers or significant non-linearity, which 
aligns with the assumptions of the Pearson correlation method (Xu and 
Deng, 2018). The value of the Pearson correlation coefficient generally 
ranges between − 1 and + 1. A value of + 1 indicates a perfect positive 
linear relationship which means that as the input variable increases, the 
output variable also increases proportionally. On the other hand, a 
correlation of − 1 indicates a perfect negative linear relationship 
meaning that as the input variable increases, the output variable de-
creases proportionally. A correlation of 0 indicates no linear relationship 
between the variables. As shown in the figure, the highest Pearson 
correlation coefficient for leak location was found to be with wellhead 
pressure followed by well bottom-hole temperature and then well 
bottom-hole pressure. This means that, as the depth of the leak location 
increases, more pronounced effects are generally observed in wellhead 
pressure compared to the other two parameters. On the other hand, the 
well bottom-hole pressure showed the strongest correlation with leak 
size, followed by well bottom-hole temperature and then wellhead 
pressure. Unlike well bottom-hole temperature, both well bottom-hole 
pressure and wellhead pressure showed a negative linear relationship 
with leak size, which is due to the pressure loss resulting from the leak. 

Table 4 
Hyperparameters, search range, and optimal values used for the optimization of 
the machine learning algorithms.  

Algorithm Hyperparameter Search range Optimal parameter 
setting 

SVR Regularization parameter 
(C) 

0.1 - 200 100 

Epsilon (ε) 0.001 - 1 0.001 
Shrinking True, false True 
Tolerance 0.001 - 1 0.001 

KNNR Number of neighbors (K) 1 - 5 2 
Weighting scheme Uniform, 

distance 
Distance 

Algorithm type Ball tree, kd tree, 
brute 

Brute 

DTR Maximum depth of trees 0 - 25 15 
Minimum samples split 2 - 10 2 
Minimum samples leaf 1 - 5 1 
Minimum impurity 
decrease 

0 – 0.5 0 

RFR Number of trees 1 - 100 10 
Maximum depth of trees 0 - 25 15 
Minimum samples split 2 - 10 2 
Minimum samples leaf 1 - 5 1 
Minimum impurity 
decrease 

0 – 0.5 0 

ANN Number of hidden layers 1 - 5 2 
Number of neurons in 
each layer 

8 - 128 128 

Batch size 8 - 128 8  

Fig. 2. ANN epochs versus value of MSE during training.  
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3.2. Analysis of the performance of the machine learning models 

The performance analysis of the five models employed was carried 
out by comparing the values of RMSE, MAE, and R2 of the models during 
cross-validation as well as in the testing phases. Table 4 shows the 
performance of the models in predicting leak location and size in each 

phase. The model with the highest R2 and the lowest RMSE and MAE 
values can be considered to be the best model. 

For the prediction of leak location, SVR and KNNR demonstrated the 
strongest performance among the models evaluated. During the cross- 
validation phase, the highest accuracy was achieved by the SVR model 
with values of RMSE, MAE, and R2 of 26.8004, 19.3807, and 0.9953 

Fig. 3. Results for all simulated leakage scenarios: (a) pressure and temperature profiles; (b) Pearson correlation coefficients for features: BH-P (well bottom-hole 
pressure), WH-P (wellhead pressure), and BH-T (well bottom-hole temperature). 
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respectively, followed by the KNNR, DTR, ANN and then the RFR 
models. On the other hand, during the testing phase, the KNNR model 
showed the best performance with values of RMSE, MAE, and R2 of 
7.3945, 3.9189, and 0.9996 respectively, indicating its potential for 
real-world applications. In terms of leak size detection, the most accu-
rate model during both the cross-validation and testing phases was also 
KNNR, with values of RMSE, MAE, and R2 respectively of 40.9516, 
17.8104, and 1 in the cross-validation phase and 16.5128, 9.4763, and 1 
in the testing phase. 

The correlation between the predicted and actual values for leak 
location and leak size during the test phase for each model is depicted on 
scatterplots in Fig. 4. The optimal scenario in these plots occurs when all 
points are positioned along a linear line with a slope of 1, indicating that 
all predictions align perfectly with actual values. According to the 
figure, the predictions for leak location were considerably more accurate 
than those for leak size detection for all of the models evaluated. Most 
location prediction points lie on or near the bisection line, while the 
predictions for leak size are more dispersed. Contrary to this visual 
representation, however, the results for the evaluation metrics in Table 5 
suggested relatively more precise results for leak size detection than leak 
location detection. This discrepancy between the graphical representa-
tion and the calculated evaluation metrics occurred due to the excep-
tionally small logarithmic scale of values of leak size. While the 
evaluation metrics suggested relatively precise results for leak size 
detection, the minute scale of values, especially below 0.01 kg/s, posed 
challenges in accurate prediction, and this is not fully reflected in the 
evaluation metrics. To explain this issue more clearly, we compared the 

actual and predicted values by each model in Fig. 5. As observed, the 
leak location predictions made by the models were generally more 
precise than leak size predictions and the predicted values become more 
accurate as the size of the leak increased. Most models had difficulty 
capturing leak sizes smaller than 0.01 kg/s, while they performed 
relatively more accurately in predicting leak sizes of 0.1, 1, and 10 kg/s. 
Overall, from the results of the evaluation metrics and scatterplots, it is 
clear that the predictions of the KNNR model are more accurate and 
reliable than those of the other models. 

In addition to the routine evaluation metrics mentioned above, a 
Taylor diagram was also generated to provide a better understand and 
compare the performance of the models in the prediction of leak location 
and size. As depicted in Fig. 6, the diagram shows the relationship be-
tween the standard deviation (Gray radial axis), the Pearson correlation 
coefficient (angular axis), and the RMSE value (turquoise radial axis) of 
the predictions made by the models. In this diagram, the closer a model 
is to the standard deviation and correlation coefficient of 1, the more 
accurate its predictions are (Taylor, 2001). Here, the KNNR model 
demonstrates the highest performance in terms of the detection of both 
leak location and leak size, followed by the SVR and ANN models. 

The superior performance of the KNNR model in this study compared 
to the other models employed can be attributed to several factors. 
Firstly, KNNR is an instance-based learning algorithm that operates on 
the principle of localized learning. It does not assume a functional form 
for the relationship between input and output but relies on the proximity 
of similar instances in the feature space (Zhang et al., 2018). Unlike 
many other algorithms that make strong assumptions about the 

Fig. 4. Correlation between predicted leak locations and sizes versus actual values for every model. Note that the scale for leak size plots is logarithmic so that the 
accuracy of predictions is shown more clearly. 

Table 5 
Performance evaluation metrics for cross-validation and testing phases.  

Algorithm Cross-validation Test 

SVR KNNR DTR RFR ANN SVR KNNR DTR RFR ANN 

RMSE for leak size detection  1123.6341  40.9516  3874.9188  3392.1751  638.3439  285.6398  16.5128  786.0213  808.8635  173.3158 
MAE for leak size detection  609.3570  17.8104  524.3281  754.3958  220.2344  277.8270  9.4763  200.8800  274.1231  105.1970 
R2 for leak size detection  0.9930  1.0000  0.9026  0.9248  0.9948  0.9996  1.0000  0.9966  0.9964  0.9998 
RMSE for leak localization  26.8004  77.3911  164.2833  175.4284  108.5161  19.7066  7.3945  113.7593  66.9943  58.8155 
MAE for leak localization  19.3807  35.9865  80.0000  87.5121  45.2612  11.7126  3.9189  58.8235  41.7647  46.4368 
R2 for leak localization  0.9953  0.9653  0.8523  0.8288  0.8396  0.9973  0.9996  0.9109  0.9691  0.9762  
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Fig. 5. Comparison of actual leak locations and sizes versus values predicted by the models. Note that the scale for leak size plots is logarithmic so that the accuracy 
of predictions is shown more clearly. 
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underlying data distribution or model structure, KNNR is 
non-parametric (Song et al., 2017). This ability to discern patterns based 
on nearest neighbors might be advantageous in leak detection tasks 
where the relationship between pressure, temperature, and leaks might 
not strictly adhere to a predetermined mathematical model. 

Moreover, the consistency in the performance of the KNNR model in 
both leak location and leak size detection suggests that the dataset used 
may be well-suited to this algorithm. Different algorithms often perform 
differently depending on the characteristics of the dataset involved 
(Raju et al., 2023), and the fact that the KNNR model is performing 
accurately indicates that the features of the data align with its modelling 
capabilities. On the other hand, for the case of the ANN, the performance 
of the model often heavily relies on the amount and quality of data, and 
in the context of this study, the dataset might not have been extensive 
enough to fully leverage the potential of this algorithm (Çolak, 2021). 
Furthermore, according to the Taylor diagrams, the worst models for the 
prediction of both leak location and size were the decision tree-based 
models, namely DTR and RFR. This might be due to their strict and 
explicit rule-based learning approach that may result in overfitting and 
consequently lower accuracy of prediction during the testing phase 
(Elmaz et al., 2020). 

4. Limitations of the study and future research directions 

This study, despite its contributions, is not without limitations, and 
there exist promising opportunities for future research in the field of CO2 
injection well leakage prediction using machine learning. These limi-
tations provide a valuable context for the interpretation of the present 
findings and also pave the way for potential future research endeavors 
aimed at overcoming these challenges. 

In addressing the validation of the obtained results, a key limitation 
in this study was the unavailability of actual pressure and temperature 
data from a real CO2 injection well, particularly for cases involving 
leakage. Therefore, we relied on a representative dataset generated from 
detailed numerical simulations of leakage scenarios. While simulated 
data offers control and allows the systematic exploration of various 
scenarios, it might not fully encapsulate the complexities and nuances 
present in data from real-world operational settings. This study metic-
ulously optimized the numerical simulations, validating the thermody-
namic properties of CO2 against NSTA data under simulated operational 

conditions to enhance the reliability of the methodology and results. 
Furthermore, to develop predictive models for CO2 leak detection and 
ensure their generalization ability, a rigorous cross-validation frame-
work was employed with various purposes, including model optimiza-
tion and comparison and ensuring the robustness and reliability of the 
predictive models. However, despite these efforts, it must be acknowl-
edged that the lack of actual field data remains a limitation of this study 
given the likelihood of inherent differences between simulated and real- 
world datasets. The utilization of real-world operational data will be 
crucial for future research endeavors in aiming to adapt predictive 
models to the complexities and unpredictabilities encountered in prac-
tical deployment scenarios. 

Another limitation of this study was that the predictive models 
exhibited reduced accuracy in quantifying leak sizes below a threshold 
of 0.01 kg/s. It should be noted that this threshold value represents an 
incredibly small proportion (approximately 0.0158%) of the primary 
CO2 flow within the well. Pressure and temperature changes caused by 
leaks with sizes below this value are exceptionally subtle and might fall 
below the threshold of detectability due to inherent system noise or 
limitations in sensor precision, thereby posing a challenge for any 
detection system as well as the predictive models developed in this 
study. Future research could explore innovative methods to address this 
challenge, using, for example, advances in sensor technology aimed at 
enhancing the precision and sensitivity of leak detection systems, 
employing multiple sensors at optimized depths within the injection 
well, and augmenting predictive models with additional data features 
such as those of acoustic signals in addition to wellhead and bottom-hole 
temperature and pressure data. 

Data feature engineering and the exploration of alternative model-
ling techniques represent two promising pathways toward improved 
model sensitivity and prediction accuracy without necessitating sub-
stantial modifications to the existing input parameters. Other modelling 
techniques such as advanced machine learning methodologies or hybrid 
models combining diverse algorithmic approaches may also offer op-
portunities to refine predictive models. These strategies will be central 
to our future research endeavors in this field. 

5. Conclusions 

In this study, five different well-known machine learning regression 

Fig. 6. Taylor diagrams for predictions of leak size and location made using each model.  
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algorithms were applied to develop a data-driven model for the pre-
diction of leakage in active CO2 injection wells. The performance of the 
models developed was compared according to the RMSE, MAE, and R2 

metrics as well as Taylor diagrams using a five-fold cross-validation 
scheme and also using an independent testing data subset. Additionally, 
a comprehensive hyperparameter tuning method was used to optimize 
each model before training. The dataset utilized includes three input 
features of wellhead pressure, bottom-hole pressure, and bottom-hole 
temperature, paired with two output variables of leak location and 
leak size. The investigation using a Pearson correlation analysis has 
provided key insights into the relationships between these variables and 
leakage characteristics. Notably, wellhead pressure emerged as a pivotal 
indicator of leak location, showing a positive linear correlation with the 
depth of the leak. Conversely, well bottom-hole pressure exhibited the 
strongest association with leak size, displaying a negative linear rela-
tionship. The study further demonstrates that the KNNR model generally 
outperforms other models in the detection of both the location and size 
of leaks. This suggests that the KNNR model is robust, stable, and ver-
satile across different aspects of the problem. Another important finding 
is that, while all of the models tested excelled in the estimation of leak 
location, they struggled to accurately quantify the size of some leaks, 
particularly those characterized by a CO2 leakage rate of less than 
0.01 kg/s. This highlights the need for the further optimization or 
improvement of the sensitivity of the models to ensure that even the 
smallest leaks do not go unnoticed by the system. Nevertheless, the 
success of the models in identifying the precise locations of leaks in the 
well is a significant achievement in this study, given that the prompt and 
accurate localization of leaks is vital if timely remedial actions are to be 
taken to mitigate the risks associated with injection operations. 
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