157 research outputs found

    An extensive research survey on data integrity and deduplication towards privacy in cloud storage

    Get PDF
    Owing to the highly distributed nature of the cloud storage system, it is one of the challenging tasks to incorporate a higher degree of security towards the vulnerable data. Apart from various security concerns, data privacy is still one of the unsolved problems in this regards. The prime reason is that existing approaches of data privacy doesn't offer data integrity and secure data deduplication process at the same time, which is highly essential to ensure a higher degree of resistance against all form of dynamic threats over cloud and internet systems. Therefore, data integrity, as well as data deduplication is such associated phenomena which influence data privacy. Therefore, this manuscript discusses the explicit research contribution toward data integrity, data privacy, and data deduplication. The manuscript also contributes towards highlighting the potential open research issues followed by a discussion of the possible future direction of work towards addressing the existing problems

    Identity-based remote data integrity checking with perfect data privacy preserving for cloud storage

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Remote data integrity checking (RDIC) enables a data storage server, such as a cloud server, to prove to a verifier that it is actually storing a data owner’s data honestly. To date, a number of RDIC protocols have been proposed in the literature, but almost all the constructions suffer from the issue of a complex key management, that is, they rely on the expensive public key infrastructure (PKI), which might hinder the deployment of RDIC in practice. In this paper, we propose a new construction of identity-based (ID-based) RDIC protocol by making use of key-homomorphic cryptographic primitive to reduce the system complexity and the cost for establishing and managing the public key authentication framework in PKI based RDIC schemes. We formalize ID-based RDIC and its security model including security against a malicious cloud server and zero knowledge privacy against a third party verifier. We then provide a concrete construction of ID-based RDIC scheme which leaks no information of the stored files to the verifier during the RDIC process. The new construction is proven secure against the malicious server in the generic group model and achieves zero knowledge privacy against a verifier. Extensive security analysis and implementation results demonstrate that the proposed new protocol is provably secure and practical in the real-world applications.This work is supported by the National Natural Science Foundation of China (61501333,61300213,61272436,61472083), Fok Ying Tung Education Foundation (141065), Program for New Century Excellent Talents in Fujian University (JA1406

    An efficient confidentiality-preserving Proof of Ownership for deduplication

    Get PDF
    Data storage in the cloud is becoming widespread. Deduplication is a key mechanism to decrease the operating costs cloud providers face, due to the reduction of replicated data storage. Nonetheless, deduplication must deal with several security threats such as honest-but-curious servers or malicious users who may try to take ownership of files they are not entitled to. Unfortunately, state-of-the-art solutions present weaknesses such as not coping with honest-but-curious servers, deployment problems, or lacking a sound security analysis. In this paper we present a novel Proof of Ownership scheme that uses convergent encryption and requires neither trusted third parties nor complex key management. The experimental evaluation highlights the efficiency and feasibility of our proposal that is proven to be secure under the random oracle model in the bounded leakage setting. (C) 2015 Elsevier Ltd. All rights reserved

    Entangled cloud storage

    Get PDF
    Entangled cloud storage (Aspnes et al., ESORICS 2004) enables a set of clients to “entangle” their files into a single clew to be stored by a (potentially malicious) cloud provider. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files encoded in the clew. A clew keeps the files in it private but still lets each client recover his own data by interacting with the cloud provider; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of the clew as this will imply that none of the clients can recover their files. We put forward the first simulation-based security definition for entangled cloud storage, in the framework of universal composability (Canetti, 2001). We then construct a protocol satisfying our security definition, relying on an entangled encoding scheme based on privacy-preserving polynomial interpolation; entangled encodings were originally proposed by Aspnes et al. as useful tools for the purpose of data entanglement. As a contribution of independent interest we revisit the security notions for entangled encodings, putting forward stronger definitions than previous work (that for instance did not consider collusion between clients and the cloud provider). Protocols for entangled cloud storage find application in the cloud setting, where clients store their files on a remote server and need to be ensured that the cloud provider will not modify or delete their data illegitimately. Current solutions, e.g., based on Provable Data Possession and Proof of Retrievability, require the server to be challenged regularly to provide evidence that the clients’ files are stored at a given time. Entangled cloud storage provides an alternative approach where any single client operates implicitly on behalf of all others, i.e., as long as one client's files are intact, the entire remote database continues to be safe and unblemishe

    A Survey on Securing Images in Cloud Using Third Party Authentication

    Get PDF
    With the advancement of digital media and storage technology, large-scale image datasets are being exponentially generated today, image dataset categories such as medical images, satellite images each dataset contains thousands of images for further processing or study. Along with such fast-growing trend to image storage management systems to cloud it still faces a number of fundamental and critical challenges, among which storage space and security is the top concern. To ensure the correctness of user and user’s data in the cloud, we propose third party authentication system. In addition to simplified image storage and secure image acquisition, one can also apply compressed encryption for the purpose of storage overhead reduction. Finally we will perform security and performance analysis which shows that the proposed scheme is highly efficient for maintaining storage space and secure data acquisition

    Secure data storage and retrieval in cloud computing

    Get PDF
    Nowadays cloud computing has been widely recognised as one of the most inuential information technologies because of its unprecedented advantages. In spite of its widely recognised social and economic benefits, in cloud computing customers lose the direct control of their data and completely rely on the cloud to manage their data and computation, which raises significant security and privacy concerns and is one of the major barriers to the adoption of public cloud by many organisations and individuals. Therefore, it is desirable to apply practical security approaches to address the security risks for the wide adoption of cloud computing

    Data Auditing and Security in Cloud Computing: Issues, Challenges and Future Directions

    Get PDF
    Cloud computing is one of the significant development that utilizes progressive computational power and upgrades data distribution and data storing facilities. With cloud information services, it is essential for information to be saved in the cloud and also distributed across numerous customers. Cloud information repository is involved with issues of information integrity, data security and information access by unapproved users. Hence, an autonomous reviewing and auditing facility is necessary to guarantee that the information is effectively accommodated and used in the cloud. In this paper, a comprehensive survey on the state-of-art techniques in data auditing and security are discussed. Challenging problems in information repository auditing and security are presented. Finally, directions for future research in data auditing and security have been discussed

    Secure Multilevel Data Authentication System in Cloud Environment

    Get PDF
    Dynamic Proof of Storage is a useful cryptographic primitive that enables a user to check the integrity of outsourced files and to efficiently update the files in a cloud server. Though researchers have planned several dynamic PoS schemes in single user environments, the matter in multi-user environments has not been investigated sufficiently. A sensible multi-user cloud storage system wants the secure client-side cross-user de-duplication technique, that permits a user to skip the uploading method and procure the possession of the files now, once alternative house owners of an equivalent files have uploaded them to the cloud server. To the simplest of our data, none of the present dynamic PoS will support this system. during this paper, we have a tendency to introduce the conception of de-duplicatable dynamic proof of storage associated propose an economical construction referred to as DeyPoS, to realize dynamic PoS and secure cross-user duplication, at the same time. Considering the challenges of structure diversity and personal tag generation, we have a tendency to exploit a unique tool referred to as Homomorphic Authenticated Tree (HAT). We have a tendency to prove the protection of our construction, and therefore the theoretical analysis and experimental results show that our construction is economical in follow
    • 

    corecore