
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
1954-2016 University of Wollongong Thesis Collections

2016

Secure data storage and retrieval in cloud computing Secure data storage and retrieval in cloud computing

Rongmao Chen
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Chen, Rongmao, Secure data storage and retrieval in cloud computing, Doctor of Philosophy thesis,
School of Computing and Information Technology, University of Wollongong, 2016. https://ro.uow.edu.au/
theses/4648

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F4648&utm_medium=PDF&utm_campaign=PDFCoverPages

Secure Data Storage and Retrieval in
Cloud Computing

Rongmao Chen

Supervisor:
Professor Yi Mu
Co-supervisor:

Dr. Guomin Yang

This thesis is presented as part of the requirements for the conferral of the degree:

Doctor of Philosophy

The University of Wollongong
School of Computing and Information Technology

June 27, 2016

Abstract

Nowadays cloud computing has been widely recognised as one of the most influential

information technologies because of its unprecedented advantages. In spite of its

widely recognised social and economic benefits, in cloud computing customers lose

the direct control of their data and completely rely on the cloud to manage their

data and computation, which raises significant security and privacy concerns and

is one of the major barriers to the adoption of public cloud by many organisations

and individuals. Therefore, it is desirable to apply practical security approaches to

address the security risks for the wide adoption of cloud computing.

In this thesis, we carry out the study on the secure data storage and retrieval

in cloud computing. Data storage outsourcing is one of the important cloud ap-

plications where both individuals and enterprises can store their data remotely on

the cloud to relieve the storage management burden. Aside from eliminating the

local storage management, storing data into the cloud requires that the data can be

efficiently and securely retrieved for flexible utilization. To provide strong security

guarantees for data storage and retrieval, in this thesis, we have made the following

contributions.

Firstly, we give a formal treatment on Merkle Hash Tree for secure dynamic cloud

auditing. We first revisit a well-known authentication structure named Merkle Hash

Tree (MHT) and demonstrate how to extend its basic version to a sequence-enforced

version that allows position checking. In order to support efficient and verifiable

dynamic data operations, we further propose a variant of MHT, named rank-based

MHT (rMHT) that can be used to support verifiable dynamic data auditing. We also

review a data auditing protocol named Oruta and showed that Oruta is vulnerable to

replace and replay attacks. We then employ the proposed rMHT to fix the security

problems in Oruta without sacrificing any desirable features of the protocol.

Secondly, we formalize a new primitive called Block-Level Message-Locked En-

cryption (BL-MLE) for deduplication of large files to achieve space-efficient storage

in cloud. We also present a concrete BL-MLE scheme that can efficiently realize

our design ideas. We demonstrate that our proposed scheme can achieve signifi-

cant savings in space and bandwidth. Moreover, we show that our BL-MLE scheme

can be easily extended to achieve efficient data auditing, which makes our scheme

multi-purpose for secure cloud storage.

Thirdly, we propose two different solutions towards an inherent vulnerability

of the conventional Public Key Encryption with Keyword Search (PEKS) systems

iii

iv

under inside keyword guessing attack (KGA). The first solution is named Dual-

Server Public Key Encryption with Keyword Search (DS-PEKS). We introduce a

new Smooth Projective Hash Function (SPHF) that enables a generic DS-PEKS con-

struction. An efficient instantiation is also given to illustrate the feasibility of the

generic construction. As the second solution, we provide a more practical treatment

on this security issue by formalizing a new PEKS system named Server-Aided Public

Key Encryption with Keyword Search (SA-PEKS). We introduce a universal trans-

formation from any conventional PEKS scheme to a secure SA-PEKS scheme, along

with the first concrete SA-PEKS scheme. Moreover, we also show how to securely

implement the client-KS (keyword server) protocol with a rate-limiting mechanism

against on-line KGA.

Lastly, we introduce a new leakage-resilient security model for authenticated key

exchange protocols to achieve strongly secure data transmission in cloud computing.

Our model is the first to allow the adversary to obtain challenge-dependent leakage

on both long-term and ephemeral secret keys, and hence are strong yet meaningful

compared with the previous models. We also present a generic framework to con-

struct efficient one-round AKE protocol that is secure under the proposed security

model, as well as an efficient instantiation of the general framework under a standard

assumption.

Acknowledgement

The research work presented in this thesis would never be possible without the

support of many individuals.

First of all, I would like to express my sincere gratitude to my supervisor, Pro-

fessor Yi Mu. Professor Mu is an excellent supervisor who has offered me directions

yet freedom for me to explore different areas. Many thanks to him for the contin-

uous support of my research, for his guidance, patience, motivation and immense

knowledge. I would like to thank my co-supervisor, Dr. Guomin Yang, who had a

tremendous influence on my research as well. Dr. Yang provided me with valuable

comments on many of my works. All the discussions with him are very helpful in

the development of this thesis.

Dr. Fuchun Guo deserves special appreciations. I had many interesting discus-

sions with Dr. Guo. I really appreciate his valuable training that helped me build

up my knowledge in cryptography. I would like to also give my special thanks to

Professor Willy Susilo for his indispensable contribution to our joint research and

his helpful advice.

I also thank Man Ho Au, Xinyi Huang, Jinguang Han, Qiong Huang, Xiaofen

Wang, Yong Yu, Mingwu Zhang, and Futai Zhang for their invaluable advice on my

research. Discussions with them are always stimulating and rewarding. I am fortu-

nate to have great colleagues and friends during my PhD study in Wollongong. Many

thanks for their support and kindness. The non-exhausted list includes Hui Cui,

Zhimin Gao, Clementine Gritti, Jongkil Kim, Peng Jiang, Yinhao Jiang, Jianchang

Lai, Nan Li, Weiwei Liu, Tran Viet Xuan Phuong, Shams Ud Din Qazi, Fatemeh

Rezaeibagha, Jean-Marc Robert, Yangguang Tian, Yang Wang, Kefeng Wang, Huai

Wu, Jiannan Wei, Shengmin Xu, Zhenfei Zhang, Siwei Zhang, Zhongyuan Yao,

Hongyun Zhang, Jianjia Zhang, Yan Zhao, etc. Even assuming that I did not forget

people to whom that I want to express my appreciations, the list of people I am in-

debted to is far more extensive. It certainly includes all the authors of many papers

appeared in the reference list. It also includes the authors of many papers that I

have read during my PhD study.

Finally, my love and gratitude to my parents Shuilin, Tiantu and my sister Xi-

aoping for their patience, encouragement and love. Without them, all my achieve-

ments would never be possible.

v

[This page is intentionally left blank]

Publications

This thesis is based on the following presented or published papers, which were

finished when I was in pursuit of the PhD degree in University of Wollongong.

1. Rongmao Chen, Yi Mu, Guomin Yang and Fuchun Guo. BL-MLE: Block-

Level Message-Locked Encryption for Secure Large File Deduplication. IEEE

Transactions on Information Forensics and Security, 10(12): 2643-2652, 2015.

2. Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo and Xiaofen Wang. A

New General Framework for Secure Public Key Encryption with Keyword

Search. Information Security and Privacy - 20th Australasian Conference,

ACISP 2015, Brisbane, QLD, Australia, June 29 - July 1, 2015, Proceedings,

59-76, 2015.

3. Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo and Xiaofen Wang. Dual-

Server Public-Key Encryption with Keyword Search for Secure Cloud Storage.

IEEE Transactions on Information Forensics and Security, 11(4): 789-798,

2016.

4. Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo, Xinyi Huang and Xiaofen

Wang. Server-Aided Public Key Encryption with Keyword Search. IEEE

Transactions on Information Forensics and Security, accepted on 17 DEC

2015.

5. Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo and Fuchun Guo. Strongly

Leakage-Resilient Authenticated Key Exchange. CT-RSA 2016, 19-36.

Papers which are under review:

6. Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo,Yong Yu and Xinyi Huang.

A Formal Treatment on Merkle Hash Tree for Secure Dynamic Cloud Auditing.

(under review)

I am thankful to have opportunities to collaborate with others in other areas

of computer and communications security. The contributions are listed below and

they are beyond the scope of this thesis.

1. Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo and Fuchun Guo. Strong

Authenticated Key Exchange with Auxiliary Inputs. (under review)

vii

viii

2. Rongmao Chen, Yi Mu, Willy Susilo, Guomin Yang, Fuchun Guo and Mingwu

Zhang. One-Round Strong Oblivious Signature-Based Envelope. 21st Aus-

tralasian Conference on Information Security and Privacy (ACISP), 2016:

accepted.

3. Jianchang Lai, Yi Mu, Fuchun Guo Willy Susilo and Rongmao Chen. Anony-

mous Identity-Based Broadcast Encryption with Revocation for File Sharing.

21st Australasian Conference on Information Security and Privacy (ACISP),

2016: accepted.

4. Willy Susilo, Rongmao Chen, Fuchun Guo, Guoming Yang, Yi Mu and and

Yang-Wai Chow. Recipient Revocable Identity-Based Broadcast Encryption:

How to Revoke Some Recipients in IBBE without Knowledge of the Plaintext.

11th ACM Asia Conference on Computer and Communications Security, Asi-

aCCS 2016: 201-210.

5. Xiaofen Wang, Yi Mu, Rongmao Chen. One-Round Privacy-Preserving Meet-

ing Location Determination for Smartphone Applications. IEEE Transactions

on Information Forensics and Security, 11(8): 1712-1721, 2016.

6. Xiaofen Wang, Yi Mu, Rongmao Chen, Guozhen Xiao. Secure Channel Free

ID-Based Searchable Encryption for a Peer-to-Peer Group. Journal of Com-

puter and Science Technology, accepted on 26 JAN. 2016.

7. Xiaofen Wang, Yi Mu, Rongmao Chen. Privacy-Preserving Data Search and

Sharing Protocol for Social Networks through Wireless Applications. Concur-

rency and Computation: Practice and Experience, accepted on 11 Apr. 2016.

List of Notations

The following notations are used throughout this thesis. Some special notations will

be defined when they are first used.

` A security parameter;

1` The string of ` ones;

∀ For all;

∃ There exists;

Z The set of integers;

Zp The set consists of the integers modulo p;

Z∗p The multiple group of integers modulo p;

ε(`) A negligible function on `;

a||b The concatenation of the string a and the string b;

Pr[A] The probability of the event A occurring;

a
$← A a is selected from A uniformly at random if A is a finite set;

a
R← A a is selected from A randomly if A is a finite set;

X
s≡ Y Distributions X and Y are perfectly indistinguishable.

X
c≡ Y Distributions X and Y are computationally indistinguishable.

ix

List of Abbreviations

The following abbreviations are used throughout this thesis. Some special abbrevi-

ations will be defined when they are first used.

CSP Cloud Service Provider;

PKC Public-Key Cryptography;

PPT Probabilistic Polynomial Time;

DL Discrete Logarithm;

CDH Computational Diffie-Hellman;

DDH Decisional Diffie-Hellman;

PKE Public Key Encryption;

IND-CCA2 Indistinguishability against Adaptive Chosen Ciphertext At-

tacks;

IND-CPA Indistinguishability against Adaptive Chose Plaintext At-

tacks;

EU-CMA Existentially Unforgeable under Chosen-message Attacks;

SEU-CMA Strongly Existentially Unforgeable under Chosen-message At-

tacks;

MHT Merkle Hash Tree;

rMHT Rank-based Merkle Hash Tree;

MLE Message-Locked Encryption;

PEKS Public Key Encryption with Keyword Search;

SPHF Smooth Projective Hash Function;

PoR Proof of Retrievability;

PDP Provable Data Possession;

AKE Authenticated Key Exchange;

x

Contents

Abstract iii

Acknowledgement v

Publications vii

List of Notations ix

List of Abbreviations x

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 3

1.2.1 Data Storage in Cloud Computing 3

1.2.2 Data Retrieval in Cloud Computing 5

1.3 Contributions . 6

1.4 Thesis Organization . 7

2 Preliminaries 9

2.1 Miscellaneous Notions . 9

2.2 Foundations of Algebra . 10

2.3 Bilinear Groups . 10

2.4 Complexity Assumptions . 11

2.4.1 Discrete Logarithm Assumption 11

2.4.2 Computational Diffie-Hellman Assumption 11

2.4.3 Decisional Diffie-Hellman Assumption 11

2.5 Cryptographic Tools . 12

2.5.1 Hash Function . 12

2.5.2 Random Oracle Model . 12

2.5.3 Public-Key Encryption . 13

2.5.4 Digital Signature . 15

2.5.5 Blind Signature . 17

2.5.6 Public Key Encryption with Keyword Search 18

2.5.7 Randomness Extractor . 19

2.5.8 Pseudo-Random Function . 20

xi

CONTENTS xii

2.5.9 Smooth Projective Hash Functions 20

I Secure Data Storage 23

3 A Formal Treatment on MHT For Cloud Auditing 24

3.1 Introduction . 24

3.1.1 Motivations . 25

3.1.2 Contributions . 27

3.1.3 Related Work . 28

3.2 Merkle Hash Tree . 29

3.2.1 Merkle Hash Tree . 29

3.2.2 Sequence-Enforced Merkle Hash Tree (sMHT) 31

3.3 Rank-Based Merkle Hash Tree . 33

3.3.1 Construction . 33

3.3.2 Efficient Verification . 35

3.3.3 Verifiable Dynamic Data Operations 36

3.4 Review of Oruta . 40

3.4.1 Construction . 40

3.4.2 Replace Attack on Oruta . 42

3.4.3 Replay Attack . 43

3.5 Improving Oruta Using rMHT . 44

3.5.1 Verifiable Dynamic Data Operations Using rMHT 45

3.5.2 Batch Auditing Using rMHT 46

3.5.3 Security of the Improved Oruta 47

3.6 Performance Evaluation . 47

3.6.1 Comparison With Oruta . 47

3.6.2 Experimental Results . 49

3.7 Chapter Summary . 50

4 BL-MLE for Secure Cloud Deduplication 51

4.1 Introduction . 51

4.1.1 Motivations . 53

4.1.2 Contributions . 55

4.1.3 Related Work . 56

4.2 Block-Level Message-Locked Encryption 57

4.2.1 Definition of BL-MLE . 57

4.2.2 Security Definitions for BL-MLE 59

4.3 The proposed BL-MLE Scheme . 62

4.3.1 Construction . 62

CONTENTS xiii

4.3.2 Design Considerations . 64

4.3.3 Correctness Analysis . 65

4.4 Security Analysis . 66

4.4.1 Privacy . 66

4.4.2 Tag Consistency . 69

4.4.3 PoW Security . 70

4.5 Extension for Data Auditing . 72

4.5.1 Extension of Our Scheme . 72

4.5.2 Security Analysis . 73

4.5.3 Improved PoW Protocol with Stronger Security 73

4.6 Performance Analysis . 74

4.7 Chapter Summary . 78

II Secure Data Retrieval 79

5 Dual-Server PEKS for Secure Data Retrieval 80

5.1 Introduction . 80

5.1.1 Motivations . 81

5.1.2 Contributions and Techniques 81

5.1.3 Related Work . 83

5.2 Dual-Server PEKS . 84

5.2.1 Overview . 84

5.2.2 Formal Definition . 85

5.2.3 Security Models . 86

5.3 Linear and Homomorphic SPHF . 89

5.4 Generic Construction of DS-PEKS 91

5.4.1 Generic Construction . 91

5.4.2 Security Analysis . 93

5.5 The Proposed DS-PEKS Scheme . 97

5.5.1 LH-SPHF Based on The Diffie-Hellman Language 97

5.5.2 A Concrete DS-PEKS Scheme Based on SPHFDH 100

5.6 Performance Evaluation . 101

5.7 Chapter Summary . 103

6 Server-Aided PEKS for Secure Data Retrieval 105

6.1 Introduction . 105

6.1.1 Contributions . 105

6.1.2 Related Work . 106

6.2 Server-Aided PEKS . 107

CONTENTS xiv

6.2.1 Overview . 107

6.2.2 Formal Definition . 108

6.2.3 Security Models . 109

6.3 PEKS-to-SA-PEKS Transformation 111

6.3.1 A Universal Transformation 111

6.3.2 Security Analysis . 113

6.4 An Instantiation of SA-PEKS . 116

6.4.1 Underlying Schemes . 116

6.4.2 Resulting SA-PEKS . 118

6.5 Implementation and Performance . 120

6.5.1 The Client-KS Protocol . 120

6.5.2 The Instantiated Scheme . 123

6.6 Chapter Summary . 126

7 Strongly Secure AKE for Data Transmission 127

7.1 Introduction . 127

7.1.1 Motivations . 128

7.1.2 Contributions and Techniques 130

7.1.3 Related Work . 133

7.2 A New Strong Security Model for AKE 134

7.2.1 AKE Protocol . 134

7.2.2 eCK Security Model . 135

7.2.3 Challenge-Dependent Leakage-Resilient eCK Model 137

7.3 One-Round CLR-eCK-Secure AKE . 140

7.3.1 Extended Smooth Projective Hash Function 140

7.3.2 General Framework . 141

7.3.3 Security Analysis . 144

7.4 An Instantiation from DDH Assumption 147

7.4.1 DDH-based SPHF . 147

7.4.2 Concrete AKE Protocol . 149

7.5 Chapter Summary . 151

III Conclusion and Future Work 152

8 Conclusion and Future Work 153

8.1 Conclusion . 153

8.1.1 Secure Data Storage in Cloud Computing 153

8.1.2 Secure Data Retrieval in Cloud Computing 153

8.2 Future Work . 154

CONTENTS xv

Bibliography 156

List of Tables

3.1 Comparison of bMHT, sMHT, rMHT 27

3.2 Notations for MHT . 29

3.3 Computation Record of a1, a2, a3, a4, a5, a6, a7, a8 32

3.4 Auditing Protocol of the Improved Oruta 44

3.5 Verifiable Dynamic Data Operations 45

3.6 Description of Notations in Table 3.5 46

4.1 Computation Time of Tag Generation and Block Key Retrieval . . . 77

6.1 Blind signing protocol for FDH-RSA 117

6.2 An SA-PEKS scheme from FDH-RSA and BCOP-PEKS scheme . . . 119

6.3 Latency of Protocol Under Different Load 122

6.4 KGA Rate for Different Rate Limiting Approaches 123

6.5 Comparisons between Existing Works and Our Scheme 124

7.1 Framework for CLR-eCK secure AKE 142

7.2 The Concrete CLR-eCK secure AKE Protocol 150

xvi

List of Figures

1.1 Problem Description . 3

3.1 MHT for Authentication of Data Elements (a1, ..., a8) 30

3.2 sMHT for Sequence-Enforced Authentication of Data Elements 31

3.3 sMHT Updating for Data Insertion Operation 33

3.4 rMHT for Sequence-Enforced Authentication of Data Elements 34

3.5 rMHT Updating for Data Modification 37

3.6 rMHT Updating for Data Insertion 39

3.7 rMHT Updating for Data Deletion 40

3.8 rMHT Construction for the Improved Oruta 43

3.9 Experiment Results of the Performance of the Improved Oruta 48

4.1 Impact of Block Size on Dedup-Metadata Size (f=1) 75

4.2 Impact of f on Dedup-Metadata Size (Block size: 4 KB) 76

4.3 Impact of Similarity on Dedup-Metadata Size (Block size: 4 KB) . . . 76

5.1 System Model of Dual-Server PEKS 85

5.2 Computation Cost of PEKS Generation in Different Schemes 102

5.3 Computation Cost of Trapdoor Generation in Different Schemes . . . 102

5.4 Computation Cost of Testing in Different Schemes 103

6.1 System Model of Server-Aided PEKS 107

6.2 The Client-KS Protocol in SA-PEKS 120

6.3 Packet Loss of the Client-KS Protocol 123

6.4 Computation Cost of PEKS Generation (excluding latency) 124

6.5 Computation Cost of Trapdoor Generation (excluding latency) 125

6.6 Computation Cost of Testing . 125

xvii

Chapter 1

Introduction

Cloud computing has been widely recognised as one of the most influential infor-

mation technologies because of its unprecedented advantages. With resource virtu-

alization, the cloud can provide on-demand self-service, ubiquitous network access,

rapid resource elasticity and usage-based pricing, which thus make cloud services as

convenient as the daily-life utilities such as electricity, water, and gas. In spite of

its widely recognised economic benefits, cloud computing removes customers’ direct

control over the systems that manage their data, which raises significant security and

privacy concerns and is one of the major barriers to its adoption. To well address

the security risks, it is desirable to apply cryptographic approaches to achieve the

security goals as cryptographic primitives can provide the vital security properties

required by a cloud system. Nevertheless, cryptographic approaches introduce addi-

tional costs (e.g., computation overhead and storage overhead) for the cloud system

and thus might significantly reduce the economic benefits of the cloud. Therefore,

it is a critical challenge to propose practical cryptographic approaches for providing

security guarantees in cloud computing.

1.1 Background

The advancement in networking technologies and ever-growing need for computing

resources have promoted a fundamental paradigm shift in how people deploy and

deliver computing services: computing outsourcing. This new computing model,

commonly referred to as Cloud Computing, is a service model that offers customers

on-demand network access to a large shared pool of computing resources, which

is provided by a cloud service provider (CSP). Cloud computing consists of vari-

ous types of services. The first type is Infrastructure as a Service (IaaS), where

a customer makes use of the CSP’s computing, storage or networking infrastruc-

ture. Another type is Platform as a Service (PaaS), where customers leverage the

resources from the CSP to run custom applications. The last one is Software as a

Service (SaaS), where customers use software that is run on the CSP’s infrastructure.

Cloud infrastructures can be categorized as either private or public. Private

cloud means that the infrastructure is implemented locally and under the control

of the customer while the infrastructure in a public cloud is owned and managed

remotely by a CSP and hence outside the customer’s control. By now the economic

benefits of cloud computing have been widely recognized, especially by using the

1

CHAPTER 1. INTRODUCTION 2

public cloud. Moving data and computing services to the public cloud alike infras-

tructures promises to provide unprecedented benefits like ubiquitous network access,

rapid resource elasticity, minimal management overhead, etc. For most customers,

the ability to utilize and pay for resources on demand is also the strong incentive

for migration to the public cloud.

In spite of the benefits mentioned above, the public cloud deprives customers’

direct control over the systems that manage their data and applications [YCN+10,

ZL12, KK05], raising significant security and privacy risks. On one hand, although

the cloud infrastructures are much powerful and reliable than personal devices, a

broad range of both internal and external threats still exist, including hardware

failures, software bugs, power outages, server misconfiguration, etc. On the other

hand, there exist incentives for the CSP to behave unfaithfully towards the customers

to increase the profit margin by reducing cost. For example, the server may have

the incentive to reduce the cost by shifting users’ data to a slower but cheaper

storage or even deliberately deleting some data blocks that are seldom or never

used. Moreover, The CSP may even attempt to hide service failure incidents so

as to maintain a reputation. It may not store the files correctly due to various

reasons such as system crash [BGPS07,Mil10] but intends to cover data loss events

for reputation consideration.

To date, although individual customers have been willing to trade privacy for

the convenience of services (e.g., Dropbox [Dro] and Google Drive [Goo]), this is not

the case for enterprises and government organizations where the data is mission-

critical (e.g., medical records, financial records or high impact business data). So

even though the public cloud has enormous promise, many potential customers will

be reluctant to outsource their data unless the issues of security and privacy are well

addressed.

Therefore, in order to improve the adoption of cloud computing, it is desirable

for the public cloud to provide security guarantees to customers’ data. By now

cryptographic approaches have been proposed as solutions for achieving the secu-

rity goals in cloud computing. The reason is that compared to legal mechanisms

or physical security, cryptographic approaches can provide customers with a certain

degree of control on their outsourced data and also the security guarantees provided

by cryptography. More specifically, cryptographic primitives provide the vital se-

curity properties of a secure system, namely, confidentiality, integrity, authenticity,

and non-repudiation.

1. Confidentiality ensures that the information is inaccessible to unauthorized

users or systems.

2. Integrity means the data in transit or in storage can not be modified by unau-

CHAPTER 1. INTRODUCTION 3

Cloud Computing

Data Storage

Data Auditing

Data Deduplication

Data Retrieval

Data Searching

Data Transmission

Figure 1.1: Problem Description

thorized users or systems.

3. Authenticity is presented to ensure that parties involved in a communication

are really what they claim to be.

4. Non-repudiation refers to one user can not deny at a later stage his previous

operation on any data.

1.2 Problem Statement

Although cryptographic approaches can achieve the security goals for the cloud

system, it might significantly reduce the efficiency of the cloud system and hence

makes deployment of traditional data utilization service difficult. For example, the

traditional encryption of data in the cloud makes it inefficient to exploit the data

redundancy when the server performs deduplication to save storage space. Moreover,

the encrypted data cannot be searched in the traditional way due to the protection

of the data privacy and hence results in additional costs for the user and the server.

Therefore, it is desirable to build cryptographic approaches to achieve the se-

curity goals without introducing significant overhead for the cloud system. In this

thesis, we mainly focus on the data storage and retrieval in cloud computing. To

give a clearer picture, we describe the problems in Figure 1.1.

1.2.1 Data Storage in Cloud Computing

According to the analysis of the International Data Corporation (IDC), the volume

of data in the world will reach 40 trillion gigabytes in 2020 [GD12]. One of the

representative cloud applications is data storage outsourcing [Dro, Goo, Bit] where

both individuals and enterprises store their data remotely on the cloud to relieve

the storage management burden and achieve much more flexible data utilization.

Regarding this typical application, we investigate the studies on the following two

issues.

CHAPTER 1. INTRODUCTION 4

Data Auditing. Despite the appealing benefits brought by cloud storage (and

cloud computing in general), it is still debatable for its widespread adoption. The

main reason is the data security concern as users no longer physically possess their

data [YCN+10,ZL12,KK05]. Specifically, the server may have the incentive to reduce

the cost by shifting users’ data to a slower but cheaper storage or even deliberately

deleting some data blocks that are seldom or never used. Moreover, the server may

not store the files correctly due to various reasons such as system crash [BGPS07,

Mil10] but intends to cover data loss events for reputation consideration. Hence,

although data storage outsourcing is economically attractive for long-term large-

scale data storage management, the widespread adoption of the cloud storage can

be impeded without the guarantees on data integrity and availability. Therefore, a

cloud storage server should be able to offer a customer the guarantee that it is indeed

storing all of the customer’s data which is available. Conventional cryptographic

primitives cannot be adopted directly for remote data integrity checking as users

lose the direct control of their data, and downloading all the data for integrity

checking is not practical due to the high bandwidth cost. In order to enable the

server to provide the users with such guarantee, there have been various proposed

data auditing protocols that allow a verifier (customer or the third party) to verify

that a server indeed stores the file correctly.

Data Deduplication. To achieve optimal usage of storage resources, many CSPs

perform deduplication, which exploits data redundancy and avoids storing dupli-

cated data from multiple users. It has been reported that deduplication can achieve

up to 90-95% and 68% savings on storage space for backup systems [Ope] and stan-

dard file systems [MB12], respectively. Cost savings make deduplication widely

used by a number of commercial cloud storage services such as Bitcasa [Bit], Drop-

box [Dro] and Google Drive [Goo]. However, as mentioned above, customers may

not entirely trust the CSP in the reality. In order to protect data privacy, files may

be encrypted first before being uploaded to the server. This brings a new challenge

for deduplication since different users will use different keys to perform encryption,

which would make two identical files completely different after being encrypted.

Although searchable encryption [BBO07, BCOP04, SWP00, YTHW10] can support

equality testing of encrypted data, cloud storage providers still cannot perform any

deduplication. The reason is that if a user (say Bob) does not store his encrypted file

on the server due to deduplication, e.g., another user Alice has stored the same file

(also in encrypted form) in the server, then Bob could not retrieve the original file

later since he cannot decrypt Alice’s file. Therefore, new cryptographic primitives

should be proposed for efficient and secure deduplication for encrypted data in cloud

storage.

CHAPTER 1. INTRODUCTION 5

1.2.2 Data Retrieval in Cloud Computing

Aside from eliminating the local storage management, storing data into the cloud

serves no purpose unless they can be efficiently and securely retrieved for utilization.

In this thesis, we also aim at the secure data searching and transmission for cloud

data retrieval.

Data Searching. In reality, end users may not entirely trust the CSP and may

prefer to encrypt their data before uploading them to the cloud server in order to

protect the data privacy. This usually makes the data utilization more difficult

than the traditional storage where data is kept in the absence of encryption. One

trivial solution is downloading all the data and decrypting locally. Nevertheless,

this solution might cause lots of transmission costs and storage space whenever

users query data and thus is clearly impractical. Another typical solution is to

set up keywords for each encrypted document and a user can search the encrypted

documents with specific keywords they wish to query. However, the pre-set keywords

result in storage overhead and privacy issues. On one hand, apart from the encrypted

data, the cloud has to store the keywords and hence cost additional space. On the

other hand, the keywords attached to the encrypted data might leak information

about the corresponding encrypted data and destroy the data privacy. Therefore,

the keywords should be encrypted to protect their privacy. Another privacy issue is

the query privacy. That is when the user searches the data in the cloud, the query

should not leak any information to the cloud or other untrusted parties either.

Moreover, the response to a search query should not have a long delay, i.e., the

computation overhead of the server while matching encrypted data for the query

should be low otherwise the CSP cannot provide high-quality service which can

reduce its attraction to the customers. This necessitates the need for developing

efficient and secure searching techniques over encrypted cloud data of massive scale.

Such techniques should enable critical search functionalities that have long been

enjoyed in modern search engine over unencrypted data, like Google, Bing, etc. The

adequacy of such techniques is essential to the long-term success of the cloud services

and the ultimate privacy protection of both individuals and organizations.

Data Transmission. In cloud computing, the data owner and cloud servers are

very likely to be in two different domains. Especially, the data resources are not

physically under the full control of the owner. Therefore, the CSP needs to transmit

the data through the network to the user upon the data retrieval request. In the

real application, data transmission is usually through a public network since it is

much cheaper and more convenient than using the private channel which offers

better security guarantees. However, the communication channel in practice over a

public network can be easily attacked by a malicious attacker and hence is insecure

CHAPTER 1. INTRODUCTION 6

by default for message transmission. An AKE protocol enables a secure channel

to be established among a set of communicating parties by first allowing them to

agree on a cryptographically strong secret key, and then applying efficient symmetric

key tools to ensure the data confidentiality and authenticity. Many practical AKE

protocols such as the ISO protocol (a.k.a. SIG-DH) [ISO, CK01] and the Internet

Key Exchange protocol (a.k.a. SIGMA) [Kra03] have been proposed and deployed

for secure network communication. However, it has been shown that AKE protocols

proven secure in the traditional model could be completely insecure in the presence of

side-channel attacks (a.k.a. leakage attacks). For example, an attacker can launch

a memory attack [HSH+08, AGV09] to learn partial information about the static

secret key, and also obtain partial information about the chosen randomness (e.g.,

via poorly implemented PRNGs [Mar,SF,Zet]). Therefore, designing AKE protocols,

which are secure against various types of leakage attacks, is of practical significance.

1.3 Contributions

The contributions of this thesis can be summarized as follows.

1. We give a formal treatment on Merkle Hash Tree for secure dynamic cloud au-

diting. We first revisit a well-known authentication structure named Merkle

Hash Tree (MHT) and demonstrate how to extend its basic version to a

sequence-enforced version that allows position checking. In order to support

efficient and verifiable dynamic data operations, we further propose a variant

of MHT, named rank-based MHT (rMHT) that can be used to support ver-

ifiable dynamic data auditing. We also review a cloud storage data auditing

protocol named Oruta and showed that the protocol is vulnerable to replace

and replay attacks. We then employ the proposed rMHT to fix the security

problems in Oruta without sacrificing any desirable features of the protocol.

It is of independent interest to find other security applications for rMHT.

2. We formalize a new primitive called Block-Level Message-Locked Encryption

for deduplication of large files to achieve space-efficient storage in the cloud.

We also present a concrete BL-MLE scheme that can efficiently realize our

design ideas. We show that our proposed scheme can achieve significant savings

in space and bandwidth. Moreover, we show that our BL-MLE scheme can

be easily modified to achieve efficient data auditing, which makes our scheme

multi-purpose for secure cloud storage.

3. We propose two different solutions towards the inherent vulnerability the con-

ventional Public Key Encryption with Keyword Search (PEKS) systems under

CHAPTER 1. INTRODUCTION 7

inside keyword guessing attack (KGA). The first solution is a new framework

named Dual-Server Public Key Encryption with Keyword Search (DS-PEKS).

A new Smooth Projective Hash Function (SPHF) is introduced and used to

construct a generic DS-PEKS scheme. We also show an efficient instantiation

of the new SPHF based on the Diffie-Hellman problem, which gives an effi-

cient DS-PEKS scheme without pairings. As the second solution, we provide

a practical treatment on this security issue by formalizing a new PEKS system

named Server-Aided Public Key Encryption with Keyword Search (SA-PEKS).

We introduce a universal transformation from any PEKS scheme to a secure

SA-PEKS scheme, along with the first instantiation of the SA-PEKS scheme.

We also show how to securely implement the client-KS (keyword server) pro-

tocol with a rate-limiting mechanism against on-line KGA. The experimental

results show that our proposed scheme achieves much better efficiency while

providing resistance against both off-line and on-line KGAs.

4. We introduce a new leakage-resilient security model for Authenticated Key Ex-

change (AKE) protocols to achieve strongly secure data transmission in cloud

computing. Our model is the first to allow the adversary to obtain challenge-

dependent leakage on both long-term and ephemeral secret keys, and hence are

strong yet meaningful compared with the previous models. We also present a

generic framework to construct efficient one-round AKE protocol that is secure

under the proposed security model, as well as an efficient instantiation of the

general framework under the DDH assumption. Our framework ensures the

session key is private and authentic even if the adversary learns a large fraction

of both the long-term secret key and ephemeral secret key and provides quali-

tatively stronger privacy guarantees than existing AKE protocols constructed

in prior and concurrent works, since such protocols necessarily become inse-

cure if the adversary can perform leakage attacks during the execution of the

target session.

1.4 Thesis Organization

The remainder of this thesis is organized as follows.

In Chapter 2, we introduce the preliminaries that will be used throughout this

thesis, including miscellaneous notations, foundations of algebra, complexity as-

sumptions and cryptographic tools. The aim of this chapter is to make this thesis

self-contained.

In Chapter 3, we give a formal treatment on a well-known data structure named,

Merkle Hash Tree (MHT), which has been widely used in data auditing protocol.

CHAPTER 1. INTRODUCTION 8

We introduce a new rank-based Merkle Hash Tree that can support verifiable dy-

namic data operations. We then employ the proposed rank-based MHT to fix the

security flaws (more precisely, replace attack and replay attack) in a recently pro-

posed dynamic data auditing protocol named Oruta [WLL14] without sacrificing

any desirable features of the protocol.

In Chapter 4, we propose a new approach to achieving more efficient dedu-

plication for (encrypted) large files in the cloud storage. Our then show that our

approach, named Block-Level Message-Locked Encryption (BL-MLE), can achieve

file-level and block-level deduplication, block key management, and proof of owner-

ship simultaneously using a small set of metadata.

In Chapter 5, we investigate the security of a well-known cryptographic prim-

itive, namely Public Key Encryption with Keyword Search (PEKS). We propose

a new PEKS framework named Dual-Server Public Key Encryption with Keyword

Search (DS-PEKS) to address the inherent insecurity of traditional PEKS systems.

We define a new variant of the Smooth Projective Hash Functions (SPHFs) referred

to as linear and homomorphic SPHF (LH-SPHF) and show a generic construction

of secure DS-PEKS from LH-SPHF. we also provide an efficient instantiation of the

general framework.

In Chapter 6, we provide a practical and applicable treatment on the security

vulnerability of the conventional PEKS system by formalizing a new PEKS sys-

tem named Server-Aided Public Key Encryption with Keyword Search (SA-PEKS).

We then introduce a universal transformation from any PEKS scheme to a secure

SA-PEKS scheme using the deterministic blind signature, followed with an instanti-

ation. Moreover, we describe how to securely implement the client-KS protocol and

evaluate the performance of our solution in experiments.

In Chapter 7, we revisit the security modelling of leakage-resilient AKE proto-

cols, and then introduce a new strong yet meaningful security model. We propose a

general framework for the construction of AKE protocols secure under the proposed

model. We also present a practical instantiation of the general framework and show

that the instantiation is efficient in terms of the communication and computation

overhead and captures more general leakage attacks.

Chapter 8 concludes this thesis.

Chapter 2

Preliminaries

In this chapter, we introduce the preliminaries that will be used throughout this

thesis, including miscellaneous notations, foundations of algebra, complexity as-

sumptions and cryptographic tools. The aim of this chapter is to make this thesis

self-contained. More details of cryptography theory can be found in the following

books [KL07].

2.1 Miscellaneous Notions

By `, we denote a security parameter. By 1`, we denote the string of ` ones. We say

that a function ε : Z → R is negligible if ∀ k ∈ Z, ∃ z ∈ Z such that ε(`) ≤ 1
`k

for

all ` > z. Unless otherwise specified, by ε, we always denote a negligible function.

For a finite set Ω, ω
$← Ω denotes that ω is selected uniformly at random from

Ω. ω
R← Ω denotes that ω is selected randomly from Ω.

Statistical Indistinguishability. Let X and Y be two random variables over a

finite domain Ω, the statistical distance between X and Y is defined as SD(X, Y) =

1/2
∑

ω∈Ω | Pr[X = ω]− Pr[Y = ω]|.

Definition 2.1 We say that X and Y are ε-statistically indistinguishable if SD(X, Y) ≤
ε and for simplicity we denote it by X

s≡ε Y . If ε = 0, we say that X and Y are

perfectly indistinguishable and denote it by X
s≡ Y .

Computational Indistinguishability. Let V1 and V2 be two probability distribu-

tion over a finite set Ω where |Ω| ≥ 2` . We then define a distinguisher D̃ as follows.

In the game, D̃ takes as input V1 and V2, the challenger flips a coin γ
$← {0, 1}. D̃

is then given an element v1
$← V1 if γ = 1, otherwise an element v2

$← V2. Finally,

D̃ outputs a bit γ′ ∈ {0, 1} as its guess on γ. We define the advantage of D̃ in this

game as AdvV1,V2
D̃

(`) = Pr[γ′ = γ]− 1/2.

Definition 2.2 We say that V1 and V2 are computationally indistinguishable if for

any polynomial-time distinguisher D, AdvV1,V2
D̃

(k) is negligible, and we denote it by

V1
c≡ V2.

Unless otherwise specified, by indistinguishability, we mean that it is computation-

ally indistinguishable.

9

CHAPTER 2. PRELIMINARIES 10

2.2 Foundations of Algebra

In this section, we review the basic algebra knowledge: group and cyclic group.

Definition 2.3 (Group) A group (G, ∗) is a set G equipped with an operation ∗
with the following properties:

Closure. ∀ g, h ∈ G, g ∗ h ∈ G;

Associativity. ∀ g, h, µ ∈ G, (g ∗ h) ∗ µ = g ∗ (h ∗ µ);

Identity. ∃ 1G ∈ G, the identity of (G, ∗), such that ∀ g ∈ G, 1G ∗ g = g ∗ 1G = g ;

Inverse. ∀ g ∈ G, ∃ g−1 ∈ G called the inverse of g such that g ∗g−1 = g−1 ∗g = 1G.

For simplicity, a group (G, ∗) is often denoted as G when the operation ∗ is

clear. The number of the elements in G is called the order of G and denoted as |G|.
A group G is a finite group if |G| is finite; otherwise, it is an infinite group. A group

G is an Abelian group if ∀ g, h ∈ G, g ∗ h = h ∗ g.

Definition 2.4 (Order of Group Element) Suppose that g ∈ G, the order of g

in G is the least i ∈ Z+ such that gi = 1G. If for all i ∈ Z+, gi 6= 1G, the order of g

is infinite. The order of g is denoted as ord(g).

Especially, if any element in a group G can be expressed by a special element in

G, G is called as a cyclic group. The formal definition of a cyclic group is as follows.

Definition 2.5 (Cyclic Group) A group G is a cyclic group if there exists g ∈ G,

for all h ∈ G, there exists i ∈ Z such that h = gi. The element g is called as a

generator of the group G. G is said to be generated by g and denoted as G = 〈g〉.

2.3 Bilinear Groups

In this section, we review the knowledge related to the bilinear group. A pairing is

a bilinear mapping from a group element to a group element.

Definition 2.6 (Bilinear Map) . Let G1, G2 and Gτ be three cyclic groups with

the order p. Let g and h be the generators of G1 and G2, respectively. A bilinear

map (pairing) is a map e : G1 ×G2 → Gτ satisfying the following properties :

Bilinearity. ∀ x ∈ G1, y ∈ G2 and a, b ∈ Zp, e(xa, yb) = e(x, y)ab.

Non-degeneracy. e(g, h) 6= 1Gτ where 1Gτ is the identity of the group Gτ .

CHAPTER 2. PRELIMINARIES 11

Computability. ∀ x ∈ G1 and y ∈ G2, there exists an efficient algorithm to compute

e(x, y).

Definition 2.7 (Bilinear Groups [GPS08]) G1,G2, and Gτ constitute a bilinear

group if there exists a bilinear map e : G1×G2 → Gτ , where |G1| = |G2| = |Gτ | = p.

2.4 Complexity Assumptions

In this section, we review the complexity assumptions used throughout this thesis.

2.4.1 Discrete Logarithm Assumption

The discrete logarithm (DL) assumption [Odl85] in a finite field is one of the basic

assumptions in cryptography research. The DL assumption is defined as follows.

Definition 2.8 (Discrete Logarithm (DL) Assumption [Odl85]) Let G be a

group with prime order p and g is the generator. Given (g, h) ∈ G2, we say that

the discrete logarithm assumption holds on G if no PPT adversary A can compute

a ∈ Zp such that h = ga with the advantage

AdvDL
A = Pr [h = ga|A(p, g, h,G)→ a] ≥ ε(`)

where the probability is taken over the random choice of h ∈ G and the bits consumed

by the adversary A.

2.4.2 Computational Diffie-Hellman Assumption

This assumption is proposed by Diffie and Hellman [DH76].

Definition 2.9 (Computational Diffie-Hellman (CDH) Assumption [DH76])

Let G be a group with prime order p and g is the generator. Given (g, ga, gb), we say

that the computational Diffie-Hellman assumption holds on G if no PPT adversary

A can compute gab with the advantage

AdvCDH
A = Pr

[
A(g, ga, gb)→ gab

]
≥ ε(`)

where the probability is taken over the random choices of a, b
R← Zp and the bits

consumed by the adversary A.

2.4.3 Decisional Diffie-Hellman Assumption

Boneh [Bon98] surveyed the various applications of decisional Diffie-Hellman as-

sumption and demonstrated some results regarding it security.

CHAPTER 2. PRELIMINARIES 12

Definition 2.10 (Decisional Diffie-Hellman (DDH) Assumption [Bon98])

Let G be a group with prime order p and g is the generator. Given (g, ga, gb), we

say that the decisional Diffie-Hellman assumption holds on G if no PPT adversary

A can distinguish (ga, gb, gab) from (ga, gb, gc) with the advantage

AdvDDH
A =

∣∣Pr[A(ga, gb, gab) = 1]− Pr[A(ga, gb, gc) = 1]
∣∣ ≥ ε(`)

where the probability is taken over the random choices a, b, c
R← Zp and the bits

consumed by the adversary A.

2.5 Cryptographic Tools

In this section, we introduce some useful cryptographic tools.

2.5.1 Hash Function

Carter and Wegman [CW79] introduced the universal classes of hash functions.

Roughly speaking, a hash function H : {0, 1}∗ → {0, 1}` is a deterministic function

which takes as input an arbitrary-length string as input and returns a constant-size

string as output.

Hash functions provide the following two main properties:

1. One-wayness. Given a value y, no PPT algorithm can find a value x such that

y = H(x) with non-negligible probability.

2. Collusion Resistance. No PPT algorithm can find x 6= y such that H(x) = H(y)

with non-negligible probability.

Hash function is an important cryptographical primitive and has been used as

a building block to design encryption scheme [FOPS01], digital signature scheme

[BR93b], message authentication code (MAC) scheme [BCK96], etc.

2.5.2 Random Oracle Model

Bellare and Rogaway [BR93b] introduced the notion of random oracle model, where

all parties have access to a public random oracle, which hence provides a bridge

between cryptographic theory and cryptographic practice. This paradigm yields

protocols much more efficient than standard ones while enjoying many advantages

of provable security [KL07].

Precisely speaking, despite the public existence, a randomly-chosen hash func-

tion H that can be evaluated only by querying an oracle, can be thought of as a

CHAPTER 2. PRELIMINARIES 13

magic box that returnsH(x) when given input x. Choosing a functionH(x) ∈ {0, 1}`

uniformly at random is generating random outputs for H “on-the-fly” as needed.

Specifically, imagine that the function is defined by a table of pairs {(xi, yi)} that

is initially empty. When the oracle receives a query x it first checks whether x = xi

for some pair (xi, yi) in the table; if so, the corresponding yi is returned. Otherwise,

a random string y ∈ {0, 1}` is chosen, the answer y is returned, and the oracle

stores (x, y) in its table so the same output can be returned if the same input is

ever queried again. A distinctive feature of the random oracle model is that, if an

adversary A has not explicitly queried the oracle on some point x, then the value of

H(x) is completely random (at least as far as A is concerned).

Say we are trying to prove the security of some scheme in the random oracle

model. We will often construct a reduction showing how any adversary A breaking

the security of the scheme (in the random oracle model) can be used to violate

some cryptographic assumption. As part of the reduction, the random oracle that

A interacts with must be simulated as part of the reduction. That is: A will submit

queries to and receive answers from what it believes to be the oracle, but what is

actually the reduction itself. This gives the reduction a lot of power. As part of

the reduction, we may choose values for the output of H “on-the-fly” (as long as

these values are correctly distributed, i.e., uniformly random). The reduction gets

to “see” the queries that A makes to the random oracle.

However, when the random oracle H is instantiated with a concrete hash func-

tion, the advantages above for reduction will no longer exist. Therefore, a scheme

which is proven to be secure in the random oracle model does not necessarily imply

that it is secure in the standard model [CGH98].

Unless otherwise specified, by saying a scheme is secure, we mean that it is

secure in the standard model in this thesis.

2.5.3 Public-Key Encryption

Diffie and Hellman [DH76] introduced new research directions in cryptography called

public-key cryptography (PKC) where two parties can communicate over public chan-

nels without compromising the security of the system.

Syntax. The formal definition of a PKE scheme is as follows [DH76].

Setup(1`). The setup algorithm takes as input 1` and outputs the public parameters

params.

KeyGen(1`). The key generation algorithm takes as input 1` and outputs a secret-

public pair (SK,PK).

CHAPTER 2. PRELIMINARIES 14

Enc(params, PK,M). The encryption algorithm takes as input the public param-

eters params, the public key PK and a message M , and outputs a ciphertext

CT .

Dec(params, SK,CT). The decryption algorithm takes as input the public param-

eters params, the secret key SK and the ciphertext CT , and outputs the

message M .

The correctness property of a PKE scheme requires that,

Pr

 Setup(1`)→ params;

Dec(params, SK,CT)→M KeyGen(1`)→ (SK,PK);

Enc(params, PK,M)→ CT

 = 1

Security Model. The standard notion of the security for a PKE scheme is called

indistinguishability against adaptive chosen ciphertext attacks (IND-CCA2) [RS92].

This model is defined by the following game executed between a challenger C and

an adversary A.

Setup. C runs Setup(1`) to generate the public parameters params and runs

KeyGen(1`) to generate the secret-public key pair (SK,PK). It then sends

the public parameters params with the public key PK to A.

Phase 1. A can adaptively query the decryption oracle. A submits a ciphertext

CT to C, where CT = Enc(param, PK,M). C runs Dec(params, SK,CT)

and responds A with M . This query can be made multiple times.

Challenger. A submits two messages M0 and M1 with equal length. C randomly

selects Mb and computes CT ∗ = Enc(params, PK,Mb), where b ∈ {0, 1}. C
responds A with CT ∗.

Phase 2. A can adaptively query the decryption oracle. A submits a ciphertext

CT to C, where the only restrict is CT 6= CT ∗. Phase 1 is repeated. This

query can be made multiple times.

Guess. A outputs his guess b′ on b. A wins the game if b′ = b.

Definition 2.11 (IND-CCA2) We say that a public-key encryption scheme is

(T, q, ε(`))-indistinguishable against adaptive chosen ciphertext attacks (IND-CCA2)

if no PPT adversary A making q decryption queries can win the game with the

advantage

AdvIND-CCA2
A =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≥ ε(`)

CHAPTER 2. PRELIMINARIES 15

in the above model.

Another security notion for public-key encryption is called indistinguishability

against adaptive chosen plaintex attacks (IND-CPA). In this model, the adversary A
is not allowed to query the decryption oracle. The formal definition of this model is

as follows.

Definition 2.12 (IND-CPA) We say that a public-key encryption scheme is (T, ε(`))-

indistinguishable against adaptive chosen plaintex attacks (IND-CPA) if no PPT ad-

versary A who is restricted to query the decryption oracle can win the game with the

advantage

AdvIND-CPA
A =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≥ ε(`)

in the above model.

2.5.4 Digital Signature

Digital signature was proposed by Diffie and Hellman [DH76]. It is the electronic

version of a handwritten signature. A valid digital signature can convince a verifier

that it was generated by a known party for a public message. Especially, a digital

signature can provide non-repudiation property, namely a signer cannot deny he has

generated the signature.

Syntax. [GMR88] A digital signature scheme formally consists of the following

four algorithms:

Setup(1`). The setup algorithm takes as input 1` and outputs the public parameters

params.

KeyGen(1`). The key generation algorithm takes as input 1` and outputs a secret-

public key pair (SK,PK).

Sign(params, SK,M). The signature algorithm takes as input the public parame-

ters params, the secret ky SK and a message M , and outputs a signature σ

on M .

Verify(params,M,PK, σ). The verification algorithm takes as input the public pa-

rameters params, the message M , the public key PK and the signature σ,

and outputs True if Sign(params,M, SK)→ σ; otherwise, it outputs False.

The correctness requires that for any Sign(params, SK,M)→ σ,

Pr [Verify(params,M,PK, σ)→ True] ≥ 1− ε(`)

CHAPTER 2. PRELIMINARIES 16

and

Pr [Verify(params,M,PK, σ)→ False] < ε(`).

Security Model. The security model of a digital signature scheme is formally

defined by the following game executed between a challenger C and an adversary A.

Setup. C runs Setup(1`) to generate the public parameters params and runs

KeyGen(1`) to generate a secret-public pair (SK,PK) and sends params, PK

to A.

Query. A can adaptively query the signature oracle. A adaptively sends messages

{M1,M2, · · · ,Mq} to C. C runs Sign(params, SK,Mi) to generate a signature

σi on Mi and responds A with σi, for i = 1, 2, · · · , q.

Output. A outputs a message-signature pair (M∗, σ∗).

The traditional security of a digital signature is called existential unforgeability

under adaptive chosen message attacks (EU-CMA) [GMR88] which is defined as

follows.

Definition 2.13 (EU-CMA) We say that a digital signature scheme is (T, q, ε(`))-

existentially unforgeable against adaptive chosen message attacks (EU-CMA) if no

PPT adversary A can win the game with the advantage

AdvEU-CMA
A = Pr

[
Verify(params,M∗, PK, σ∗)→ True∧

M∗ /∈ {M1,M2, · · · ,Mq}

]
≥ ε(`)

in the above model.

An, Dodis and Rabin [ADR02] proposed a stronger definition for the security of

digital signature schemes called strongly existential unforgeability under an adaptive

chosen message attack (SEU-CMA) as follows.

Definition 2.14 (SEU-CMA) We say that a digital signature scheme is (T, q, ε(`))-

strongly existentially unforeable against adaptive chosen message attacks (SEU-CMA)

if no PPT adversary A can win the game with the advantage

AdvSEU-CMA
A = Pr

[
Verify(params,M∗, PK, σ∗)→ True∧

(M∗, σ∗) /∈ {(M1, σ1), (M2, σ2), · · · , (Mq, σq)}

]
≥ ε(`)

in the above model.

CHAPTER 2. PRELIMINARIES 17

2.5.5 Blind Signature

Blind signature was introduced by Chaum [Cha83]. Roughly speaking, a blind

signature scheme allows a signer to interactively issue signatures for a user such

that the signer learns nothing about the message being signed (blindness) while

the user cannot compute any additional signature without the help of the signer

(unforgeability).

Syntax. Formally, a blind signature scheme is an interactive scheme that consists

of a tuple of algorithms (Kg, Sign,User,Vf). Suppose that the system security pa-

rameter is `. The signer generates a key pair via the key generation algorithm

(pk, sk)
$← Kg(`). To obtain a signature on a message m ∈ {0, 1}∗, the user

and signer engage in an interactive signing protocol dictated by the algorithms

User(pk,m) and Sign(sk). After the protocol completes, the User algorithm lo-

cally outputs a signature σm on m. To verify the validity of a signature σm, the

verification algorithm Vf takes as input pk,m and σm, outputs True if the sig-

nature is valid and False otherwise. A blind signature scheme has correctness if

Vf(pk,m, σm) = True for any (pk, sk)
$← Kg(`), any message m and any signature

σm output by User(pk,m) after interacting with Sign(sk).

A blind signature is deterministic if for each public key pk and each message m,

there exists only one signature σm such that Vf(pk,m, σ) = True.

Security. The security of blind signature is twofold: unforgeability and blindness.

The details are as follows.

Unforgeability. An efficient (i.e., polynomial-time) adversary against unforgeability

aims to generate qs + 1 valid message/signature pairs with distinct messages

after being given the public key as input and at most qs completed interactions

with the signing oracle, where qs is adaptively determined by the adversary

during the attack. Note that this notion is different from the standard security

notion of a signature scheme as the queried message in an interaction is not

sent in clear. We say a blind scheme is one-more-unforgeable if any polynomial

time adversary that queries the signing oracle with qs distinct messages can

only forge qs + 1 valid message/signature pairs with negligible probability.

Blindness. Another notion, namely blindness, requires that the signer cannot tell

apart the message it is signing. To be more precise, the blindness condition

says that it should be infeasible for a malicious signer to decide which of the

two messages has been signed first in two executions with an honest user.

Note that even if the malicious signer is allowed to generate the public key

maliciously, such a condition should still hold.

CHAPTER 2. PRELIMINARIES 18

2.5.6 Public Key Encryption with Keyword Search

Boneh et al. [BCOP04] introduced a primitive, namely Public Key Encryption with

Keyword Search (PEKS) that enables a user to search encrypted data in the asym-

metric encryption setting. In a PEKS system, using the receiver’s public key, the

sender attaches some encrypted keywords (referred to as PEKS ciphertexts) with

the encrypted data. The receiver then sends the trapdoor of a to-be-searched key-

word to the server for data searching. Given the trapdoor and the PEKS ciphertext,

the server can test whether the keyword underlying the PEKS ciphertext is equal

to the one selected by the receiver. The formal definition is as follows.

Syntax. A non-interactive PEKS is defined by the following algorithms.

KeyGen(`). Taking as input the security parameter `, it outputs the public/private

key pair of the receiver as (pkR, skR).

PEKS(pkR, kw). Taking as input the public key pkR and the keyword kw, it outputs

the PEKS ciphertext of kw as CTkw.

Trapdoor(skR, kw
′). Taking as input the secret key skR and the keyword kw′, it

outputs the the trapdoor of kw as Tkw′ .

Test(pkR, CTkw, Tkw′). Taking as input the public key pkR, the PEKS ciphertext

CTkw and the trapdoor Tkw′ , it outputs True if kw = kw′, otherwise output

False.

The consistency condition requires a PEKS scheme to satisfy that no adversary

can find two different keywords such that the Test algorithm taking as input the

PEKS ciphertext of one keyword and the trapdoor of the other keyword returns

True.

Security Model. The security notion of a PEKS is called semantic-security against

chosen keyword attack (SS-CKA) which states that the PEKS ciphertext does not

reveal any information about the underlying keyword unless the matching trapdoor

is available. More specifically, the SS-CKA security guarantees that no adversary is

able to distinguish a keyword from another one given the PEKS ciphertext before

he/she obtains the corresponding trapdoor. Formally, the SS-CKA game is defined

as follows.

Setup. The challenger C runs the algorithm KeyGen(`), generates key pairs (pkR, skR)

and sends pkR to the attacker A .

Trapdoor Query-I. The attacker A can adaptively make the trapdoor query for any

keyword.

CHAPTER 2. PRELIMINARIES 19

Challenge. The attacker A sends the challenger two keywords kw0, kw1. The restric-

tion here is that none of kw0 nor kw1 has been queried in the Trapdoor Query-I.

The challenger C picks b
$← {0, 1} and generates CT ∗ ← PEKS(pkR, kwb) The

challenger C then sends CT ∗ to the attacker.

Trapdoor Query-II. The attacker A can continue the query for the trapdoor of any

keyword of its choice except of the challenge keywords kw0, kw1.

Output. Finally, the attacker A outputs its guess b′ ∈ {0, 1} on b and wins the game

if b = b′.

Definition 2.15 (SS-CKA) We say that a PEKS scheme is (T, q, ε(`))-semantic-

security against chosen keyword attack (SS-CKA) if no PPT adversary A making q

trapdoor queries can win the game with the advantage

AdvSS-CKAA =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≥ ε(`)

in the above model.

2.5.7 Randomness Extractor

The notion of the average-case strong extractor is firstly described in [DORS08]. We

start with the introduction of average-case min-entropy.

Average-Case Min-Entropy. The min-entropy of a random variableX is H∞(X) =

− log(maxx Pr[X = x]). Dodis et al. [DORS08] formalized the notion of average min-

entropy that captures the unpredictability of a random variable X given the value

of a random variable Y , formally defined as H̃∞(X|Y) = − log(Ey←Y [2−H∞(X|Y=y)]).

They also showed the following result on average min-entropy in [DORS08].

Lemma 1 ([DORS08]). If Y has 2` possible values, then H̃∞(X|Y) ≥ H̃∞(X)− `.

Definition 2.16 (Average-Case Strong Extractor [DORS08]) Let ` ∈ N be

a security parameter. A function Ext : {0, 1}n(`) × {0, 1}t(`) ← {0, 1}l(`) is said to

be an average-case (m, ε)-strong extractor if for all pairs of random variables (X, I)

such that X ∈ {0, 1}n(`) and H̃∞(X|I) ≥ m, it holds that

SD((Ext(X,S), S, I), (U, S, I)) ≤ ε,

as long as l(`) ≤ m − 2 log(1/ε), where S
$← {0, 1}t(`) is the extraction key and

U
$← {0, 1}l(`).

CHAPTER 2. PRELIMINARIES 20

2.5.8 Pseudo-Random Function

Here we describe the notion of pseudo-random function (PRF) defined in [GGM86]

and its specific class, namely pseudo-random function with pairwise-independent

random sources (πPRF), which was proposed by Okamoto in [Oka07].

PRF. Let ` ∈ N be a security parameter. A function family F is associated with

{Seed`}`∈N, {Dom`}`∈N and {Rng`}`∈N. Formally, for any
∑ $← Seed`, σ

$←
∑

,

D $← Dom` and R $← Rng`, F
`,
∑
,D,R

σ defines a function which maps an element of D
to an element of R. That is, F

`,
∑
,D,R

σ (ρ) ∈ R for any ρ ∈ D.

Definition 2.17 (PRF) We say that F is a pseudo-random function (PRF) family

if

{F`,
∑
,D,R

σ (ρi)}
c≡ {RF (ρi)}

for any {ρi ∈ D} adaptively chosen by any polynomial time distinguisher, where RF

is a truly random function. That is, for any ρ ∈ D, RF (ρ)
$← R.

πPRF. Roughly speaking, πPRF refers to a pseudo-random function family that if

a specific key σ is pairwise-independent from other keys, then the output of function

with key σ is computationally indistinguishable from a random element.

Formally, let Z∑ be a set of random variables over
∑

, and I∑ be a set of

indices regarding
∑

such that there exits a deterministic polynomial-time algorithm,

f∑ : I∑ → Z∑, which on input the index i ∈ I∑, output σi ∈ Z∑. Consider

the random variables {σij}j=0,...,q(`) = {f∑(ij)}j=0,...,q(`) where ij ∈ I∑ and q(`) a

polynomial function of `. We say that σi0 is pairwisely independent from other

variables σi1 , ..., σiq(`) if for any pair of (σi0 , σij)(j = 1, ..., q(`)), for any (x, y) ∈
∑2,

we have Pr[σi0 → x ∧ σij → y] = 1/|
∑
|2.

Definition 2.18 (πPRF) Define F̃(ρj) = F
`,
∑
,D,R

σij
(ρj) for ij ∈ I∑, ρj ∈ D. We

say that F is a πPRF family if

{F̃(ρj)}
c≡ {R̃F(ρj)}

for any {ij ∈ I∑, ρj ∈ D} (j = 0, 1, ..., q(`)) adaptively chosen by any polynomial

time distinguisher such that σi0 is pairwisely independent from σij(j > 0), where R̃F

is the same as F̃ except that R̃F(ρ0) is replaced by a truly random value in R.

2.5.9 Smooth Projective Hash Functions

Smooth projective hash function(SPHF) is originally introduced by Cramer and

Shoup [CS02] and extended for constructions of many cryptographic primitives

[GL03,HK12,KV11,ABB+13,BBC+13c]. We start with the original definition.

CHAPTER 2. PRELIMINARIES 21

Syntax. An SPHF can be defined based on a domain X and an NP language

L, where L contains a subset of the elements of the domain X , i.e., L ⊂ X . An

SPHF system over a language L ⊂ X , onto a set Y , is defined by the following five

algorithms (SPHFSetup,HashKG, ProjKG,Hash,ProjHash):

SPHFSetup(1`): generates the global parameters param and the description of an

NP language instance L;

HashKG(L, param): generates a hashing key hk for L;

ProjKG(hk, (L, param)): derives the projection key hp from the hashing key hk;

Hash(hk, (L, param),W): outputs the hash value hv ∈ Y for the word W from the

hashing key hk;

ProjHash(hp, (L, param),W,w): outputs the hash value hv′ ∈ Y for the word W

from the projection key hp and the witness w for the fact that W ∈ L.

Property. A smooth projective hash function SPHF should satisfy the following

properties,

Correctness. If a word W ∈ L with w the witness, then for all hashing key hk and

projection key hp, we have

Hash(hk, (L, param),W) = ProjHash(hp, (L, param),W,w).

Smoothness. Let a point W be not in the language, i.e., W ∈ X\L. Then the

following two distributions are statistically indistinguishable :

V1 = {(L, param,W, hp, hv)|hv = Hash(hk, (L, param),W)},

V2 = {(L, param,W, hp, hv)|hv
$← Y},

To be more precise, we have V1
$≡ V2.

For the cryptographic purpose, we usually require the NP language L to be

membership indistinguishable, which is formally defined as follows.

Definition 2.19 (Hard Subset Membership Problem) For a finite set X and

an NP language L ⊂ X , we say the subset membership problem is hard if for any

word W
$← L, W is computationally indistinguishable from any random element

chosen from X\L.

For a smooth projective hash function that works on the above-defined language,

the following property holds, which was introduced in [GL03].

CHAPTER 2. PRELIMINARIES 22

Definition 2.20 (Pseudo-Random SPHF) A smooth projective hash function

SPHF= (SPHFSetup, HashKG,ProjKG,WordG,Hash,ProjHash) is pseudo-random,

if for any PPT adversary A,

AdvPRA (`) = Pr

(param,L)← SPHFSetup(1`);

hk← HashKG(L, param);

hp← ProjKG(hk, (L, param));

W
$← L, b R← {0, 1};

hv0
$← Y ; hv1 = Hash(hk, (L, param),W);

b′ ← A(param,L, hp,W, hvb) :

b′ = b.

− 1/2

is negligible in `.

Part I

Secure Data Storage

23

Chapter 3

A Formal Treatment on Merkle Hash

Tree-Based Dynamic Cloud Audit-

ing

In this chapter, we give a formal treatment on a well-known data structure named

Merkle Hash Tree (MHT), which has been widely used in data integrity and authen-

tication applications. We first revisit the existing MHT construction for dynamic

data auditing protocol and show that an improper use of MHT could render the

data auditing protocol insecure or impractical. Our main contribution is to intro-

duce a new rank-based Merkle Hash Tree, which to the best of our knowledge is the

first rigorously defined MHT that can support verifiable dynamic data operations.

As another contribution of this work, we employ the proposed rank-based MHT to

fix the security flaws in a recently proposed dynamic data auditing protocol named

Oruta without sacrificing any desirable features of the protocol. The experiment

result also shows that it is efficient to employ the rMHT for dynamic data auditing.

3.1 Introduction

In order to enable efficient remote data auditing, there have been several solutions

proposed, among which Proof of Retrievability (POR), introduced by Juels and

Kaliski in [JJ07], is the basis of many cloud data auditing schemes. Compared to

Provable Data Possession (PDP), which was proposed by Ateniese et al. [ABC+07]

and provides the guarantee of data integrity, POR directly captures the requirements

on data retrievability. The original POR scheme [JJ07] can only support a limited

number of data auditing queries and cannot achieve public verifiability. Using homo-

morphic authenticators, Shacham and Waters [SW08] proposed a publicly verifiable

POR scheme with provable security, which supports an unlimited number of queries.

Ateniese et al. [AKK09] later demonstrated that homomorphic authenticators can

be used as a general building block for constructing communication-efficient proof

of storage systems since an auditor can be convinced that a linear combination of

data blocks are correctly generated by simply verifying an aggregation of the corre-

sponding authenticators.

A number of practical PDP/POR schemes [JJ07,ABC+07,SW08,YY13,BJO09]

employ the sampling (or spot-checking) technique where the data file is divided into

24

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING25

blocks and the auditor only queries a small set of randomly chosen blocks for integrity

checking. This is to achieve low overhead of bandwidth and computation during the

auditing process and thus has been utilized in many subsequent works. According

to the result of [ABC+07], a public auditor can detect data damage with a high

probability by only choosing a small subset of all the data blocks in each auditing.

Suppose that the number of blocks stored in the server is 1,000,000, then if 1%

of those blocks are lost or damaged, the auditor can detect these corrupted blocks

with probability greater than 99% by choosing only 460 blocks randomly. However,

since the untrusted server may want to cover up the data loss, it could launch a so-

called replace attack in order to bypass the auditing. To be more precise, it uses the

uncorrupted blocks to replace the corrupted ones during the auditing. The above

result implies that if the auditing scheme is vulnerable to such attacks, the server can

cheat as long as the number of corrupted blocks is smaller than 999540. In order to

resist the replace attack, many auditing schemes are constructed with the sequence-

enforcing property [JJ07, ABC+07, SW08, YY13]. That is, the authenticator of the

i-th data block is constructed based on the data and also the block index information

i so that the i-th block and its corresponding authenticator cannot be used to replace

another (damaged) block requested by the auditor.

3.1.1 Motivations

Although the schemes aforementioned can be well adapted for data auditing, they

only consider the case of static data storage, i.e., a file outsourced to the server never

changes. However, in reality, users would regularly partially update their data stored

on the cloud servers [KRS+03,LKMS04,MVS00]. Actually, one can easily find some

application scenarios of dynamic data storage in practice [Dro,Goo,Bit].

Despite that the sequence-enforced authenticator construction is suitable for

static data auditing, it suffers from the following drawbacks with respect to dynamic

data storage. (1) Significant Efficiency Loss. Take the data insertion operation as

an example, when the user inserts a new block into the original file, he/she needs

to retrieve all the blocks which are located after the insertion position since their

positions will be changed after the insertion operation. The user then needs to

recompute the authenticators for these data blocks using the new position informa-

tion, and uploads the new authenticators to the cloud server for data auditing in

the future. We can see that this approach is very inefficient especially when the file

is huge and thus impractical. (2) Security Guarantee Loss. The untrusted server

may be able to launch a so-called replay attack to fool the auditor. The untrusted

server may not perform the update operations correctly on the user’s file, or have

lost the most updated version. In order to fool the auditor, the server may just use

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING26

the old data instead of the updated one to generate a proof for an auditing query.

This attack can be successful due to the fact that dynamic data operations in the

server may not be verifiable and thus the proof generated from the old data may

still pass the verification. Moreover, one can see from existing static data auditing

protocols, e.g., in [JJ07,ABC+07,SW08], that the modification of an authenticator

would leak some secret information to the untrusted server and hence the server can

also launch a forgery attack by forging the authenticator of any data block.

Desirable Properties of Dynamic Data Auditing Protocols. Since the static

data auditing protocols can not be applied for dynamic data storage, it is of prac-

tical importance to design robust dynamic data auditing protocols that achieve the

following desirable properties:

1. Integrity Assurance (IA). A dynamic auditing protocol should be able

to achieve the data integrity assurance. That is, the user/auditor can be

convinced that his/her data is well maintained by the remote server through

the execution of the dynamic data auditing protocol.

2. Position Checking (PC). To resist against the replace attack, the auditor

should be able to check that the returned proof are generated from the queried

data blocks that he/she has chosen instead of other blocks. As shown above,

the sequence-enforced authenticator construction for static data is not suitable

for dynamic data auditing protocol.

3. Verifiable Dynamic Data Operations (VDDO). As mentioned above,

the server may just use the old data blocks and authenticators stored in an

archive or backup server instead of the updated ones to generate the data

integrity proof for an auditing request, while the updated data is actually

lost or damaged. Therefore, how to verify that the server has performed the

updating operations requested from users and has used the most updated

version in the data auditing process is another challenge for dynamic data

auditing.

MHT-Based Solutions. Several practical auditing protocols have been proposed

for dynamic data storage. Instead of directly embedding the position information

into the authenticator of a data block, many of them [OR07, WWR+11, LCY+14]

utilized a well-known data structure called Merkle Hash Tree (MHT) to achieve

authentication of both block data and their positions. In [OR07], Oprea and Reiter

proposed to use MHT to achieve data integrity for encrypted storage. However,

their scheme can only support limited dynamic operations. To be more precise, the

dynamic operations only include appending a new data block at the end of a file or

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING27

Table 3.1: Comparison of bMHT, sMHT, rMHT

Merkle Hash Tree IA PC VDDO

bMHT
√

× ×
sMHT

√ √
(only for static data) ×∗(not fully supported)

rMHT
√ √ √

removing the last data block from a file. Wang et al. [WWR+11] firstly extended

the publicly verifiable POR scheme of Shacham and Waters [SW08] to support

efficient dynamic data operations by employing a sequence-enforced MHT (denoted

as sMHT in our work) for the authentication of both the values and the positions

of data blocks. They treated the leaf nodes (representing data blocks) as a left-to-

right sequence, and claimed that the positions of the data blocks can be ensured

by following the way of computing the root of the MHT. Since their introduction,

many subsequent dynamic auditing protocols, e.g., in [WCW+13, BH11, YNA+14,

NYMX14] have been proposed through directly applying the sMHT from [WWR+11]

for dynamic data auditing.

Unfortunately, after a rigorous analysis, we find that the sMHT cannot well

support dynamic data auditing. Precisely, although the above sMHT-based schemes

[WWR+11,WCW+13,BH11,YNA+14,NYMX14] claimed that they can achieve ef-

ficient dynamic data auditing using sMHT, none of these schemes has considered

the question of how to use MHT to verify the positions of the data blocks during

auditing. Actually, in this work, we find that the definition of sMHT is improper

and hence fails to achieve the claimed purpose of authenticating the positions of the

data blocks during the auditing process, which means replace attack could happen.

Essentially speaking, the auxiliary authentication information (AAI) provided by

the sMHT does not contain enough information to support position checking.

3.1.2 Contributions

To address the aforementioned problem, we perform a rigorous and detailed study

on MHTs that are suitable for static and/or dynamic data auditing schemes. Our

contributions can be summarized as follows:

1). We review the basic MHT (bMHT) and show that it cannot achieve the goal of

block position checking, which means in order to prevent replace attack, some

special treatment must be done in order to use MHT in data auditing schemes.

We then show a simple way to extend a bMHT to a sequence-enforced MHT

(sMHT) introduced in [WWR+11] for position checking in static data auditing.

2). Although sMHT works well for static data storage, it is not suitable for dynamic

storage. The main contribution of this work is to propose a new MHT, named

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING28

rank-based MHT (rMHT) that can achieve the goal of data and position ver-

ification in dynamic data auditing. We present the details of the construction

and the algorithms for both verification and dynamic data operations with

some concrete examples.

3). We review a dynamic data auditing protocol named Oruta recently proposed

in [WLL14] and show that the protocol is vulnerable to replace and replay

attacks. We then employ the proposed rMHT to fix the problem without

sacrificing any good feature of the original Oruta protocol.

A comparison of the three types of MHT (namely, bMHT, sMHT and rMHT)

is given in Table 3.1.

3.1.3 Related Work

In additional to the existing work aforementioned, we also note that there are some

other protocols proposed based on the MHT for cloud data storage. Mo et al.

[MXZC14] proposed a new authentication to support the deletion of outsourced

data. Instead of proving the existence of users’ data on the cloud servers for integrity

insurance, their introduced structure, namely Recursively Encrypted Red-black Key

tree (RERK), is to confirm the non-existence of deleted data on the cloud servers.

The work in [MZC12] did not notice the improper application of MHT in [WWR+11]

either. They developed an authenticated data structure called Cloud Merkle B+

tree (CMBT) to improve the performance of sMHT in [WWR+11]. We should

note that they also applied rank-based idea for their new CBMT definition but in

a different way as the definition of each node in the proposed B+ tree is different

from ours. Recently, Liu et al. [LCY+14] also proposed another dynamic auditing

scheme using MHT where each leaf node contains a rank to indicate the length of

the data represented by that leaf node. It is worth noting that our new rMHT is

different from that defined by Liu et al. [LCY+14]. In particular, the rank defined

in this chapter has a different meaning. Also, Liu et al.’s scheme uses the same

AAI format as other auditing schemes and thus cannot effectively perform position

checking. We also note that in a recent independent work [LRY+14], a new novel

multi-replica Merkle hash tree (MR-MHT) was introduced to mainly addressed the

efficiency problem in verifiable updates for cloud storage with multiple replicas.

They proposed a multi-replica public auditing (MuR-DPA) scheme which is based

on MR-MHT, where all replica blocks for each data block are organized into the

same replica sub-tree.

Another line of work to design dynamic auditing protocols is through applying

non-MHT techniques. In [ADPMT08], Ateniese et al. proposed a dynamic version

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING29

Table 3.2: Notations for MHT

Notation Description

v a node in the MHT

hv the value of node v

rv the rank of node v

lv the level of node v

sv the side information of node v

ai the i-th authentic data block in the MHT

Ωai the auxiliary authentication information of ai
CoRai the computation record of verification for ai
R the root of the Merkle Hash Tree

h′R the computed root value for verification

h∗R the updated root value

P ∗ai the updated path nodes of ai

of their prior PDP scheme which supports limited dynamic data operation and

imposes a bound on the number of queries. Erway et al. [EKPT09] constructed a

full dynamic version of the PDP solution using a ranked-based skip list. However,

public auditing is not supported by default. The first dynamic proof of retrievability

construction was proposed by Stefanov et al. [SvDOJ11] which is applied in Iries, a

cloud-based file system. Relying on Oblivious RAM (ORAM), Cash et al. [CKW13]

proposed a POR construction to obtain asymptotic efficiency in dynamic storage.

In order to reduce the bandwidth overhead required in [SvDOJ11] and [CKW13],

Shi et al. [SSP13] proposed a light-weight dynamic POR construction that achieves

comparable bandwidth overhead and client-side computation with a standard Merkle

hash tree.

3.2 Merkle Hash Tree

In this section, we introduce a widely used authentication structure named Merkle

Hash Tree and then show how to extend it for position checking. First, we define

some notations that will be used in this chapter in Table 3.2.

3.2.1 Merkle Hash Tree

Merkle Hash Tree was proposed as an authentication structure [Mer87] to ensure

data integrity. An MHT is a binary tree where each node v stores a hash value hv of

its children nodes. To be more precise, the leaf nodes contain the hash of the original

data and each internal node contains the hash value of its two children nodes.

Integrity Assurance. Assume that the receiver/verifier knows the root value of

an MHT. When receiving the i-th data block ai, apart from the data itself, the

receiver also requires some additional information in order to check the integrity of

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING30

Figure 3.1: MHT for Authentication of Data Elements (a1, ..., a8)

the returned block ai. The additional auxiliary authentication information (AAI)

Ωai for block ai contains the sibling nodes from the i-th leaf node to the root. The

authentication correctness and soundness can be guaranteed by the one way hash

function used in the MHT construction.

Fig. 3.1 describes an example of MHT which is constructed for an ordered

set of data elements a1, ..., a8. Any internal node value including the root value

is derived from its two children nodes. For example, h5 = h(h(a5)||h(a6)), h2 =

h(h5||h6) and hR = h(h1||h2). Suppose that a receiver requests the first block,

then in addition to a1, the prover also provides the receiver with the corresponding

auxiliary authentication information (AAI) as

Ωa1 =< h(a2), h4, h2 >

To verify that block a1 is undamaged and unaltered, the receiver first computes

h(a1), h3 = h(h(a1)||h(a2)), h1 = h(h3||h4), h′R = h(h1||h2) and then checks if h′R =

hR (hR is maintained locally by the verifier).

It is easy to see that although a basic MHT (bMHT) can be applied to authenti-

cate the value of a data block, it does not provide the function of position checking.

In the above example, when the verifier requests to verify the correctness of block

a1, the prover can simply use another block a3 and its AAI to fool the receiver

(i.e., a replace attack can be successful). It indicates that in addition to the root

value verification, some special treatment must be performed in order to do position

checking, which is important for data auditing schemes, otherwise the cloud server

can use uncorrupted data blocks to replace the corrupted ones that are requested

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING31

Figure 3.2: sMHT for Sequence-Enforced Authentication of Data Elements

by the auditor.

3.2.2 Sequence-Enforced Merkle Hash Tree (sMHT)

As we have mentioned before, both the value and the position of a data block should

be checked in a data auditing protocol. However, as demonstrated above, the bMHT

cannot directly achieve the goal of position checking. In this section, we introduce

a new type of MHT named sequence-enforced MHT which is originally proposed

by Wang et al. [WWR+11] without formal descriptions. In fact the only change we

made in sMHT compared with bMHT is the verification procedure.

Integrity Assurance with Position Checking. In order to support efficient

data integrity checking and position verification, we introduce a new notion named

computation record (CoR). The CoR will indicate the relative position (left or right

w.r.t. a leaf node) of each AAI node and hence can be used to determine the position

of the leaf node when all the leaf nodes are located at the same level. After receiving

a leaf node and the corresponding AAI nodes, the verifier now needs to record the

computation order when generating the root value, and then use that information to

verify the leaf node’s position. To be more precise, for each AAI node, its position

(first - 0 or second - 1) in the input of the hash function is recorded during the

computation of the root value. Fig. 3.2 describes an example. Suppose the verifier

wants to verify the leaf node a3 of the MHT where the root value is hR. The AAI

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING32

Table 3.3: Computation Record of a1, a2, a3, a4, a5, a6, a7, a8

Leaf Node ai Computation Record CoRai

a1 111

a2 011

a3 101

a4 001

a5 110

a6 010

a7 100

a8 000

for a3 is Ωa3 = {h(a4), h3, h2}. The value of a3 can be verified by

h(h(h3||h(h(a3)||h(a4)))||h2)
?
= hR.

Therefore, the computation record of a3 is CoRa3 = 101 since the computation

order is h(a4) → h3 → h2 . As another example, for the leaf node a5, the AAI is

{h(a6), h6, h1} and the verification can be done as follows

h(h3||h(h(h(a5)||h(a6))||h6))
?
= hR.

Therefore the computation record of a5 is CoRa5 = 110. The computation records

of the other leaf nodes can be computed in the same way. Table 3.3 shows the

computation records of all the leaf nodes.

We can see that each leaf node has a unique computation record. Hence, using

CoR, the verifier can verify the position of each leaf node, under the condition that

all the leaf nodes are at the same level.

Inefficient Verification. However, the sMHT cannot support efficient verification

as the elements in the AAI do not indicate their position information, i.e., first or

second position, in hash computation. Therefore, it results in an inefficient verifi-

cation as the verifier has to compute the root value for many trial rounds until the

correct computation order is used. To be more precise, suppose there are n data

blocks, then the computation complexity is O(n log2 n). As for the above example,

the verifier does not know whether to compute h1 as h(h3||h4) or h(h4||h3). And

for the worst case, the verifier needs to compute 8 different root values before the

integrity checking of a3 completes.

Problem with Dynamic Storage. Another drawback of sMHT is that it cannot

be used for dynamic storage. The reason is that the dynamic data operations,

specifically, data insertion and deletion would change the height of the sMHT and

make the tree unbalanced. That is, a node with the same index can be in different

level after each dynamic operation. Note that in a stateless auditing protocol, the

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING33

Figure 3.3: sMHT Updating for Data Insertion Operation

verifier has no knowledge about the structure of the corresponding sMHT. As a

result, there will be no unified computation record for position verification. Fig. 3.3

shows an example, before the insertion operation, the sMHT is balanced and the

computation records for a1, a2, a3, a4 are 11, 01, 10, 00 respectively. However, after

the insertion of a∗, the leaf nodes of a2, a
∗ would be at a lower level compared with

other leaf nodes and hence the sMHT is unbalanced. Therefore, the computation

records for a1, a2, a
∗, a3, a4 are 11, 101, 001, 10, 00 respectively. One can note that the

computation record of the second block a2 changes due to the insertion operation.

Since the verifier involved in a stateless auditing protocol has no knowledge about

this alteration, it is infeasible for it to check the position of a2 anymore.

3.3 Rank-Based Merkle Hash Tree

In order to make MHT suitable for dynamic data auditing, we develop a new type

of Merkle Hash Tree, which we call rank-based Merkle Hash Tree (rMHT).

3.3.1 Construction

In our rMHT, in addition to the hash value hv, each node v stores the number of

leaf nodes at the bottom level that are under v. This value is called the rank of v

and denoted by rv. One can see that the rank of a non-leaf node is the sum of the

rank of its children nodes. Different from sMHT, the value hv in an rMHT is the

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING34

Figure 3.4: rMHT for Sequence-Enforced Authentication of Data Elements

hash of v’s two children value and its rank value rv. Another value stored in a node

v is its level (height), denoted by lv. The last value is called the side information,

i.e., left or right (denoted by 0 and 1 respectively) to its parent node and is denoted

by sv. Therefore, the node v in an rMHT is denoted by

v = (hv, rv, lv, sv).

More precisely, suppose the child nodes of v are vl (left child) and vr (right child).

Then the value of node v can be computed as followings,

lv = lvl + 1,

rv = rvl + rvr ,

hv = h(hvl ||hvr ||rv).

One should note that the root R does not include the side information and hence

sR is Null.

In the rMHT, the authentcation information (i.e., AAI) for the i-th authentic

data element ai is

Ωai = {(v1, ..., vk)|vj = (hvj , rvj , lvj , svj), 1 ≤ j ≤ k}.

Notice that each node in the AAI is from a different level, here we require that for

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING35

Algorithm 1 : {0, 1} = Verify (i, ai,Ωai , hR)

1: Let Ωai = {v1, ..., vk} where vj = (hvj , rvj , lvj , svj) for 1 ≤ j ≤ k;
2: CoR = 1;Ra = 2;h′R = 0;
3: if sv1 = 0 then
4: h′R = h(hv1 ||h(ai)||Ra);
5: CoR = CoR + 1;
6: else h′R = h(h(ai)||hv1 ||Ra);
7: end if
8: for j = 2; j ≤ k; j + + do
9: Ra = Ra+ rvj ;

10: if svj = 0 then
11: h′R = h(hvj ||h′R||Ra);
12: CoR = CoR + rvj ;
13: else h′R = h(h′R||hvj ||Ra);
14: end if
15: end for
16: if h′R 6= hR then
17: return 0;
18: else if i 6= CoR then
19: return 0;
20: else return 1;
21: end if

any 0 ≤ j < t ≤ k, lvj < lvt , which means the nodes in the AAI are sorted by their

levels. This is for the purpose of efficient verification as the computation of the root

value is bottom-up. To give a clear picture, we provide an example of an rMHT in

Fig. 3.4.

3.3.2 Efficient Verification

Here we show how to employ the rMHT for efficient verification of data integrity and

position. Algorithm 1 describes the verification procedure. For all the AAI nodes

used during the computation of the root value, we compute the sum of the ranks of

those left-side nodes for position checking if the root value passes the verification.

Specifically, CoR now records the number of leaf nodes which are on the left side of

the verified node (the leaf nodes are treated as a left-to-right sequence in rMHT).

Back to the example in Fig. 3.4, suppose that the verifier wants to verify both

the value and the position of an authentic data element say a4, the verifier receives

the corresponding auxiliary authentication information (AAI), that is

Ωa4 = {v1, v2, v3} = {(h3, 1, 0, 0), (hc, 2, 1, 0), (hb, 4, 2, 1)}

from the prover. Then the verifier sets an integer CoR = 1 and computes by

following our verification algorithm as follows.

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING36

Algorithm 2 : (h∗R, P
∗
a∗i

) = Mod (i, a∗i ,Ωai)

1: Let Ωai = {v1, ..., vk} where vj = (hvj , rvj , lvj , svj) for for 1 ≤ j ≤ k; and the update
path nodes P ∗a∗i

= {p1, ..., pk+1} where pj = (hpj , rpj , lpj , spj) for 1 ≤ j ≤ k + 1;

2: h∗R = 0;hp1 = h(a∗i); rp1 = 1; lp1 = 0;
3: for j = 1; j ≤ k; j + + do
4: rpj+1 = rpj + rvj ;
5: lpj+1 = lvj + 1;
6: if svj = 0 then
7: hpj+1 = h(hvj ||hpj ||rpj+1);
8: spj = 1;
9: else if svj = 1 then

10: hpj+1 = h(hpj ||hvj ||rpj+1);
11: spj = 0;
12: end if
13: end for
14: h∗R = hpk+1

;
15: return h∗R, P

∗
a∗i

;

1). Compute rank of d as rd = 1 + 1 = 2 and value of d as hd = h(h3||h(a4||1)||2),

set CoR = 1 + 1 = 2;

2). Compute rank of a as ra = 2 + 2 = 4 and value of a as ha = h(hc||hd||4)), set

CoR = 2 + 2 = 4;

3). Compute rank of root h′R as 4 + 4 = 8 and value of h′R as h(ha||hb||8);

4). Check if h′R = hR and verify if CoR = 4.

From the above example, one can see that the rMHT can indeed support efficient

verification of both value and position of the authentic data. The reason is that the

side information indicates the position for hash computation and hence results in

an efficient root value generation.

3.3.3 Verifiable Dynamic Data Operations

In this section, we introduce how to employ the rMHT for dynamic data operations,

including modification, insertion, and deletion. Below we show the algorithms for

updating the rMHT for these three operations.

Modification. A data modification operation refers to the replacement of specified

data blocks with new ones. Algorithm 2 describes the procedure of rMHT update

for data modification.

The input of the algorithm consists of (i, a∗i ,Ωai) where i indicates that the data

to be modified is the i-th data block which is to be replaced by a∗i . Ωai is the AAI

of the original data ai. The algorithm Mod then updates the rMHT as follows.

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING37

Figure 3.5: rMHT Updating for Data Modification

1). Compute the hash of a∗i as the new value of the i-th leaf node and set its rank

and level values respectively;

2). For each sibling node in the AAI, compute its parent node and set the side

information of the same-level path node;

3). Finally, return the new root value h∗R and output the new path nodes P ∗a∗i of

a∗i .

Fig. 3.5 shows an example of the update operation of the rMHT regarding data

modification. Suppose that the data element a2 is replaced by a new data a∗2. The

nodes need to be updated are those on the path from the leaf node to the root of the

rMHT, i.e., h(a∗2||1), h∗a, h
∗
R. It is worth noting that the data modification operation

does not change the rank value or side information of each node in the rMHT.

Insertion. A data insertion operation refers to inserting new data blocks into some

specified positions of the original data set. Algorithm 3 shows the operation of an

rMHT update for data insertion.

The algorithm takes (i, vai , a
∗
i ,Ωai) as input which indicates that the new data

block a∗i is to be inserted into the i-th position and Ωai is the AAI for the original

i-th block ai. Then the algorithm Insexecutes as follows.

1). Compute the hash of a∗i as the new value of the i-th leaf node and set its rank

and level values respectively;

2). Compute the parent node of a∗i and ai;

3). For each sibling node in the AAI, compute its parent node and set the side

information of the same-level path node;

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING38

Algorithm 3 : (h∗R, P
∗
a∗i

) = Ins (i, vai , a
∗
i ,Ωai)

1: Let Ωai = {v1, ..., vk} where vj = (hvj , rvj , lvj , svj) for 1 ≤ j ≤ k; and P ∗a∗i
=

{p1, ..., pk+2} where pj = (hpj , rpj , lpj , spj) for 1 ≤ j ≤ k + 2; Let vai =
(hvai , rvai , lvai , svai) be the original i-th leaf node.

2: h∗R = 0;hp1 = h(a∗i); rp1 = 1; lp1 = lvai −−; svai = 1; sp1 = 0;
3: hp2 = h(hp1 ||hvai ||2); rp2 = 2; lp2 = lp1 + 1;
4: for j = 1; j ≤ k; j + + do
5: rpj+2 = rpj+1 + rvj ;
6: lpj+2 = lvj + 1;
7: if svj = 0 then
8: hpj+2 = h(hvj ||hpj+1 ||rpj+2);
9: spj+1 = 1;

10: else if svj = 1 then
11: hpj+2 = h(hpj+1 ||hvj ||rpj+2);
12: spj+1 = 0;
13: end if
14: end for
15: h∗R = hpk+2

;
16: return h∗R, P

∗
a∗i

;

4). Finally, return the new root value h∗R and output the new path nodes P ∗a∗i of

a∗i .

Fig. 6.4 describes the update operation of the rMHT regarding data insertion.

Suppose that a new data block a∗2 is to be inserted before the data block a2. The

nodes need to be updated are those nodes on the path from the inserted leaf node to

the root of the rMHT. More precisely, a new internal node is inserted as the parent

node of the new inserted leaf node h2 and the leaf node h3 as h(h2||h3||2). Moreover,

since the number of the leaf nodes increases in the new rMHT, the value of h∗a and

root h∗R are also recomputed as: h∗a = h(h(a1||1)||h(h2||h3||2)||3), h∗R = h(h∗a||hb||5).

One can see that data insertion operation changes the rank value of the nodes on

the updated path.

Deletion. A data deletion operation refers to removing a specified data element

from the original data set. Algorithm 4 describes the operation of an rMHT update

for data deletion. Compared to the algorithms Mod and Ins, the input of algorithm

Del just consists of (i,Ωai) which indicates that the data to be deleted is the i-th

block. The algorithm then updates the corresponding path nodes using the AAI of

the original data element ai as follows.

1). Recompute the level and side value of the first sibling node in Ωai and set it to

be the first path node;

2). For each other sibling node in the AAI, compute its parent node as the new

path node;

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING39

Figure 3.6: rMHT Updating for Data Insertion

3). Finally, return the new root value h∗R and output the new path nodes P ∗ai−1
of

the i− 1-th node ai−1.

Fig. 3.7 shows the update operation of the rMHT regarding data deletion.

Suppose that the data element a2 is removed. The original internal node ha now

becomes the leaf node h∗a = h(a1||1). Hence the root value is updated to h∗R =

h(h∗a||hb||3). One can also see that data insertion operation changes the rank value

of the nodes on the updated path.

Verifiable Dynamic Data Operations. In order to ensure that the cloud server

has performed the dynamic operations honestly, the data owner can perform a veri-

fication on the new root value to check if the cloud server has indeed performed the

update operation. The details will be given in Section 3.5.1. However, as mentioned

before, when a delegated TPA performs the data auditing, it is possible for the cloud

server to use an old version of the data and the corresponding authentication infor-

mation to generate an auditing proof. In a stateless data auditing scheme, the root

of the rMHT should be signed by the user using a secure digital signature scheme

in order to prevent the server from modifying the root value, and the TPA does not

need to store the root value since it can be recomputed using any leaf node and the

corresponding AAI chosen in an auditing request, and then verified using the user’s

signature. However, in order to prevent the replay attack in which the cloud server

can use an old rMHT rather than the updated version, we should require the TPA

to keep the latest root value of the rMHT. Another relatively simpler solution to

solving the problem is to let the user add a timestamp when signing the root value,

and inform the TPA the time of the most recent update.

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING40

Algorithm 4 : (h∗R, P
∗
ai−1

) = Del (i,Ωai)

1: Let Ωai = {v1, ..., vk}, P ∗ai−1
= {p1, ..., pk} where vj = (hvj , rvj , lvj , svj); pj =

(hpj , rpj , lpj , spj) for 1 ≤ j ≤ k;
2: h∗R = 0;hp1 = hv1 ; rp1 = rv1 ; lp1 = lv1 + 1;
3: for j = 1; j ≤ k; j + + do
4: rpj+1 = rpj + rvj ;
5: lpj+1 = lPj + 1;
6: if svj = 0 then
7: hpj+1 = h(hvj ||hpj ||rpj+1);
8: spj = 1;
9: else if svj = 1 then

10: hpj+1 = h(hpj ||hvj ||rpj+1);
11: spj = 0;
12: end if
13: end for
14: h∗R = hpk ;
15: return h∗R, P

∗
ai−1

;

Figure 3.7: rMHT Updating for Data Deletion

3.4 Review of Oruta

In this section, we review the details of a dynamic auditing protocol named Oruta

recently proposed in [WLL14]. Oruta was proposed with the purpose of supporting

dynamic data operations and ensuring user privacy using the techniques of ring

signature. However, below we show that the protocol is vulnerable to the replace

attack.

3.4.1 Construction

Let G1, G2 and Gτ be three multiplicative cyclic groups of prime order p, and g1 and

g2 be the generators of G1 and G2, respectively. Let e : G1×G2 → Gτ be a bilinear

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING41

map, and ψ : G2 → G1 be a computable isomorphism with ψ(g2) = g1. Let H1 :

{0, 1}∗ → G1, H2 : {0, 1}∗ → Zq, and h : G1 → Zp denote three cryptographic hash

functions. The global system parameters are (e, ψ, p, q,G1,G2,Gτ , g1, g2, H1, H2, h).

An outsourced data file M is divided into n blocks, and each block mj is divided

into k elements in Zp. Then, the data component M can be viewed as an n × k

matrix. Also, let d denote the number of users in the group where the file is shared.

KeyGen. Each user ui randomly chooses xi ∈ Zp and computes wi = gxi2 . So the

user ui’s public key is wi, and the private key is xi. Besides, the user who

firstly create the file should generate a public aggregate key pak = {η1, ..., ηk},
where each ηl (1 ≤ l ≤ k) is a random elements of G1.

SignGen. Given all members’ public keys {w1, ..., wd}, a block mj = {mj,1, ...,mj,k},
the identifier of the block idj, a public aggregate key pak = {η1, ..., ηk} and

the private key of the signer xs, the user us generates a ring signature for this

block as follows.

1). The signer first aggregates block mj with the public aggregate key pak,

and computes βj = H1(idj)
∏k

l=1 η
mj,l
l ∈ G1.

2). Then the signer randomly chooses aj,i ∈ Zp and sets σj,i = g
aj,i
1 for all

i 6= s. And for i = s, he/she computes σj,i = (
βj

ψ(
∏
i6=s w

aj,i
i)

)1/xs . Therefore,

the ring signature of block mj is σj = {σj,1, ..., σj,d}.

ProofGen. The third-party auditor (TPA) generates the challenge in the following

way:

1). The TPA picks c elements in set [1, n], where n is the total number of

blocks, to indicate the blocks that will be checked. Let J denote the

indices of the chosen blocks.

2). For j ∈ J , the TPA randomly chooses yj ∈ Zq. Then the TPA sends

{(j, yj)}j∈J to the cloud server as a challenge message.

After receiving {(j, yj)}j∈J , the cloud server generates the proof as follows:

1). For l ∈ [1, k], the cloud server randomly chooses rl ∈ Zq, and computes

λl = ηrll ∈ G1, and µl =
∑

j∈J yjmj,l + rlh(λl) ∈ Zp.

2). For i ∈ [1, d], the cloud server computes φi =
∏

j∈J σ
yj
j,i.

Then the cloud server sends the proof {{λl}l∈[1,k], {µl}l∈[1,k], {φi}i∈[1,d], {idj}j∈J}
to TPA.

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING42

ProofVerify. After receiving the proof, and given the public aggregate key pak =

{η1, ..., ηk} and all the public keys {w1, ..., wd} of the group members, the TPA

verifies the proof by checking:

e(
∏
j∈J

H1(idj)
yj ·

k∏
l=1

ηµll , g2)
?
= (

d∏
i=1

e(φi, wi)) · e(
k∏
i=1

λ
h(λl)
l , g2)

Remarks. Instead of using the index of a block as its identifier (e.g. the index of

block mj is j), this scheme utilises index hash tables. An identifier from this table

is described as idj = {vj, rj}, where vj is the virtual index of block mj, and rj =

H2(mj||vj) is generated using a collision-resistance hash function H2 : {0, 1}∗ ∈ Zq.
Here q is a prime that is much smaller than p. If vi < vj, then block mi is in front

of mj in the file. The initial virtual index of block mj is set as vj = j · δ, where

δ indicates the number of data block that can be inserted into mj and mj+1. For

example, if m′j is inserted, then v′j = (vj−1 + vj)/2, r
′
j = H2(m′j||v′j) is inserted into

the index hash table; if mj is deleted, then the corresponding entry is removed from

the table.

3.4.2 Replace Attack on Oruta

Below we show that the Oruta scheme is vulnerable to the replace attack. Suppose

the challenge query from the auditor is {(j, yj)}j∈J,yj∈Y . We show that the server

can redirect the challenge on the corrupted blocks to uncorrupted blocks in order to

pass the verification. Without loss of generality, let that the corrupted challenged

blocks be {mt}t∈T where T ⊆ J . Then the server choose other |T | uncorrupted

blocks {mt∗}t∗∈T ∗ where |T ∗| = |T | and T ∗ ⊆ [1, n]/J . Let J∗ = T ∗ ∪ J/T, Y ∗ = Y .

The server generates the auditing proof as follows,

1). For l ∈ [1, k], the cloud server randomly chooses rl ∈ Zq, and computes

λl = ηrll ∈ G1.

2). For l ∈ [1, k], the cloud server also computes µl =
∑

j∈J∗,yj∈Y ∗ yjmj,l+rlh(λl) ∈
Zp.

3). For i ∈ [1, d], the cloud server computes φi =
∏

j∈J∗,yj∈Y ∗ σ
yj
j,i.

Finally, the cloud server sends the auditing proof {{λ}, {µ}, {φ}, {idj}j∈J∗}
to the TPA. The TPA verifies the proof by checking: e(

∏
j∈J∗,yj∈Y ∗ H1(idj)

yj ·∏k
l=1 η

µl
l , g2)

?
= (
∏d

i=1 e(φi, wi)) · e(
∏k

i=1 λ
h(λl)
l , g2).

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING43

Figure 3.8: rMHT Construction for the Improved Oruta

The correctness is ensured by:

(
d∏
i=1

e(φi, wi)) · e(
k∏
i=1

λ
h(λl)
l , g2)

=
∏

j∈J∗,yj∈Y ∗
(
d∏
i=1

e(σ
yj
j,i, wi) · e(

k∏
l=1

λ
h(λl)
l , g2)

=
∏

j∈J∗,yj∈Y ∗

(
d∏
i=1

e(σj,i, wi)

)yj

· e(
k∏
l=1

η
rlh(λl)
l , g2)

=
∏

j∈J∗,yj∈Y ∗
e(H1(idj)

yj ·
k∏
l=1

η
yjmj,l+rlh(λl)

l , g2)

= e(
∏

j∈J∗,yj∈Y ∗
H1(idj)

yj ·
k∏
l=1

ηµll , g2)

Although Oruta uses the hash table to support dynamic data operations, our

attack above essentially shows that such a technique is not suitable since it makes

the scheme vulnerable to the replace attack.

3.4.3 Replay Attack

The problem of replay attack against Oruta has already been noticed by the authors

of [WLL14]. It is easy to see that even if the server does not perform any update

operation, it can still pass the data auditing later by using the old file and authen-

tication information. The authors of [WLL14] didn’t provide a solution to solving

the problem and left it as their future work.

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING44

Table 3.4: Auditing Protocol of the Improved Oruta

TPA Server
Generate query {j, yj}j∈J

{j,yj}j∈J−−−−−−−−−→
Compute {λ, µ, φ};

Generate {H1(mj),Ωmj}j∈J ;
{λ,µ,φ,{H1(mj),Ωmj }j∈J ,σR}←−−−−−−−−−−−−−−−−−−−

Verify(j,Ωmj , H1(mj), σR)→ Vj ;
Run ProofVerify using

({yj , H1(mj)}j∈J , λ, µ, φ).

3.5 Improving Oruta Using rMHT

In this section, we show how to use the introduced rank-based Merkle Hash Tree

(rMHT) to improve the Oruta protocol to prevent the replace attack and to support

verifiable dynamic data operations.

Construction of rMHT. As shown in Fig. 3.8, the sequence-enforced authentic

data of the rMHT are the identifier tags, which are the hashes of the data blocks.

Signature Generation. The global system parameters and the key generation

algorithm are the same as those in the original Oruta scheme [WLL14]. For a block

mj = {mj,1, ...,mj,k}, the actual signer, denoted by us, computes

βj = H1(mj)
k∏
l=1

η
mj,l
l ∈ G1.

The other part of the ring signature generation for mj follows the procedure in

[WLL14]. Given all the d users’ public keys (pk1, ..., pkd) = (w1, ..., wd), us randomly

chooses ai ∈ Zp for all i 6= s, where i ∈ [1, d], and computes σi = gai1 . Then he

computes βR = H1(R) ∈ G1 for the root R and sets

σs = (
βR

ψ(
∏

i 6=sw
aj,i
i)

)1/xs ∈ G1.

Therefore, the ring signature for the root R is σR = (σ1, ..., σd) ∈ Gd
1. Then the user

uploads σR, the data blocks, and corresponding ring signatures to the server and

then deletes the local copy. It is worth noting that here we also use ring signature

to sign the root R in order to preserve the identity privacy property of Oruta.

rMHT-Based Auditing. Table 3.4 describes the auditing protocol of the im-

proved Oruta. After receiving the challenge query {j, yj}j∈J , the server computes

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING45

Table 3.5: Verifiable Dynamic Data Operations

User Server
Generate update request (op, params)

(op,param)−−−−−−−−−→
Update the data;

Update(op, params∗)→ (h′, P ′);
(j,Ωmj ,H1(mj),σR,h

′)
←−−−−−−−−−−−−−−

Verify(j,Ωmj , H1(mj), σR)→ Vj ;
Output FALSE if Vj = 0;

Update(op, params∗)→ (h∗, P ∗);
If h∗ 6= h′, output FALSE ;
Delete the local data copy;

Generate the signature of h∗ as σ∗R.
σ∗R−−−−−−−−−→

the auditing proof λ, µ, φ in the same way of the original Oruta. The server also pro-

vides the public verifier with the identifier tags {H1(mj)}j∈J and the AAIs {Ωj}j∈J
using the rMHT. In addition, the server also returns σR which is the ring signature

for the root R of the rMHT. Therefore, the auditing proof for a challenge query

{j, yj}j∈J is {λ, µ, φ, {H1(mj),Ωj}j∈J , σR}. Upon receiving the auditing proof from

the server, for each j ∈ J , the verifier runs the algorithm Verify (Section 3.3.2) to

verify H1(mj). It is worth noting that according to its original definition, the inputs

to the algorithm Verify should be (j,H1(mj),Ωj, hR) instead of (j,H1(mj),Ωj, σR).

However, such a modification does not affect the verification since the verifier will

recompute hR and uses σR to verify that the computed root value is correct. If the

verification fails, the verifier rejects by emitting FALSE. Otherwise, the verifier runs

the algorithm ProofVerify to check,

e(
∏
j∈J

H1(mj)
yj ·

k∏
l=1

ηµll , g2)
?
= (

d∏
i=1

e(φi, wi)) · e(
k∏

λ=1

λ
h(λl)
l , g2)

If so, output TRUE, otherwise output FALSE. The correctness of the above equation

can be easily obtained by following Theorem 5 in [WLL14].

3.5.1 Verifiable Dynamic Data Operations Using rMHT

Here we show that the constructed rMHT in the improved Oruta can efficiently

handle dynamic data operations including data modification (modify the j-th block

mj to m′j), insertion (insert a new block m∗ at the j-th position) and deletion

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING46

Algorithm 5 : (h∗, P ∗) = Update (op, params∗)

1: if op =M then
2: (h∗, P ∗) = Mod (params∗);
3: else if op = I then
4: (h∗, P ∗) = Ins(params∗);
5: else if op = D then
6: (h∗, P ∗) = Del (params∗);
7: end if
8: return h∗, P ∗;

Table 3.6: Description of Notations in Table 3.5

Operation op params params∗

Modification M (j,m′j , σ
′
j) (j,m′j ,Ωmj)

Insertion I (j,m∗, σ∗) (j, vmj ,m
∗,Ωmj)

Deletion D (j) (j,Ωmj)

(remove the j-th block mj). Moreover, the dynamic data operations on the server

side can be verified by the user and hence our work solves the problem pointed out

in [WLL14].

Table 3.5 shows the procedure of data updating and the algorithm Update (Al-

gorithm 5) is for rebuilding the rMHT. The inputs of Update include op ∈ {M, I,D}
where M, I,D represent the operations of modification, insertion and deletion re-

spectively, and params∗ indicates the parameters for the above algorithms. To be

more precise, when the server receives the requests (op, params), it constructs the

corresponding parameters (op, params∗) for algorithm Update to rebuild the rMHT.

The details of parameters are given in Table 3.6. To verify that the server has cor-

rectly rebuilt the rMHT, the user also runs the updating algorithm to get the new

root value for comparison with the one sent by the server. Therefore, the dynamic

data operations in the server are verifiable by the user. In order to make sure that

the third party auditor later can also audit the updated data rather than old data

(i.e., to prevent replay attack), the strategies given in Section 3.3.3 can be applied.

3.5.2 Batch Auditing Using rMHT

In order to make the auditor be able to handle multiple auditing tasks efficiently,

Oruta is extended in [WLL14] to support batch auditing, which can verify the cor-

rectness of multiple auditing tasks simultaneously. Although we employ the rMHT

for index checking in the improved Oruta protocol, it is easy to see that this mod-

ification still supports batch auditing due to the properties of the bilinear map.

Therefore, we omit the description here and refer the readers to [WLL14] for more

details.

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING47

3.5.3 Security of the Improved Oruta

In this chapter, we discuss the security properties of the improved Oruta. Since the

improved Oruta mainly aims to address the security issues in the original Oruta

by applying rMHT, the security proofs given in [WLL14] can be easily extended

for the improved protocol. In particular, the ring signature on the rMHT root R

is unforgeable following the analysis in [WLL14], which prevents the server from

modifying the root value of the rMHT. Regarding the identity privacy, one can see

that the improved Oruta can still preserve identity privacy since it performs ring

signature on both data blocks and also the rMHT root. For the privacy of the

audited data, since the rMHT construction uses the hashes of the data blocks as the

leafs, the public verifier still cannot reveal any information of the audited data due

to the one-way hash function.

It is easy to observe that the improved protocol is also secure against the replace

attack as it uses rMHT for position checking during the verification of an auditing

proof. For the replay attack, our protocol allows the user to verify that the server has

correctly performed the dynamic data operations. However, to prevent the replay

attack against a third-party auditor, the strategies described in Section 3.3.3 should

be applied.

3.6 Performance Evaluation

In this section, we first analysis the computation and communication costs of the

improved Oruta, and then evaluate the performance of Oruta in experiments.

3.6.1 Comparison With Oruta

We show the comparisons as follows.

Computation Cost. Due to the employment of the rMHT in the improved Oruta,

the extra computation overhead in the new protocol compared with the original

one in [WLL14] comes from the rMHT construction and the verification of the AAI

information in an auditing task. Roughly speaking, the hash function evaluations

are very efficient and hence can be neglected. Hence, the main computation overhead

comes from the generation and verification of the ring signature on the rMHT root,

which takes several exponentiation/pairing operations.

At the beginning of the protocol execution, the TPA chooses some random val-

ues to construct the auditing message and hence only introduces a small cost in

computation. Upon receiving the challenge message, the cloud server needs to com-

pute a proof {λ, µ, φ, {H1(mj),Ωmj}j∈J , σR}. The cost of this calculation is about

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING48

5 10 15 20
0

20

40

60

80

d: the size of the group
(1) Impact of d on file processing time (ms)

F
ile

 P
ro

ce
ss

in
g

T
im

e
(m

s)

0 50 100 150
0

20

40

60

80

k: the number of elements per block
(2) Impact of k on File Processing Time (ms)

F
ile

 P
ro

ce
ss

in
g

T
im

e
(m

s)

5 10 15 20
0

2

4

d: the size of the group (k=100)
(3) Impact of d on auditing time (s)

A
ud

iti
ng

 T
im

e
(s

)

0 50 100 150
0

2

4

6

k: the number of elements per block (d=20)
(4) Impact of k on auditing time (s)

A
ud

iti
ng

 T
im

e
(s

)

5 10 15 20
5

10

15

20

25

d: the size of the group (k=100)
(5) Impact of d on communication cost (KB)

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

0 50 100 150
0

10

20

30

k : the number of elements per block (d=20)
(6) Impact of k on communication cost (KB)

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

k=80
k=100

d=10
d=20

c=300
c=460

c=300
c=460

c=300
c=460

c=300
c=460

Figure 3.9: Experiment Results of the Performance of the Improved Oruta

(k + dc)ExpG1
+ dcMulG1 + dcMulZP + kHashZp where ExpG1

denote the compu-

tation of one exponentiation in G1, MulG1 denotes the costs of one multiplication

in G1, MulZp and HashZp respectively denote the cost of one multiplication and

one hashing operation in Zp. As for the verification, the total computation cost is

(2k + c)ExpG1
+ (2k + c)MulG1 + dMulGT + (clogn)HashG1 + (2d + 3)PairingG1,G2

where PairingG1,G2
denotes one pairing computation in G1 and G2.

Communication Cost. Regarding the communication cost, compared with the

original Oruta, the server needs to respond the values of the challenged nodes and

their AAI, and a ring signature of the rMHT root, which contains d (the number

of users sharing the file) elements in the group G1, in each auditing. According

to the experimental results in [WWR+11] and [WLL14], the communication cost

of the improvement is acceptable for both the cloud users and the cloud server. In

particular, the communication cost of each auditing message is c(|q|+|n|) bits, where

|q| is the length of an element of Zq and |n| is the length of an index. Each auditing

proof consists of (k+2d+ c) elements of G1, k elements of Zp and c elements of AAI

. Therefore, the communication cost of one auditing proof is (2k + 2d+ c)|p|+ c|v|
bits where |v| is the length of an AAI.

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING49

3.6.2 Experimental Results

To evaluate the efficiency of the improved Oruta in experiments, we also implement

the protocols utilizing the GNU Multiple Precision Arithmetic (GMP) library and

Pairing Based Cryptography (PBC) library. The following experiments are based on

coding language C on Linux system (more precise, 2.6.35-22-generic version) with

an Intel(R) Core(TM) 2 Duo CPU of 3.33 GHZ and 2.00-GB RAM. For the elliptic

curve, we choose an MNT curve with a base filed size of 159 bits and p=160 bits

and |q|=80 bits. We assume the total number of blocks, i.e., n= 1,000,000 and

|n|=20 bits. The size of shared data is 2 GB. Suppose 1% of those blocks are lost

or damaged, in order to detect these corrupted blocks with probability greater than

99% and 95%, we set the value of c=460 and c=300 respectively. This is according

to the result shown in [ABC+07]. We also assume the size of the group d ∈ [2, 20]

in our experiment analysis.

File Processing. Before uploading the file to the cloud server, a user needs to

process his/her file by generating the ring signature of each block and computing the

corresponding rMHT. The signature generation time is determined by the number of

users (d) per group and the number of elements (k) per block while the construction

time of rMHT is determined by the block number (n) of the file. As shown in

Fig.3.9-(1) and Fig.3.9-(2), the file processing time increases with the size of the

group when k is fixed and increases with the number of elements per block when d is

fixed. Specifically, the file processing time is 40.12 milliseconds when d = 20, k = 80.

Auditing Time. As illustrated in Fig.3.9-(3), the auditing time is increasing with

the size of the group and the number of challenged blocks. For example, suppose

d = 10, k = 100, the auditing time is about 1.5 seconds when c = 300 and 1.8

seconds when c = 460. When the number of the group member increases to 20, the

auditing time cost comes be about 2.5 seconds and 2.8 seconds respectively. When

we fix the value of d = 20, the auditing time increases with the number of elements

per block as shown in Fig.3.9-(4).

Communication. One can see from Fig.3.9-(3) that the communication cost con-

sumed during the auditing protocol is very small compared to the size of the stored

file (2 GB). More precisely, When the selected blocks c = 300, d = 20, the communi-

cation cost is 15 KB and comes to be 16 KB when c = 460. The communication cost

of the auditing protocols increases with the the number of elements per block. It

is worth noting that compared with the original Oruta [WLL14], the auditing task

in the improved Oruta naturally consumes more communication cost as the proof

consists of the leaf nodes and their AAI additionally.

CHAPTER 3. A FORMAL TREATMENT ON MHT FOR CLOUD AUDITING50

3.7 Chapter Summary

In this chapter, we gave a formal treatment on Merkle Hash Tree for secure dynamic

cloud auditing. We first revisited a well-known authentication structure named

Merkle Hash Tree (MHT) and demonstrated how to extend its basic version to a

sequence-enforced version that allows position checking. In order to support efficient

and verifiable dynamic data operations, we further proposed a variant of MHT,

named rank-based MHT (rMHT) that can be used to support verifiable dynamic

data auditing. We also reviewed a cloud storage data auditing protocol named

Oruta and showed that the protocol is vulnerable to replace and replay attacks. We

then employed the proposed rMHT to fix the security problems in Oruta without

sacrificing any desirable features of the protocol. It is of independent interest to find

other security applications for rMHT.

Chapter 4

Block-Level Message-Locked Encryp-

tion for Secure Deduplicaiton

Deduplication is a popular technique widely used to save storage spaces in the cloud.

To achieve secure deduplication of encrypted files, Bellare et al. formalized a new

cryptographic primitive named Message-Locked Encryption (MLE) in Eurocrypt

2013. Although an MLE scheme can be extended to obtain secure deduplication

for large files, it requires a lot of metadata maintained by the end user and the

cloud server. In this chapter, we propose a new approach to achieving more efficient

deduplication for (encrypted) large files. Our approach, named Block-Level Message-

Locked Encryption (BL-MLE), can achieve file-level and block-level deduplication,

block key management, and proof of ownership simultaneously using a small set

of metadata. We also show that our BL-MLE scheme can be easily extended to

support data auditing, which makes it multi-purpose for secure cloud storage.

4.1 Introduction

According to the architecture and the granularity of data processing, deduplication

strategies can be mainly classified into the following types. In terms of deduplication

granularity, there are two main deduplication strategies. (1) File-level deduplication:

the data redundancy is exploited on the file level and thus only a single copy of each

file is stored on the server. (2) Block-level deduplication: each file is divided into

blocks, and the server exploits data redundancy at the block level and hence per-

forms a more fine-grained deduplication. It is worth noting that for block-level

deduplication, the block size can be either fixed or variable in practice, and each

method has its advantages and disadvantages [Ded]. In this work, we focus on the

block-level deduplication with fixed block size. From the perspective of deduplica-

tion architecture, there are also two strategies. (1) Target-based deduplication: users

are unaware of any deduplication that might occur to their outsourced files. They

just upload the files to the data storage server which then performs deduplication

upon receiving the data. (2) Source-based deduplication: unlike target-based dedu-

plication, before uploading the data, the user first sends an identifier/tag of the data

(e.g., a hash value of the data and thus much shorter) to the server for redundancy

checking and thus duplicated data would not be sent over the network.

Large File Deduplication. In this chapter, we focus on large file deduplication.

51

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 52

Normally block-level deduplication can provide more space savings than file-level

deduplication does in large file storage. Taking as an example, Alice and Bob want

to store the same large file M in a server. Suppose the server performs file-level

deduplication, which means only one copy of M will be saved. Later, Bob downloads

M , appends several new pages to it, and uploads the modified file (denoted by M ′)

to the server. Since M ′ is different from M , the server needs to store the whole file

M ′. However, if block-level deduplication is used, the server only needs to store the

appended pages (denoted by ∆M), reducing the space cost from O(|M | + |M ′|) to

O(|M |+ |∆M |). This approach can bring a significant space saving since |∆M | �
|M ′|. One drawback of the more fine-grained block-level deduplication is that it

requires more processing resources. For some storage systems, e.g., backup systems

where there are many duplicated files, it is computationally inefficient to perform

block-level deduplication since the server has to exploit redundancy per block and

thus requires extensive processing resources especially for large files which contain

numerous blocks. Fortunately, file-level deduplication and block-level deduplication

are not incompatible with each other. In this chapter, we present a technique that

can achieve both of them (i.e., dual-level deduplication).

Another aspect that should be taken into consideration is the bandwidth savings

from large file deduplication. It has been reported that the cost of transferring data

is almost the same as the space cost of storing the same amount of data for two

months in the Amazon S3 server [HPS10]. Since uploading large files would con-

sume extensive bandwidth, source-based deduplication seems to be a better choice

for large file outsourcing. Unlike target-based deduplication which requires users

to upload their files regardless of the potential data redundancy among those files,

source-based deduplication could save the bandwidth significantly by eliminating

the retransmission of duplicated data. Therefore, in contrast to target-based dedu-

plication which saves only space, source-based deduplication can, in addition, save

network bandwidth, which makes it more attractive in large file deduplication. How-

ever, source-based deduplication also has a drawback. A dishonest user who has

learnt a piece of information about a file may claim that he/she owns the file. Such

a problem has been identified by Halevi et al. in [HHPS11]. To overcome such an

attack, they proposed a new notion called Proof of Ownership (PoW) where the user

proves to the server that he/she indeed owns the entire file. It is clear that PoW

should be implemented along with source-based deduplication. In the rest of the

chapter, we consider PoW as a default component in source-based deduplication.

From the above analysis, we can see that it is desirable to have Dual-Level

Source-Based (DLSB) Deduplication for large files. Such a mechanism can

achieve the best savings on space, computation, and bandwidth. In a DLSB Dedu-

plication system, the user firstly sends a file identifier to the server for file redun-

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 53

dancy checking. If the file to-be-stored is duplicated in the server, the user should

convince the server that he/she indeed owns the file by performing a PoW protocol.

Otherwise, the user uploads the identifiers/tag of all the file blocks to the server for

block-level deduplication checking. Finally, the user uploads data blocks which are

not stored on the server.

Data Privacy. In the discussions above, we haven’t considered data privacy issues.

In reality, end users may not entirely trust the cloud storage servers. In order to

protect data privacy, files may be encrypted first before being uploaded to the server.

This brings a new challenge for deduplication since different users will use different

keys to perform encryption, which would make two identical files completely different

after being encrypted. Although searchable encryption [BCOP04,SWP00,YTHW10]

can support equality testing of encrypted data, cloud storage providers still cannot

perform any deduplication. Specifically, the work in [BCOP04] only considers the

keyword search on the encrypted data for the same user and hence cannot be applied

for deduplication of data from different users. A similar drawback exists for the work

in [SWP00] which supports symmetric-key searchable encryption and is not suitable

for cross-user deduplication. While some other works, e.g., [BBO07, YTHW10],

support equality testing of data from different users, they still do not meet the

requirement of deduplication. The main reason is that, if a user (say Bob) does not

store his encrypted file on the server due to deduplication, e.g., another user Alice

has stored the same file in the server, then Bob could not retrieve the original file

later since he cannot decrypt Alice’s file.

4.1.1 Motivations

To resolve the above problem, Douceur et al. [DAB+02] proposed a solution called

Convergent Encryption (CE). CE is a deterministic symmetric encryption scheme

in which the key K is derived from the message M itself by computing K = H(M)

and then encrypting the message as C = E(K,M) = E(H(M),M) where H is a

cryptographic hash function and E is a block cipher. Using CE, any user holding

the same message will produce the same key and ciphertext, enabling deduplication.

Although CE and its variants have been widely deployed in many systems [ABC+02,

SGLM08,WW08], a formal treatment on their security is missing.

In Eurocrypt’13, Bellare et al. [BKR13] formalized a new cryptographic primi-

tive called Message-Locked Encryption (MLE) which subsumes Convergent Encryp-

tion. Although MLE schemes can perform secure deduplication of encrypted data,

they were proposed originally for file-level and target-based deduplication. We could

extend an MLE scheme for secure DLSB-deduplication of large files by performing

MLE on each data block (i.e., treating a data block as a file) and employing an

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 54

existing Proof of Ownership scheme (e.g., the PoW scheme in [HHPS11]). However,

as we will show shortly, such an approach is not efficient due to the large amount

of metadata produced in order to achieve all the security goals. Different from the

files that are stored in a secondary storage, the metadata is usually stored in the

primary memory for fast access upon every upload request. However, since the pri-

mary memory storage cost is more expensive than that of secondary storage, the

additional cost by the metadata storage could be very high even if it is not so large

compared to the outsourced files.

Metadata I: Block Identifiers. In DLSB-deduplication, in addition to the file

identifier, the server also has to store a large number of block identifiers for redun-

dancy checking. Although a block identifier is much shorter than the corresponding

data block, the overall storage costs can be significant due to the large amount of

data blocks in large files.

Metadata II: Block Keys. To apply MLE at the block level, each file block should

be encrypted using a block key which is derived from the data block itself. Therefore,

the number of block keys scales linearly with the number of data blocks. The user

has to maintain a lot of block keys for decryption. The block key management hence

is a challenge for the user especially when the outsourced files are large. A simple

solution to solve the problem is that each user encrypts all the block keys with a

master key and uploads both the encrypted block keys together with the encrypted

file to the server. In this way, each user only needs to keep the master key locally

which can be used to recover the block keys and hence the encrypted data blocks.

However, one drawback of such a block key management mechanism is that the server

requires more space to store the (extra) encrypted block keys in addition to the block

identifiers. The drawback seems inherent since we cannot apply deduplication on

the encrypted block keys when the master keys are different. Such an observation

motivated us to tackle the problem from a different angle by encapsulating the

block key inside the block identifier, which allows us to apply the above block key

management mechanism without introducing extra storage overhead.

Metadata III: PoW Tags. As we have mentioned above, it is a requirement to

perform the Proof of Ownership protocol in source-based deduplication, especially

for large files. A trivial solution for PoW is to request the prover (i.e., users) to

upload some random data blocks specified by the server (i.e., spot-checking). How-

ever, as discussed above, since the actual data blocks are stored in the secondary

storage, it is more practical to use some short PoW tags to perform the verification.

Similar to the encrypted block keys, the PoW tags would also require extra spaces

on the data server.

To give a clearer picture, we take the practical MLE scheme HCE2, introduced

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 55

by Bellare et al. [BKR13], as an example to demonstrate the cost of performing

DLSB-deduplication. Given the public parameters params and a file M, the user

first computes the file identifier T0 ← H(P,H(P,M)) by applying a cryptographic

hash function H, and then separates M into n blocks, i.e., M = M[1]||...||M[n].

For each block M[i], the user computes the corresponding block key as ki ←
H(P,M[i]), block identifier as Ti ← H(P, ki) and then encrypts each block as

C[i] ← SE(P, ki,M[i]) using a symmetric encryption algorithm SE . In addition,

the block keys will also be encrypted and uploaded to the server. Let Cki be the

encrypted form of the block key ki using the user’s master key. Therefore, the server

needs to store the metadata of size O(|T0|+
∑n

i |Ti|+
∑n

i |Cki |+ |TPoW |) for a file

M where TPoW is the tag for Proof of Ownership. This would result in a significant

space cost when the file (or block number) is large. Among all the metadata, we can

see that the block identifiers and the encrypted block keys form the major storage

overhead. This motivated us to design a new scheme that can combine the block

identifier Ti and the encrypted block key Cki into one single element. More details

are provided in Section 4.6, where we compare several MLE-based schemes with our

proposed BL-MLE scheme for DLSB-deduplication.

Noting that all the schemes following the MLE framework are inherently sub-

ject to the brute-force attacks that can recover files falling into a known set, Bellare

et al. [KBR13] proposed an architecture that provides secure deduplicated storage

resisting brute-force attacks, and realized it in a system called DupLESS. It is worth

noting that their motivation is different from that of this work. Precisely, their sys-

tem aims at providing a more secure and easily-to-deploy solution for MLE schemes

while we focus on reducing the metadata size for DLSB-deduplication. Nevertheless,

we should note that their solution is compatible with our scheme and hence can also

be used to enhance the security of our scheme.

4.1.2 Contributions

In this chapter, we formalize the notion of Block-Level Message-Locked Encryption

(BL-MLE) for secure and space-efficient large file deduplication in cloud storage.

We remark that our proposed notion is the first block-level message-locked encryp-

tion that achieves dual-level deduplication.

1. We propose the formal definition of BL-MLE which captures new functionali-

ties, i.e., dual-level deduplication, block key management and proof of owner-

ship, than the conventional MLE. Security models are also defined separately

for each functionality to capture clear security guarantees.

2. We present a concrete BL-MLE scheme that can efficiently realize our design

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 56

ideas outlined above. Moreover, we also show that our BL-MLE scheme can

be easily modified to support efficient data auditing and obtain an improved

PoW protocol with stronger security, which makes our scheme multi-purpose

for secure cloud storage.

3. We show that our proposed scheme can indeed achieve significant space sav-

ings and PoW bandwidth savings. We also fully prove the security of the

constructed scheme under the proposed security models.

From the above analysis, we know that for an extended HCE2, the space of the total

metadata for DLSB-deduplication is O(|T0|+
∑n

i |Ti|+
∑n

i |Cki |+ |TPoW |) for a file

consisting of n blocks, which however, can be reduced to O(|T0|+
∑n

i |T ∗i |) by using

our scheme where {T ∗i }i∈[1,n] are the multi-purpose tags. When there are u users

that store similar but different files on the server, Suppose the similarity among the

u files is δ, the metadata space cost of the extended HCE2 is O(u|T0|+(1+(u−1)(1−
δ)
∑n

i |Ti|+ u
∑n

i |Cki |+ u|TPoW |) while that of our scheme is O(u|T0|+ u
∑n

i |T ∗i |).
We should note that for both approaches it is infeasible to perform deduplication

on the encrypted block keys since we cannot derive a common master key for block

key encryption when the files are different.

4.1.3 Related Work

Message-Locked Encryption. According to [BKR13], a standard message-locked

encryption scheme consists of teh following five algorithms.

Setup(1`). Takes 1`, returns a public parameter params;

KeyGen(P,M). Takes params and a message M , returns a message-derived key K;

Enc(P,K,M). Takes params, key K and message M , returns a ciphertext C;

Dec(P,K,C). Takes params, key K and ciphertext C, returns a message M ;

TagGen(P,C). Takes params and ciphertext C, returns a tag T .

An MLE scheme is a standard symmetric-key encryption scheme which uses a

deterministic function to map a message to an encryption key. An MLE scheme also

has a tag generation algorithm that derives a tag from a ciphertext. The tag serves

as an identifier of the message for equality test. Identical data always result in equal

tags regardless of the ciphertext which can be randomized. Apart from the formal

definition of MLE, they also proposed the formal security definitions, including

privacy and tag consistency, to capture the security requirements on MLE. Due to

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 57

the special key generation mechanism, no MLE scheme can achieve the conventional

IND-type security. Bellare et al. then defined a new privacy model which captures

chosen distribution attacks for MLE schemes. For tag consistency, it means the

message indicated by a tag must be consistent with that underlying the ciphertext.

In Crypto’13, Abadi et al. [ABM+13] proposed a stronger notion of MLE. However,

the scheme proposed in [ABM+13] is less efficient than the original schemes proposed

by Bellare et al. [BKR13].

Proof of Ownership. Proof-of-Ownership (PoW) [HHPS11] is an interactive pro-

tocol between a prover (file owner) and a verifier (data server). By executing the

protocol, the prover convinces the verifier that he/she is an owner of a file stored

by the verifier. As mentioned earlier, PoW is necessary for source-based deduplica-

tion. Here, we briefly describe the PoW protocol in [HHPS11] which presents three

schemes that differ in terms of security and performance. All three require both the

user and the server to build the Merkle trees [Mer87] on a buffer, whose content is

derived from the pre-processed file. The server only keeps root and challenges the

client to present valid sibling paths for a subset of leaves of the Merkle tree. There-

fore, the bandwidth costs would be a super-logarithmic number of sibling paths of

the Merkle tree.

4.2 Block-Level Message-Locked Encryption

We now describe the definition of Block-Level Message-Locked Encryption (BL-

MLE) for DLSB-deduplication. It will capture additional functionalities including

dual-level deduplication, block keys management, and proof of ownership, compared

with a normal file-level MLE.

4.2.1 Definition of BL-MLE

A block-level message-locked encryption scheme is defined as follows:

Setup(1`). Takes a security parameter ` as input and returns the parameters params.

KeyGen(params,M). Takes the public parameters params and a file message M =

M[1]||...||M[n] as input, and returns a master key kmas and block keys {ki}1≤i≤n

generated using the following two sub-algorithms respectively,

M-KeyGen(params,M). Takes params and M as input, returns the master

key kmas;

B-KeyGen(params,M[i]). Takes params and M[i] as input, returns the block

key ki.

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 58

Enc(params,M[i], ki). Takes public parameters params, a block message M[i] and

the corresponding block key ki as input, returns the block ciphertext C[i].

Dec(params,C[i]). Takes public parameters params, a block ciphertext C[i] and

a block key ki as input, returns a block message M[i] or ⊥.

TagGen(params,M). Takes public parameters params and a file M as input, re-

turns the file tag T0 and block tags {Ti}1≤i≤n generated using the following

two sub-algorithms respectively,

F-TagGen(params,M). Takes params and M as input, returns the file tag

T0;

B-TagGen(params,M, i). Takes params, M and the block index i as input,

returns the block tag Ti.

ConTest(Ti,C[i]). Takes a block tag Ti and a block ciphertext C[i] as input, returns

True or False.

EqTest(T, T ′, T0, T
′
0). Takes as input two block tags T , T ′ and the corresponding

file tags T0, T
′
0, returns True or False.

B-KeyRet(kmas, Ti,C[i]). Takes a master key kmas, a block tag Ti, and a block

ciphertext C[i] as input, returns a block key ki / ⊥.

PoWPrf(Q,M). Takes a challenge Q and a file M as input, returns a response P .

PoWVer(Q, T0, {Ti}1≤i≤n,P). Takes a challenge Q, the file tag T0, the block tags

{Ti}1≤i≤n, and the response P as input, returns True or False.

Remark I. Unlike a standard MLE scheme, our BL-MLE scheme performs encryp-

tion block by block. Given a file, we split it into blocks before encryption. The

KeyGen algorithm produces the master key and block keys using the sub-algorithm

M-KeyGen and B-KeyGen respectively. The former is used to encrypt block keys

while the latter are derived from the file blocks and used to encrypt and decrypt

block messages. For the tag generation algorithm TagGen, we also define two sub-

algorithms, F-TagGen and B-TagGen. The file tag can be used as the file identifier

for file-level deduplication, and the block tag severs multi-purposes, including block

identifier, encrypted block key, and PoW tag.

To achieve DLSB-deduplication, equality testing of data block can be done with

block identifiers using the algorithm EqTest. Therefore, we need to ensure that

the block identifier (i.e., block tag) is actually consistent with the uploaded data

block to prevent duplicate faking attack. The algorithm ConTest is introduced for

this purpose. As the block tag also serves as an encrypted block key, we define the

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 59

algorithm B-KeyRet for block key retrieval. Given a block tag, the corresponding

block ciphertext and the master key, the user can compute the block key and then

decrypt the block ciphertext.

Also, we require that the block tags constructed in a BL-MLE scheme can be

used as PoW tags. Here we introduce two algorithms PoWPrf and PoWVer for proof

of ownership. The algorithm PoWPrf outputs the response to a challenge based on

the data file and PoWVer is used to verify whether the response is correct or not.

Correctness. For BL-MLE, except the file space MsgSpBL-MLE(`), we also define

the block space BlSpBL-MLE(`) for any ` ∈ N. The following correctness condi-

tions are required for a BL-MLE. For all ` ∈ N, params ←Setup(1`) and all M ∈
MsgSpBL−MLE(`), we require the following correctness.

1. Decryption Correctness. For all block message M[i] ∈ BlSpBL-MLE(`), block

key ki ←B-KeyGen(M[i])a and block ciphertext C[i]←Enc(ki,M[i]), we have

that, Dec(ki,C[i]) = M[i];

2. Tag Correctness. For any two block message M[i],M′[t] ∈ BlSpBL-MLE(`)

such that M[i] = M′[t] , block key ki ←B-KeyGen(M[i]), block ciphertext

C[i]←Enc(ki,M[i]), block tag Ti ←B-TagGen(M, i) and T ′t ←B-TagGen(M′, t),

we have, Pr[ConTest(Ti,C[i]) = True] = 1 and Pr[EqTest(Ti, T
′
t) = True] = 1;

3. B-Key-Retrieval Correctness. For any block message M[i] ∈ BlSpBL-MLE(`),

master key kmas ←M-KeyGen(M), block key ki ←B-KeyGen(M[i]), block ci-

phertext C[i] ←Enc(ki,M[i]) and block tag Ti ← B-TagGen(M, i), we have

that, B-KeyRet (kmas, Ti,C[i]) = ki;

4. PoW Correctness. For all tags T ←TagGen(M), any challenge Q, P ←
PoWPrf(M, Q), we have that, Pr[PoWVer(T,P) = True] = 1.

4.2.2 Security Definitions for BL-MLE

Guessing Probability. Given a random variable X with min-entropy H∞(X) =

− log(Maxx Pr[X = x]), the guessing probability of X is GP(X) = Maxx Pr[X =

x] = 2−H∞(X). Given a random variable Y , the conditional guessing probabil-

ity GP(X|Y) of a random variable X with conditional min-entropy H∞(X|Y) is

GP(X|Y) =
∑

y Pr[Y = y]·Maxx Pr[X = x|Y = y] = 2−H∞(X|Y).

Unpredictable Block-Source. A block-source is a polynomial time algorithmM
that on input 1` returns (M, Z) where M is a message vector over {0, 1}∗ and Z ∈
{0, 1}∗ denotes some auxiliary information. Let n(`) denote the vector length, i.e.,

aFor simplicity, we will omit params in the input of the algorithms in the rest of the chapter.

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 60

the number of blocks. For all i ∈ [1, n(`)], M[i] represents the ith block of the message

M. We say M is an unpredictable block-source if GPM = Maxi{GP(M[i]|Z)} is

negligible.

In this section, we formalize the security definitions for BL-MLE schemes. In a

BL-MLE scheme, a large file is split into blocks before being encrypted, hence apart

from the requirement that the message is unpredictable, each block should also be

unpredictable when considering the privacy of block encryption. Therefore, we only

consider unpredictable block-source in this chapter (i.e., GPM is negligible).

Privacy. Similar to the MLE scheme, our BL-MLE scheme cannot achieve the

conventional semantic security due to the special key generation mechanism. For

MLE, Bellare et al. [BKR13] proposed PRV$-CDA which is a strong privacy notion

where the encryption of an unpredictable message must be indistinguishable from a

random string of the same length [RBBK01].

In this chapter, we follow the idea in [BKR13] to define the privacy model. Here,

we modify the notion PRV$-CDA slightly for BL-MLE (denoted by PRV$-CDA-B)

as it produces file tag and block tags separately from the ciphertext. We say a

BL-MLE scheme is secure under chosen distribution attacks if no polynomial-time

adversary A has a non-negligible advantage in the following PRV$-CDA-B game:

Setup. The adversary A sends the challenger the description of a unpredictable

block-source M. The challenger then generates and sends A the system pa-

rameter params.

Challenge. The challenger picks randomly b← {0, 1}. If b = 0, then runs the source

M as, (M0, Z)←M(`). Otherwise, if b = 1, chooses M1 uniformly at random

from {0, 1}|M0|. Set M = Mb. Suppose n(`) is the block numbers. For each i =

1, ..., n(`), the challenger computes ki ←B-KeyGen(M[i]) and then computes

the ciphertext as, C[i]← Enc(ki,M[i]). The challenger also computes the file

tag and block tags as follows, T0 ←F-TagGen(M), Ti ←B-TagGen(M[i]). Set

T = {T0, T1, ..., Tn(`)}. Finally, the challenger gives auxiliary information Z,

tags T, and the ciphertext C to the adversary.

Output. After receiving (C,T, Z), the adversary outputs his guess b′ on b and wins

the game if b′ = b.

We refer to such an adversary A as a PRV$-CDA-B adversary and define adver-

sary A’s advantage as,

AdvPRV$-CDA-B
A (`) = |Pr[b = b′]− 1

2
|.

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 61

Definition 4.1 We say that a BL-MLE scheme is PRV$-CDA-B secure if for any

unpredictable block source M and any polynomial-time PRV$-CDA-B adversary A,

the advantage in the chosen distribution attack game, AdvPRV$-CDA-B
A (`), is negligible.

Tag Consistency. To prevent duplicate faking attack, we need to check the con-

sistency of the block tag and corresponding ciphertext. The TC notion proposed

in [BKR13] can only ensure that an honest user can detect corruption. STC (strong

tag consistency), on the other hand, can ensure that the adversary cannot fool the

server to erase honestly generated ciphertexts and hence data owner can recover the

original message. However, the notions proposed in [BKR13] are only for determin-

istic tags.

For BL-MLE, we define a similar security notion as STC by following the general

definition, STC2 in [ABM+13] since we also consider randomized tags. Therefore,

instead of comparing tag value directly, our definition uses ConTest and EqTest

algorithms to check the tag consistency. We say a BL-MLE scheme is secure under

duplicate faking attack (DFA) if no polynomial-time adversaryA has a non-negligible

advantage in the following DFA game:

Setup. The challenger generates and sends A all the system parameters params.

Output. Eventually, A outputs < M∗, i, c∗, T ∗ >. If ConTest(T ∗, c∗) → False,

output 0; Otherwise, if M∗[i] 6=Dec(B-KeyGen(M∗[i]), c∗),EqTest(B-TagGen

(M∗[i]), T ∗)→ True, output 1.

We refer to such an adversary A as a DFA adversary and define adversary A’s

advantage as AdvDFA
A (`) in the above game as the probability the game outputs 1.

Definition 4.2 We say a BL-MLE scheme is DFA-secure if for any polynomial-time

DFA adversary A, the advantage AdvDFA
A (`) is negligible.

PoW Security. As for the security of proof-of-ownership, similar to the security

definition in [18], we consider the probability that an attacker who knows partial

information about the file can convince the server that he/she owns the entire file.

Based on the idea of the “bounded retrieval model” [CLW06, Dzi06], we assume

that the attacker only knows partial information (a bounded number of blocks)

of the file. We say a BL-MLE scheme is secure against an uncheatable chosen

distribution attack if no polynomially bounded adversary A has a non-negligible

advantage against the challenger in the following UNC-CDA game:

Setup. The challenger generates and sends A the system parameters params.

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 62

Challenge. The adversary sends challenger the BL-MLE-valid source M. And the

challenger runs M as (M,Z) ←M(`) and sends the proof query Q = (i, vi)

with the auxiliary information Z to the adversary.

Output. Finally, the adversary outputs the proof P∗, which passes the verification,

i.e., PoWVer(TagGen (M), P∗, Q)→ True. Let the expected honest response

be P , i.e.,PoWPrf(M,Q)→ P . If P∗ 6= P , the challenger outputs 1, otherwise

output 0.

We refer to such an adversary A as an UNC-CDA adversary and define adversary

A’s advantage AdvUNC-CDA
A (`) as the probability that the game outputs 1.

Definition 4.3 We say that a BL-MLE scheme is UNC-CDA secure if for any

unpredictable block-source M and any polynomial time UNC-CDA adversary A, the

advantage AdvUNC-CDA
A (`) is negligible.

4.3 The proposed BL-MLE Scheme

In this section, we adapt the BL-MLE framework and introduce the proposed BL-

MLE scheme in detail.

4.3.1 Construction

Setup(1`). On input 1`, the algorithm generates a prime params, the descrip-

tions of two groups G1,Gτ of order params, a generator g of G1 and a

bilinear map e : G1 × G1 → Gτ . Choose an integer s ∈ N and three

hash function H1 : {0, 1}∗ → Zp, H2 : {Zp}s → G1, H3 : G1 → {Zp}s.
Pick s elements randomly u1, u2, ..., us

R← G1. The system parameters are

params =< p, g,G1,Gτ , e,H1, H2, H3, s, u1, u2, ..., us >.

KeyGen(M). Given a data file M = M[1]||...||M[n] where for all 1 ≤ i ≤ n,

M[i] ∈ {Zp}s, compute the master key kmas and each block key ki as follows,

M-KeyGen(M). take M , output kmas = H1(M);

B-KeyGen(M[i]). take M[i], output ki = H2(M[i]).

Enc(ki,M[i]). Given a block message M[i], and the corresponding block key ki,

output the block ciphertext as

C[i] = H3(ki)⊕M[i].

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 63

Dec(ki,C[i]). Given a block ciphertext C[i], and the corresponding block key ki,

compute

M[i] = H3(ki)⊕C[i].

If ki = H2(M[i]), output M[i]; otherwise output ⊥.

TagGen(M). Given the file M = M[1]||...||M[n], output the file tag T0 and each

block tag Ti as follows,

M-TagGen(M). take M, generate the master key kmas, output T0 = gkmas ;

B-TagGen(M, i). take M and the block index i, generate the master key

kmas, the corresponding block key ki and block ciphertext C[i], split C[i]

into s sectors: {C[i][j]}1≤j≤s, and output,

Ti = (ki

s∏
j=1

u
C[i][j]
j)kmas .

In our scheme, some auxiliary data auxi = e(ki, T0) is also generated and

attached to the block tag Ti during block tag generation. Please refer to

Section 4.3.2 for some discussions on Ti and auxi.

ConTest(Ti,C[i]). Given a block ciphertext C[i] and the block tag Ti with auxiliary

data auxi, split C[i] into s sectors: {C[i][j]}1≤j≤s. Let T0 be the corresponding

file tag. Check whether,

e(Ti, g)
?
= auxi · e(

s∏
j=1

u
C[i][j]
j , T0).

If so, output 1; otherwise, output 0.

EqTest(Ti, T
′
i , T0, T

′
0). Given two block tags Ti, T

′
i and the corresponding file tags

T0, T
′
0, check whether e(Ti, T

′
0)

?
= e(T ′i , T0). If so, output 1; otherwise, output

0.

B-KeyRet(kmas, Ti,C[i]). Given a block ciphertext C[i] and the block tag Ti, split

C[i] into s sectors: {C[i][j]}1≤j≤s, and compute the corresponding block key,

ki = T k
−1
mas

i · (
s∏
j=1

u
C[i][j]
j)−1.

If Dec(ki,C[i])=⊥, output ⊥; otherwise, output ki.

PoWPrf(M, Q). For a challenge query Q = {(i, υi)}, compute the block tag Ti

where i is the auditingition of a queried block. Finally, output the proof PT

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 64

as PT =
∏

(i,υi)∈Q T
υi
i .

PoWVer(PT , {Ti}1≤i≤n, Q). Given a proof PT for a challenge query Q = {(i, υi)},
compute the verification information VT =

∏
(i,υi)∈Q T

υi
i and check PT

?
= VT .

If so, output 1; otherwise, output 0.

4.3.2 Design Considerations

Guarded Decryption. In our scheme, the decryption algorithm additionally

checks the validity of the decrypted message. By recomputing the block key us-

ing the decrypted message, it can tell whether the output message is the correct one

or not. If it fails, then ⊥ is returned. This additional property enables the user to

be sure that the encrypted data downloaded from the cloud server is the one he/she

intends to obtain (TC-secure).

Block Tag Generation. Since the tag constructed in a BL-MLE scheme should

enable equality testing of block data and block key management, we embed the

master key, block key and the ciphertext in the block tag. The master key serves as

the encryption key to encrypt the block key. Since both the encryption algorithm

and the master key generation algorithm are deterministic, different owners of the

same file would produce the same block tags and hence the server can also perform

deduplication on the block tags, which reduces the space cost.

Block Sectors. Another consideration is the block tag size. It is desirable that

the length of the block tag should be less than that of the corresponding block

ciphertext. In order to shorten the size of the block tag, the block ciphertext is split

into s sectors. Each sector is one element of Zp and hence the size of a block tag is

just 1/s of the corresponding block ciphertext. It is worth noting that in our scheme

we assume M[i] ∈ {Zp}s and hence C[i][j] ∈ Zp as |M[i]| = |C[i]|. However, we

should be careful about the length of each block message which is represented as

bit-strings in practice. In order to make sure that each sector is the element of Zp,
we set |M[i]| = s · (log2 p− 1) instead of s · log2 p.

Consistency Testing. In a BL-MLE system, we require that the block tag con-

struction should achieve strong tag consistency. For our algorithm ConTest, besides

the block ciphertext C[i] and the block tag Ti, we need some additional information,

i.e., auxi = e(ki, T0), for the consistency checking. However, auxi does not need to

be stored on the server. It is only required when the user uploads the file block and

the block tag. Once the server has checked that C[i] and Ti are consistent, auxi can

be discarded. Moreover, we should note that the auxiliary information would not

leak the block key to the server. Specifically, if there is an adversary A that can

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 65

derive ki from auxi = e(ki, T0), we can construct an algorithm B to solve the CDH

problem by using the adversary A as a subroutine as follows. Given a CDH prob-

lem instance (g, ga, gb), B sets auxi = e(ki, T0) = e(ga, gb) = e(gab, g) by implicitly

setting ki = gab, T0 = g. B then runs A with input e(ki, T0). If A can derive ki (i.e.,

ki appears in a hash query), then B can successfully solve the CDH problem. The

details are referred to the security proof in Section 4.4.

Equality Testing. Note that in our scheme two identical block messages may

belong to different files and hence have two distinct block tags. In order to support

block data redundancy checking using these distinct block tags, we use paring to do

the equality testing. This approach has been used in [ABM+13,YTHW10].

4.3.3 Correctness Analysis

We can observe that the BL-MLE scheme satisfies the requirement of decryption

correctness as we use symmetric encryption. It is also obvious that the construction

also achieves PoW correctness. For the other algorithms, we verify their correctness

as follows.

Tag Correctness. Consider the block ciphertext C[i] of a block message M[i] and

the corresponding block tag

Ti = (ki ·
s∏
j=1

u
C[i][j]
j)kmas

where kmas is the corresponding master key and file tag T0 = gkmas . For ConTest

algorithm we have

e(Ti, g) = e((ki

s∏
j=1

u
C[i][j]
j)kmas , g)

= e(ki

s∏
j=1

u
C[i][j]
j , gkmas)

= e(ki, T0) · e(
s∏
j=1

u
C[i][j]
j , T0).

For EqTest algorithm, consider another block tag T ′t = (k′t
∏s

j=1 u
C′[t][j]
j)k

′
mas where

C′[t] is the ciphertext of block message M′[t] and k′t is the corresponding block key,

k′mas is the corresponding master key, and T ′0 = gk
′
mas is the corresponding file tag.

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 66

We have,

e(Ti, T
′
0) = e((ki

s∏
j=1

u
C[i][j]
j)kmas , gk

′
mas)

= e(ki

s∏
j=1

u
C[i][j]
j , g)kmas·k

′
mas ,

e(T ′t , T0) = e((k′t

s∏
j=1

u
C′[t][j]
j)k

′
mas , gkmas)

= e(k′t

s∏
j=1

u
C′[t][j]
j , g)kmas·k

′
mas .

Suppose that M[i] = M′[t], since the encryption and key generation algorithm are

deterministic, k′t = ki,C
′[t][j] = C[i][j] for (1 ≤ j ≤ s) (notice that kmas, kmas′

would be different when M 6= M′). Therefore, we have e(Ti, T
′
0) = e(T ′t , T0).

B-Key-Retrieving Correctness. For a given block ciphertext C[i] and block tag

Ti = (ki

s∏
j=1

u
C[i][j]
j)kmas

where kmas is the corresponding master key, we have

T k
−1
mas

i = (ki

s∏
j=1

u
C[i][j]
j)kmas·k

−1
mas = ki

s∏
j=1

u
C[i][j]
j

which means ki = T k
−1
mas

i (
s∏
j=1

u
C[i][j]
j)−1.

4.4 Security Analysis

In this section, following the security models defined previously, we show that the

proposed scheme achieves the design goals in terms of security guarantees, more

precisely, data privacy, tag consistency and PoW security.

4.4.1 Privacy

We prove the PRV$-CDA-B security of our scheme when modeling H1, H2, H3 as

random oracles.

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 67

Theorem 4.1 Let H1, H2, H3 be random oracles. Then if there exists a PRV$-CDA-B

adversary A with advantage ε(`) against our scheme, there is an algorithm B that

solves the CDH problem with probability AdvBCDH(`) such that for all ` ∈ N,

AdvCDH
B (`) ≥ 2ε(`)

n(`)q2,3(`)
− q1(`)

2µ(`)·n(`)
− q2,3(`) · n(`)

2µ(`)
,

where µ(`) is the min-entropy of block-source M, n(`) is the block message number

and q1(`), q2,3(`) are the number of queries to H1, H2,3 respectively by the adversary.

Proof: Algorithm B is given as input a random instance of CDH problem, g0, g
a
0 , g

b
0 ∈

G1. Its goal is to output gab0 ∈ G1. Algorithm B simulates the challenger and

interacts with the adversary A as follows.

Setup. A sends its chosen block-sourceM to B. B then sets the system parameters

params =< p, g,G1,Gτ , e,H1, H2, H3, s, u1, u2, ..., us > as follows: let g =

ga0 , and for all k ∈ {1, s}, chooses randomly rk
R← Zp and computes uk =

gark0 . Finally, A is given < p, g,G1,Gτ , e, s, u1, u2, ..., us > while H1, H2, H3

are random oracles controlled by B as described below.

H1-queries. B maintains a list of tuples < Mi, hMi
>, which is called the H1-

list and initially empty < ∗, ∗ >. When A queries the oracle H1 at a point

Mj ∈ {0, 1}∗, if Mj already appears on the H1-list in a tuple < Mj, hMj
>

then B responds with H1(Mj) = hMj
, otherwise picks randomly hMj

R← Zp,
adds < Mj, hMj

> to the H1-list and responds to A with H1(Mj) = hMj
.

H2,3-queries. B maintains a list of tuples < mi, ki, hki >, which is called the H2,3-list

and initially empty < ∗, ∗, ∗ >.

1. When A queries the oracle H2 at a point mj ∈ {Zp}s, if mj already

appears on the H2,3-list in a tuple < mj, kj, hkj > then B responds with

H2(mj) = kj, otherwise picks randomly kj
R← G1, hkj

R← {Zp}s, adds

< mj, kj, hkj > to the H2,3-list and responds to A with H2(mj) = kj.

2. When A queries the oracle H3 at a point kj ∈ G1, if kj already ap-

pears on the H2,3-list in a tuple < mj, kj, hkj > then B responds with

H3(kj) = hkj , otherwise picks randomly mj
R← {Zp}s, hkj

R← {Zp}s, adds

< mj, kj, hkj > to the H2,3-list and responds to A with H3(kj) = hkj .

Challenge. Finally, B runsM and gets M0 and Z. Then B chooses M1 uniformly at

random from {0, 1}|M0|. Finally, B picks randomly b
R← {0, 1}, sets M = Mb

and computes as follows. If there exist a tuple < Mi, hMi
> on the H1-list

such that Mi = M, B fails and aborts. Otherwise, B regards the master key as

H1(M) = a−1 and computes the file tag as T0 = ga
−1

= g0. For each 1 ≤ j ≤

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 68

n(`), if there exist a tuple < mi, ki, hki > on the H2,3-list such that mi = M[j],

B fails and aborts. Otherwise, for each M[j], B picks αj ← Zp,C[j]
R←

{Zp}s randomly, splits C[j] into s sectors C[j][1],C[j][2], ...,C[j][s] ∈ Zp and

computes the block tag as,

T[j] = g
αjb
0

s∏
k=1

g
rkC[j][k]
0 = (g

αjab
0

s∏
k=1

u
C[j][k]
k)a

−1

.

Here, the block key K[j] = H2(M[j]) = g
αjab
0 , auxj = e(K[j], T0) = e(g

αjb
0 , ga0).

Hence, T[j] is consistent with the block ciphertext C[j]. Finally, B sends

(C,T, T0, Z) to A.

Output. Eventually algorithm A outputs his guess b′ on b. At this point, B picks a

random tuple < mi, ki, hki > from H2,3-list, chooses j
R← [1, n(`)] and output

k
α−1
j

i as the solution to the given instance of CDH.

Note that the game is identical to PRV$-CDA-B game from the view of the

adversary unless the challenge message M or M[j] (j ∈ [1, n(`)]) has been queried

by the adversary.

LetH1 be the event that any of the H1-queries by adversary equals M andH2 be

the event that any of the H2-queries equals M[j]. Due to the fact that M1 is chosen

uniformly at random from {0, 1}|M0| and C,T, T F are computed independently of

M, we can apply the min-entropy of the block-source M to bound the probability

Pr[H1] and Pr[H2] as follows,

Pr[H1] ≤ q1(`)

2µ(`)·n(`)
, Pr[H2] ≤ q2,3(`) · n(`)

2µ(`)
.

In the simulation above, we refer to K as the block keys of M. Let H3 be the

event that A issues a query for H3(K[j]) at some point for any j ∈ [1, n(`)]. In

the real attack, if A never issues such a query then the ciphertext C is independent

of A’s view (since each H3(K[j]) is independent of A’s view). In this case, the

probability that A wins in the game is Pr[b = b′|¬H3] = 1/2. As A has advantage

ε(`) against our scheme, we have |Pr[b = b′]− 1/2| ≥ ε(`). Since

Pr[b = b′] ≤ Pr[b = b′|¬H3] Pr[¬H3] + Pr[H3] =
1

2
+

1

2
Pr[H3],

Pr[b = b′] ≥ Pr[b = b′|¬H3] Pr[¬H3] =
1

2
− 1

2
Pr[H3],

we have ε(`) ≤ |Pr[b = b′]− 1/2| ≤ 1
2

Pr[H3], i.e., Pr[H3] ≥ 2ε(`).

Suppose that A issues a query for H3(K[j∗]) (j∗ ∈ [1, n(`)]) at some point.

Now we analyze the probability that the output by B is the correct solution to

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 69

the CDH problem. As B picks a tuple < mi, ki, hki > from H2,3-list randomly, the

probability that the picked tuple contains K[j∗] (i.e., ki = K[j∗]) is 1/q2,3(`). In

this case, since B chooses randomly j
R← [1, n(`)] and output k

α−1
j

i as the solution to

the CDH problem, we say that the solution is correct only when j = j∗, of which

the probability is 1/n(`).

Therefore, B solves the CDH problem with the probability below,

AdvCDH
B (`) ≥ 2ε(`)

n(`)q2,3(`)
− q1(`)

2µ(`)·n(`)
− q2,3(`) · n(`)

2µ(`)
.

This completes the proof of the theorem and therefore, we have the following

conclusion.

Theorem 4.2 Let H1, H2, H3 be the random oracles, then if the Computational

Diffie-Hellman (CDH) problem is hard, our scheme is PRV$-CDA-B-secure.

4.4.2 Tag Consistency

For the tag consistency of our scheme, we have the following result.

Theorem 4.3 Let H2, H3 be the random oracles. Let A be a DFA adversary that

has advantage ε(`) against our scheme. Then there exist an algorithm B that solves

the Discrete Log Problem (DLP) with advantage at least ε(`)/2.

Proof: Algorithm B is given as a random instance < g, ga > of the DLP. Its goal is

to output a. Algorithm B finds the solution to this DLP by interacting with A as

follows:

Setup. B sets the system parameters params =< p, g,G1,Gτ , e,H1, H2, H3, s, u1, u2,

..., us > as follows: for all k ∈ {1, s}, chooses randomly ak
R← Zp and com-

putes uk = gak . Finally, A is given < p, g,G1,Gτ , e,H1, s, u1, u2, ..., us > while

H2, H3 are random oracles controlled by B as described below.

H2,3-queries. B maintains a H2,3-list < mi, ki, ri, hki , coini > for H2, H3-queries.

1. When A queries the oracle H2 at a point mj ∈ {Zp}s, algorithm B
responds as follows. If the query mj already appears on the H2,3-list in a

tuple < mj, kj, rj, hkj , coinj > then algorithm B responds with H(mj) =

kj ∈ G1. Otherwise, B generates a random coin coinj
R← {0, 1}, and

picks a random rj ∈ Zp , computes kj = grj+(1−coinj)a ∈ G1. If the

query kj already appears on the H2,3-list in a tuple < ∗, kj, ∗, hkj , ∗ >,

then B fills the tuple as < mj, kj, rj, hkj , coinj >. Otherwise B picks

hkj
R← {Zp}s, adds the tuple < mj, kj, rj, hkj , coinj > to the H2,3-list.

Finally, B responds to A by setting H(mj) = kj.

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 70

2. When A queries the oracle H3 at a point kj ∈ G1, algorithm B responds

as follows. If the query kj already appears on the H2,3-list in a tuple

< mj, kj, rj, hkj , coinj > then algorithm B responds with H(kj) = hkj .

Otherwise, B picks hkj
R← {Zp}s, adds the tuple < ∗, kj, ∗, hkj , ∗ > to the

H2,3-list and responds to A by setting H(kj) = hkj .

Output. Eventually algorithm A outputs < M∗, i, c′, T ′ >. If there is no tuple on

the H2,3-list containing M∗[i], then B queries itself for H2 to ensure that such

a tuple exists. If there is no tuple < m′, k′, r′, hk′ , coin
′ > on the H2,3-list that

satisfies m′ ⊕ hk′ = c′, B reports failure and terminates. Next, algorithm B
finds the tuples < m∗, k∗, r∗, hk∗ , coin

∗ > and < m′, k′, r′, hk′ , coin
′ > on the

H2,3-list. If coin∗ = coin′ then B reports failure and terminates. Otherwise, let

T ∗ be the block tag of M∗[i]. Since EqTest(T ∗, T ′) = 1, we have, k∗·
∏s

j=1 u
c∗j
j =

k′ ·
∏s

j=1 u
c′j
j . Without loss of generality, Suppose that coin∗ = 0, coin′ = 1,

then k∗ = gr
∗
, k′ = gr

′+a, hence, gr
∗ ·
∏s

j=1 u
c∗j
j = gr

′+a ·
∏s

j=1 u
c′j
j . Therefore,

we have, ga = gr
∗ ·
∏s

j=1 u
c∗j
j /(g

r′
∏s

j=1 u
c′j
j) = g(r∗−r′+

∑s
j=1 aj(c

∗
j−c′j)). Then B

outputs the required a as a = r∗ − r′ +
∑s

j=1 aj(c
∗
j − c′j).

As A has advantage ε(`) against our scheme, it must have queried m′ to H2

otherwise k′ is independent of A’s view and hence it cannot obtain the advantage.

Since Pr[coin∗ 6= coin′] = 1/2, B solves the DLP with the probability ε(`)/2. This

completes the proof of the theorem.

Theorem 4.4 Let H2, H3 be the random oracles, then if the Discrete Log Problem

(DLP) is hard, our scheme is DFA-secure.

4.4.3 PoW Security

For the security of our basic PoW protocol, following the model of UNC-CDA, we

give a detailed probability analysis for the following theorem.

Theorem 4.5 Let H2 be a random oracle, then the adversary’s advantage ε(`) in

the UNC-CDA game against our scheme is,

ε(`) ≤ (
t(`)

n(`)
)q(`) +

1

2µ(`)
· (1− (

t(`)− q(`) + 1

n(`)− q(`) + 1
)q(`))

where n(`) is the total block number of the challenge-file, t(`) is the number of blocks

known to the adversary given the auxiliary information, q(`) is the number of queried

blocks and µ(`) is the min-entropy of block-source M.

Proof: Suppose that the challenge-file Mf consists of n(`) blocks, i.e., Mf =

{m1, ...,mn(`)} and Mq = {mi1 , ...,miq(`)}i1,...,iq(`)∈[1,n(`)] are the blocks queried during

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 71

the challenge stage, where q(`) is the number. We also denote the t(`) blocks known

to the adversary as Mk = {mj1 , ...,mjt(`)}j1,...,jt(`)∈[1,n(`)].

Let Bad be the event that all the blocks queried are known to the adversary,

i.e., Mq ⊆Mk. As the query is chosen randomly, we have,

Pr[Bad] =
C
q(`)
t(`)

C
q(`)
n(`)

=

q(`)−1∏
i=0

t(`)− i
n(`)− i

≤ (
t(`)

n(`)
)q(`).

Therefore, the probability that there exists at least a queried block which is unknown

to the adversary, i.e., Mq * Mk, is,

Pr[Mq * Mk] = Pr[¬Bad] = 1− Pr[Bad]

= 1−
q(`)−1∏
i=0

t(`)− i
n(`)− i

≤ 1− (
t(`)− q(`) + 1

n(`)− q(`) + 1
)q(`).

Let Awins be the event that the adversary wins in the UNC-CDA game, then we

have,

Pr[Awins] = Pr[Awins|Bad] Pr[Bad]

+ Pr[Awins|¬Bad] Pr[¬Bad].

When the event Bad occurs, the adversary wins in the game with probability

1 since it knows all the blocks queried by the challenger. When the event Bad

does not occur, i.e., Mq * Mk, we define Ic = {i1, ..., iq(`)} ∩ {j1, ..., jt(`)} and

refer to Tc as the aggregation of the block tags of those queried blocks known to

the adversary, i.e., Tc =
∏

i∈Ic Ti. Suppose that the verification information is VT .

We refer to ∆T = VT/Tc as the aggregation of the block tags of those queried

blocks unknown to the server. However, for those queried blocks unknown to the

adversary, the corresponding block tags would be independent from the view of

the adversary if the adversary does not query them to the random oracle H2 and

hence ∆T is independent from the view of the adversary. As the whole challenge-

file is chosen from the block-source, we then apply the min-entropy to bound the

probability that adversary wins when event Bad does not occur. Specially, we have,

Pr[Awins|¬Bad] ≤ 1
2µ(`)

. We can therefore bound the advantage Pr[Awins] of the

adversary in the UNC-CDA game as follows,

Pr[Awins] ≤ (
t(`)

n(`)
)q(`) +

1

2µ(`)
· (1− (

t(`)− q(`) + 1

n(`)− q(`) + 1
)q(`)).

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 72

Theorem 4.6 Let H2 be a random oracle, then our scheme is UNC-CDA-secure.

4.5 Extension for Data Auditing

In this section, we describe how to adjust our scheme for data auditing in the cloud.

4.5.1 Extension of Our Scheme

In this section, we extend our BL-MLE scheme to allow secure and efficient auditing

protocol. In an efficient auditing protocol, it is required that the server does not

need to access the entire file in order to convince the user that the data is intact.

This is important, especially for large files. In our BL-MLE scheme, the server stores

the file tag and block tags for the purpose of deduplication, block key management,

and Proof of Ownership. An interesting question is: can we also use these tags for

auditing? In this section, we affirm the answer by presenting an auditing system

which can be considered as a variant of the auditing system in [WWR+11].

Setup. The setup is the same as our original BL-MLE scheme. Let params =

(p, g,G1,Gτ , e,H1, H2, H3, s, u1, u2, ..., us) be the system parameters.

Authenticator. In an auditing system [ABC+07,AKK09,SW08], an authenticator

is generated by the data owner for each data block, and uploaded to the server. Dur-

ing the auditing protocol, the verifier (either the data owner or a third-party auditor)

employs a spot-checking mechanism to ask the server to present some (aggregated)

data blocks and the corresponding (aggregated) authenticators for verification. In

our BL-MLE scheme, a user generates both file tag and block tags for a file. Inspired

by the auditing system in [SW08], we found that our master key kmas in fact can

serve as a user secret key and the corresponding file tag T0 = gkmas can serve as the

public key. Therefore, the block tags can be used as the authenticators for individual

data blocks. In other words, the file tag and the block tags in our BL-MLE scheme

can play an additional role in auditing.

Merkle-Hash-Tree. We use the rank-based MHT, which is proposed in Chapter 3

in our auditing system. The user creates an rMHT where the i-th leaf node is

e(ki, T0) (or auxi in our BL-MLE scheme). The root of the rMHT is kept by the

verifier (either the user or a third-party auditor), and all the leave nodes are sent

to the data server. Notice that auxi has to be sent to the data server anyway for

tag consistency checking. However, the server now should keep these leaf nodes in

order to perform the auditing protocol.

Auditing. There are two parties involved in the auditing protocol, the verifier (the

user or a third-party) and the prover (data sever). Assume that the data file contains

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 73

n blocks. The verifier first sends a challenge query Q = {(i, υi)} (i ∈ [1, n], υi ∈ Zp)
to the prover. Upon receiving the challenge, the server computes T =

∏
(i,υi)∈Q T

υi
i

and µj =
∑

(i,υi)∈Q υiC[i][j] for all 1 ≤ j ≤ s. In additional to these information, the

server also provides the verifier {e(ki, T0),Ωi}i∈Q where Ωi contains the siblings on

the path from the leave e(ki, T0) to the root R of the rMHT. Therefore, the response

sent to the verifier contains P = {T, {µj}1≤j≤s, {e(ki, T0),Ωi}i∈Q}. After receiving

the response, the verifier computes the root R′ and verifies the root signature. If the

checking fails, the verifier outputs False. Otherwise, the verifier checks, e(T, g)
?
=∏

(i,υi)∈Q e(ki, T0)υi · e(
∏s

j=1 u
µj
j , T0). If so, output True; otherwise output False.

4.5.2 Security Analysis

Correctness. For an honest response to a query Q = {(i, υi)} containing µj =∑
(i,υi)∈Q υiC[i][j] and T =

∏
(i,υi)∈Q T

υi
i , we have

T =
∏

(i,υi)∈Q

T υii =
∏

(i,υi)∈Q

(ki

s∏
j=1

u
C[i][j]
j)kmas·υi

= (
∏

(i,υi)∈Q

kυii ·
s∏
j=1

u
µj
j)kmas .

Therefore,

e(T, g)=e((
∏

(i,υi)∈Q

kυii ·
s∏
j=1

u
µj
j)kmas , g) =

∏
(i,υi)∈Q

e(ki, T0)υi · e(
s∏
j=1

u
µj
j , T0),

which shows the correctness of the protocol.

Security. We define the security for an auditing protocol using the Data Posses-

sion Game in [ABC+07] which captures the requirement that except with negligible

probability, an adversary cannot successfully construct a valid proof without using

the correct (i.e., unmodified) file blocks (and authenticators) corresponding to a

given challenge. We have the following result for our auditing system.

Theorem 4.7 If there exists an adversary A that has advantage ε in the data pos-

session game, then there exists an algorithm B that solves the CDH problem also

with advantage ε.

4.5.3 Improved PoW Protocol with Stronger Security

Following the observation from [XZ14], we improve our PoW protocol for stronger

security based on the auditing protocol construction. Note that in order to allow

auditing, the server should maintain the leaves of the rMHT. Equipped with these

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 74

additional data, we show that our proof of ownership protocol can be improved

to obtain stronger security by requiring the prover (user) to returning data blocks

instead of aggregated block tags. Notice that here we can allow the adversary to

have all the tags of a file.

In a proof of ownership protocol, upon receiving a challenge query Q = {(i, υi)}
(i ∈ [1, n], υi ∈ Zp), we require the user/prover to return µj =

∑
(i,υi)∈Q υiC[i][j], 1 ≤

j ≤ s. After receiving the proof, the server computes
∏

(i,υi)∈Q e(ki, T0)υi and T =∏
(i,υi)∈Q T

υi
i , and then checks e(T, g)

?
=
∏

(i,υi)∈Q e(ki, T0)υi · e(
∏s

j=1 u
µj
j , T0).

Now in the PoW security game, similar to the Data possession Game for audit-

ing, we require that except with negligible probability, the adversary cannot pass the

verification without knowing all the data blocks corresponding to a given challenge.

Formally, we have,

Theorem 4.8 If the computational Diffie-Hellman problem is hard, then except with

negligible probability, no adversary can construct a valid proof in the revised PoW

game defined above.

4.6 Performance Analysis

We combine each of the three MLE schemes proposed in [BKR13], namely CE,

HCE2, and RCE, with the PoW protocol in [HHPS11]. We refer to XXX+PoW

(XXX ∈ {CE, HCE2, RCE }) as the extended MLE scheme for DLSB-deduplication.

It is worth noting that in the extended MLE schemes, we assume that the master

key for block key encryption is also derived from the file in a determined way, e.g.,

using a hash function.

Metadata Size. Below we provide a concrete comparison on the Dedup-Metadata

size for different schemes. More precisely, let the block size in the extended MLE

schemes be b-bits, then the block number is n1 = dt/be for a duplicated file of size

t-bits. Suppose the hash function applied in the scheme is SHA-256 of which the

output has 256 bits. We then know from the constructions of CE, HCE2 and

RCE that both the block tag and the block key are of 256 bits. Therefore, the total

dedup-metadata size of the extended MLE schemes is 512 · (n1 +1) bits. One should

note that here we assume both the file tag and the PoW tag are also of 256 bits. As

for our BL-MLE scheme, to achieve 128-bit security, we choose the (Elliptic Curve)

group G1 with prime order params such that |p|=257 (note that each sector in our

scheme has |p|-1=256 bits). Therefore, the block size in our scheme is 256 · s bits

(s is the number of sectors per block) and the block number is n2 = dt/(256 · s)e.
Since each block tag is an element of the elliptic curve group G1, we have that the

total dedup-metadata size of our BL-MLE scheme is 257 · (n2 + 1) bits. To give a

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 75

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

Block Size (KB)

D
ed

up
−

M
et

ad
at

a
S

iz
e

(G
B

)

Extended MLE
BL−MLE

Figure 4.1: Impact of Block Size on Dedup-Metadata Size (f=1)

clear picture, we suppose that the cloud server stores f distinct files and each file is

of 1 TB on average. To give a fair comparison, in both the extended MLE scheme

and our BL-MLE scheme, we set the block to be of the same size (i.e., b = 256 · s).
In particular, when the block size is 4 KB, 8 KB, 16 KB, s is set to be 128, 256 and

512 respectively.

In the first case, we assume duplicated (i.e., same) files are stored in the cloud

storage. In this case, the space cost of both the extended MLE scheme and our

BL-MLE scheme is independent from the number of users who share the same file,

under the assumption that the master key is directly derived from the file. However,

our approach still performs better than the extended MLE scheme in terms of the

total metadata size. The reason is that the tag in our construction can serve multi-

purposes (i.e., block identifier, the encrypted block key, PoW tag), whereas the

extended MLE scheme requires different tags for different purposes. As shown in

Fig. 4.1, the dedup-metadata size of the extended MLE schemes decreases when

the block size grows. Specifically, the dedup-metadata size of the extended MLE

schemes is about 16 GB when the block size is 4 KB whereas the dedup-metadata

of our scheme is approx 8 GB under the same setting. Generally speaking, the

size of dedup-metadata in our scheme is much smaller than that of the extended

MLE scheme when the block size is the same. Moreover, as illustrated in Fig. 4.2,

the space saving from our BL-MLE scheme would be more significant when the

file number increases. In particular, when f=20, the dedup-metadata size of the

extended MLE schemes is 320 GB while that of our BL-MLE scheme is 160 GB

when the block size is 4 KB.

For the second case, we consider similar but different files uploaded by different

users. In this case, for both the extended MLE scheme and the proposed scheme,

if two users upload two similar files, the server has to store all the encrypted block

keys for both files since the corresponding master keys are different. Nevertheless,

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 76

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

f: Number of Files Stored in the Cloud Server
(Each file is supposed to be 1 TB on average)

D
ed

up
−

M
et

ad
at

a
S

iz
e

(G
B

)

Extended MLE
BL−MLE

Figure 4.2: Impact of f on Dedup-Metadata Size (Block size: 4 KB)

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

Similarity of of two distinct files Stored in the Cloud Server (%)

D
ed

up
−

M
et

ad
at

a
S

iz
e

(G
B

)

Extended MLE
BL−MLE

Figure 4.3: Impact of Similarity on Dedup-Metadata Size (Block size: 4 KB)

our construction can still reduce the metadata size, since for the extended MLE

scheme, it still requires the block identifiers (one for all the duplicated data blocks)

in addition to the encrypted block keys. The comparison between the two approaches

for this case is illustrated in Fig. 4.3. The dedup-metadata size of extended MLE

schemes decreases with the growth of the similarity while that of our BL-MLE stays

the same regardless of the similarity. The reason is that in our BL-MLE scheme,

the encrypted block key can also be used as the block identifier. Particularly, when

the similarity is 0%, which means that these two files are completely different, the

case is the same as shown in Fig. 4.2 (when f=2). When these two files have the

similarity of 50%, the dedup-metadata size of extended MLE is 28 GB. Note that

the difference will be more significant when the number of similar files is large.

Communication. For the bandwidth consumption of PoW, our BL-MLE scheme

features a constant bandwidth since we use aggregated block tags as the response.

However, the security of the basic PoW protocol in our BL-MLE scheme is weaker

than that in [HHPS11] as we assume that the attacker does not know all the block

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 77

Table 4.1: Computation Time of Tag Generation and Block Key Retrieval

Algorithms
Number of Sectors per Block

64 128 256 512
TagGen 0.412 s 0.823 s 1.644 s 3.288 s

B-KeyRet 0.422 s 0.829 s 1.648 s 3.292 s

tags. For the extended BL-MLE scheme with auditing, the communication cost of

the PoW is O(s) but now we can achieve a much stronger security. However, the

cost is still smaller than that of the PoW protocol in [HHPS11].

Computation. To evaluate the computation cost of our BL-MLE scheme, we imple-

mented the scheme using the Pairing Based Cryptography (PBC) libraryb (version

0.5.14). Our experiments are conducted using C on a Linux machine (2.6.35-22-

generic version) with an Intel(R) Core(TM) 2 Duo CPU of 3.33 GHZ and 2.00-GB

RAM. To achieve 128-bit level security, the scheme is implemented using bilinear

groups of prime order params where |p| = 256. Since the encryption and decryption

algorithms of our BL-MLE scheme are symmetric, we only analyze the computation

cost related to tag generation and block key retrieval, which needs to be done by an

end user and involves expensive modular exponentiation operations. As illustrated

in Table 4.1, the computation time of both tag generation and block key retrieval

increases with the number of sectors per block. This is due to the fact that for each

sector, we need to compute one exponentiation operation. Moreover, the computa-

tion cost of block key retrieval is slightly higher than that of tag generation due to

the additional group inversion operation. Specifically, when s = 128 (block size is

4 KB), the computation time is 0.823 seconds for tag generation and 0.829 seconds

for block key retrieval.

We should note that the MLE schemes are in general more efficient in computa-

tion than our BL-MLE scheme since we use public-key techniques to construct ran-

domized tags in our BL-MLE scheme whereas the tag construction in MLE schemes

is deterministic. Particularly, when using SHA256 for instantiating the CE, the tag

generation for a block of 4 KB consumes around 0.021s. We should remark that the

efficiency loss seems indispensable in order to achieve significant space savings using

randomized tag construction. A similar result has been observed in [ABM+13] which

describes a fully randomized MLE scheme and leaves the construction of efficient

randomized MLE schemes as an open problem.

bhttp://crypto.stanford.edu/pbc

CHAPTER 4. BL-MLE FOR SECURE CLOUD DEDUPLICATION 78

4.7 Chapter Summary

In this chapter, we formalized a new primitive called Block-Level Message-Locked

Encryption for DLSB-deduplication of large files to achieve space-efficient storage

in cloud. We also presented a concrete BL-MLE scheme that can efficiently realize

our design ideas. Moreover, we also showed that our BL-MLE scheme can be easily

modified to achieve efficient data auditing, which makes our scheme multi-purpose

for secure cloud storage.

Part II

Secure Data Retrieval

79

Chapter 5

Dual-Server Public-Key Encryption

with Keyword Search

Searchable encryption is of increasing interest for protecting the data privacy in

secure searchable cloud storage. In this chapter, we investigate the security of a

well-known cryptographic primitive, namely Public Key Encryption with Keyword

Search (PEKS) which is very useful in many applications of cloud storage. Unfor-

tunately, it has been shown that the traditional PEKS framework suffers from an

inherent vulnerability under the inside Keyword Guessing Attack (KGA) launched

by the malicious server. To address this security vulnerability, we propose a new

PEKS framework named Dual-Server Public Key Encryption with Keyword Search

(DS-PEKS). As another main contribution, we define a new variant of the Smooth

Projective Hash Functions (SPHFs) referred to as linear and homomorphic SPHF

(LH-SPHF). We then show a generic construction of secure DS-PEKS from LH-

SPHF. To illustrate the feasibility of our new framework, we provide an efficient

instantiation of the general framework from a DDH-based LH-SPHF and show that

it can achieve the strong security against inside KGA.

5.1 Introduction

In reality, end users may not entirely trust the CSP and may prefer to encrypt their

data before uploading them to the cloud server in order to protect the data privacy.

This usually makes the data utilization more difficult than the traditional storage

where data is kept in the absence of encryption. One of the typical solutions is the

searchable encryption which allows the user to retrieve the encrypted documents

that contain the user-specified keywords, where given the keyword trapdoor, the

server can find the data required by the user without decryption.

Searchable encryption can be realized in either symmetric or asymmetric en-

cryption setting. In [SWP00], Song et al. proposed keyword search on cipher-

text, known as Searchable Symmetric Encryption (SSE) and afterwards several

SSE schemes [AKSX04, CGKO06] were designed for improvements. Although SSE

schemes enjoy high efficiency, they suffer from complicated secret key distribution.

Precisely, users have to securely share secret keys which are used for data encryption.

Otherwise, they are not able to share the encrypted data outsourced to the cloud.

To resolve this problem, Boneh et al. [BCOP04] introduced a more flexible primitive,

80

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 81

namely Public Key Encryption with Keyword Search (PEKS) that enables a user

to search encrypted data in the asymmetric encryption setting. In a PEKS system,

using the receiver’s public key, the sender attaches some encrypted keywords (re-

ferred to as PEKS ciphertexts) with the encrypted data. The receiver then sends

the trapdoor of a to-be-searched keyword to the server for data searching. Given

the trapdoor and the PEKS ciphertext, the server can test whether the keyword

underlying the PEKS ciphertext is equal to the one selected by the receiver. If so,

the server sends the matching encrypted data to the receiver. One can see that this

has many potential applications such as the private email system where the receiver

may want the gateway to route his/her emails based on the specified keyword.

5.1.1 Motivations

Unfortunately, despite that being free from secret key distribution, PEKS schemes

suffer from an inherent insecurity regarding the trapdoor keyword privacy, namely

inside Keyword Guessing Attack (KGA). The reason leading to such a security vul-

nerability is that anyone who knows receiver’s public key can generate the PEKS

ciphertext of arbitrary keyword himself. Specifically, given a trapdoor, the adver-

sarial server can choose a guessing keyword from the keyword space and then use

the keyword to generate a PEKS ciphertext. The server then can test whether the

guessing keyword is the one underlying the trapdoor. This guessing-then-testing

procedure can be repeated until the correct keyword is found. Such a guessing at-

tack has also been considered in many password-based systems. However, the attack

can be launched more efficiently against PEKS schemes since the keyword space is

roughly the same as a normal dictionary (e.g., all the meaningful English words),

which has a much smaller size than a password dictionary (e.g., all the words con-

taining 6 alphanumeric characters). It is worth noting that in SSE schemes, only

secret key holders can generate the keyword ciphertext and hence the adversarial

server is not able to launch the inside KGA. As the keyword always indicates the

privacy of the user data, it is therefore of practical importance to overcome this

security threat for secure searchable encrypted data outsourcing.

5.1.2 Contributions and Techniques

The contributions of this chapter are four-fold.

First, we formalize a new PEKS framework named Dual-Server Public Key En-

cryption with Keyword Search (DS-PEKS) to address the security vulnerability of

PEKS. Our key idea to achieve the security against inside KGA is to split the testing

functionality of the PEKS system into two steps which are handled by two indepen-

dent servers: front server and back server. We then show that under such a setting

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 82

neither the front server nor the back server can launch the keyword guessing attack.

It is worth noting that we require that the two servers do not collude since otherwise

it goes back to the one-server setting in which inside KGA cannot be prevented.

Second, we introduce a new variant of Smooth Projective Hash Function (SPHF)

referred to as linear and homomorphic SPHF for a generic construction of DS-

PEKS. Roughly speaking, an SPHF can be defined based on a domain X and an

NP language L, where L ⊂ X . In our chapter, the SPHF used is based on the

hard-on-the-average NP-language and hence is also pseudo-random [GL03]. Our

newly defined variant, named Lin-Hom SPHF, additionally requires the underlying

language L and the SPHF to be linear and homomorphic. To be more precise, we

require that (1) any word W ∈ L can be mapped to another word W ∗ ∈ L using

a witness ∆w. Correspondingly, the hash value of W ∗ can be computed using that

of W with ∆w; (2) any two words W1,W2 ∈ L can be transferred to a new word

W ′ ∈ L under a defined operation. Correspondingly, the hash value of W ′ can be

derived from that of W1 and W2.

Third, we show a generic construction of DS-PEKS using the proposed Lin-

Hom SPHF. In a generic DS-PEKS construction, to generate the PEKS ciphertext

of a keyword, the sender picks a word randomly from L and computes its two hash

values using the witness and the public key (projection key) of the front and back

servers respectively. The keyword is then concealed with these two hash values in

the PEKS ciphertext. The receiver generates the trapdoor in the same way. In the

pre-processing stage, the front server first removes the pseudo-random hash values

in the trapdoor and the PEKS ciphertext for the back server using its private key.

Due to the linear and homomorphic properties of Lin-Hom SPHF, the front server

can re-randomise the internal testing-state to preserve the keyword privacy from

the back server who can only determine whether the two keywords underlying the

internal testing-state are the same or not. We can see that in this way, the security

of DS-PEKS against inside keyword guessing attack can be obtained.

Fourth, to illustrate the feasibility of our new framework, an efficient instan-

tiation of our SPHF based on the Diffie-Hellman language is presented in this

chapter. We show that the Diffie-Hellman language is linear and homomorphic

and the derived SPHF is a Lin-Hom SPHF based on the Diffie-Hellman assump-

tion. We then present a practical and secure DS-PEKS scheme without pair-

ings, which is more efficient compared with other pairing-based PEKS schemes

[BCOP04,WBDS04,ABC+05,Kha06].

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 83

5.1.3 Related Work

In this subsection, we describe a classification of PEKS schemes based on their

security.

Traditional PEKS. Following Boneh et al.’s seminal work [BCOP04], Abdalla

et al. [ABC+05] formalized anonymous IBE (AIBE) and presented a generic con-

struction of searchable encryption from AIBE. They also showed how to transfer a

hierarchical IBE (HIBE) scheme into a public key encryption with temporary key-

word search (PETKS) where the trapdoor is only valid in a specific time interval.

Waters [WBDS04] showed that the PEKS schemes based on the bilinear map could

be applied to build encrypted and searchable auditing logs. In order to construct

a PEKS secure in the standard model, Khader [Kha06] proposed a scheme based

on the k-resilient IBE and also gave a construction supporting multiple-keyword

search. The first PEKS scheme without pairings was introduced by Di Crescenzo

and Saraswat [CS07]. The construction is derived from Cock’s IBE scheme [Coc01]

which is not very practical.

Secure Channel Free PEKS. The original PEKS scheme [BCOP04] requires a

secure channel to transmit the trapdoors. To overcome this limitation, Baek et

al. [BSS08] proposed a new PEKS scheme without requiring a secure channel, which

is referred to as a secure channel-free PEKS (SCF-PEKS). The idea is to add the

server’s public/private key pair into a PEKS system. The keyword ciphertext and

trapdoor are generated using the server’s public key and hence only the server (des-

ignated tester) is able to perform the search. Rhee et al. [RPSL09] later enhanced

Baek et al.’s security model [BSS08] for SCF-PEKS where the attacker is allowed

to obtain the relationship between the non-challenge ciphertexts and the trapdoor.

They also presented an SCF-PEKS scheme secure under the enhanced security model

in the random oracle model.

Against Outside KGA. Byun et al. [BRPL06] introduced the off-line keyword

guessing attack against PEKS as keywords are chosen from a much smaller space

than passwords and users usually use well-known keywords for searching documents.

They also pointed out that the scheme proposed in Boneh et al. [BCOP04] was sus-

ceptible to keyword guessing attack. Inspired by the work of Byun et al. [BRPL06],

Yau et al. [YHG08] demonstrated that outside adversaries that capture the trapdoors

sent in a public channel can reveal the encrypted keywords through off-line keyword

guessing attacks and they also showed off-line keyword guessing attacks against the

(SCF-)PEKS schemes in [BSS08,BSS06]. The first PEKS scheme secure against out-

side keyword guessing attacks was proposed by Rhee et al. [RSK09]. In [RPSL10],

the notion of trapdoor indistinguishability was proposed and the authors showed

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 84

that trapdoor indistinguishability is a sufficient condition for preventing outside

keyword-guessing attacks.

Against Inside KGA. Nevertheless, all the schemes mentioned above are found to

be vulnerable to keyword guessing attacks from a malicious server (i.e., inside KGA).

Jeong et al. [JKHL09] showed a negative result that the consistency/correctness

of PEKS implies insecurity to inside KGA in PEKS. Their result indicates that

constructing secure and consistent PEKS schemes against inside KGA is impossible

under the original framework. A potential solution is to propose a new framework

of PEKS. In [XJWW13], Peng et al. proposed the notion of Public-key Encryption

with Fuzzy Keyword Search (PEFKS) where each keyword corresponds to an exact

trapdoor and a fuzzy trapdoor. The server is only provided with the fuzzy trapdoor

and thus can no longer learn the exact keyword since two or more keywords share the

same fuzzy keyword trapdoor. However, their scheme suffers from several limitations

regarding the security and efficiency. On one hand, although the server cannot

exactly guess the keyword, it is still able to know which small set the underlying

keyword belongs to and thus the keyword privacy is not well preserved from the

server. On the other hand, their scheme is impractical as the receiver has to locally

find the matching ciphertext by using the exact trapdoor to filter out the non-

matching ones from the set returned by the server.

5.2 Dual-Server PEKS

In this section, we formally define the Dual-Server Public Key Encryption with

Keyword Search (DS-PEKS) and its security model.

5.2.1 Overview

In our proposed framework, namely DS-PEKS, we disallow the stand-alone testing to

obtain the security against inside keyword guessing attacks. Roughly speaking, DS-

PEKS consists of (KeyGen,DS-PEKS,DS-Trapdoor,FrontTest,BackTest). To be more

precise, the KeyGen algorithm generates the public/private key pairs of the front

and back servers instead of that of the receiver. Moreover, the trapdoor generation

algorithm DS-Trapdoor defined here is public while in the traditional PEKS definition

[BCOP04,BSS08], the algorithm Trapdoor takes as input the receiver’s private key.

Such a difference is due to the different structures used by the two systems. In

the traditional PEKS, since there is only one server, if the trapdoor generation

algorithm is public, then the server can launch an off-line guessing attack against a

keyword ciphertext to recover the encrypted keyword. As a result, it is impossible

to achieve the semantic security as defined in [BCOP04,BSS08]. However, as we will

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 85

Figure 5.1: System Model of Dual-Server PEKS

show later, under the DS-PEKS framework, we can still achieve semantic security

when the trapdoor generation algorithm is public. Another difference between the

traditional PEKS and our proposed DS-PEKS is that the test algorithm is divided

into two algorithms, FrontTest and BackTest run by two independent servers. This

is essential for achieving security against the inside keyword guessing attacks.

The system model is as shown in Fig. 5.1. Upon receiving a query from the

receiver, the front server pre-processes the trapdoor and all the PEKS ciphertexts

using its private key, and then sends some internal testing-states to the back server

with the corresponding trapdoor and PEKS ciphertexts hidden. The back server

can then decide which documents are queried by the receiver using its private key

and the received internal testing-states from the front server.

5.2.2 Formal Definition

Syntax. A DS-PEKS scheme is defined by the following algorithms.

Setup(1`). Takes as input the security parameter `, generates the system parame-

ters params;

KeyGen(params). Takes as input the systems parameters params, outputs the

public/secret key pairs (pkFS, skFS), and (pkBS, skBS) for the front server,

and the back server respectively;

DS-PEKS(params, pkFS, pkBS, kw1). Takes as input params, the front server’s pub-

lic key pkFS, the back server’s public key pkBS and the keyword kw1, outputs

the PEKS ciphertext CTkw1 of kw1;

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 86

DS-Trapdoor(params, pkFS, pkBS, kw2). Takes as input params, the front server’s

public key pkFS, the back server’s public key pkBS and the keyword kw2,

outputs the trapdoor Tkw2 ;

FrontTest(params, skFS, CTkw1 , Tkw2). Takes as input params, the front server’s

secret key skFS, the PEKS ciphertext CTkw1 and the trapdoor Tkw2 , outputs

the internal testing-state CITS;

BackTest(params, skBS, CITS). Takes as input params, the back server’s secret key

skBS and the internal testing-state CITS, outputs the testing result 0 or 1;

Correctness. It is required that for any keyword kw1, kw2, and

CTkw1 ← DS-PEKS(pkFS, pkBS, kw1)a,

Tkw2 ← DS-Trapdoor(pkFS, pkBS, kw2),

we have that BackTest(skBS, CITS) = 1 if kw1 = kw2, otherwise 0.

5.2.3 Security Models

In this subsection, we formalize the security models for DS-PEKS. We define the fol-

lowing security models for a DS-PEKS scheme against the adversarial front and back

servers, respectively. We should note that the following security models also imply

the security guarantees against the outside adversaries which have less capability

compared to the servers.

Adversarial Front Server. In this part, we define the security against an ad-

versarial front server. Precisely, we introduce two games, namely semantic-security

against chosen keyword attack and indistinguishability against keyword guessing

attack to capture the security of PEKS ciphertext and trapdoor, respectively.

Semantic-Security against Chosen Keyword Attack (SS-CKA). In the following, we de-

fine the semantic-security against chosen keyword attack which guarantees that no

adversary is able to distinguish a keyword from another one given the corresponding

PEKS ciphertext. That is, the PEKS ciphertext does not reveal any information

about the underlying keyword to any adversary.

Setup. The challenger C runs the KeyGen(`) algorithm to generate key pairs (pkFS, skFS)

and (pkBS, skBS). It gives (pkFS, skFS, pkBS) to the attacker A;

Test query-I. The attacker A can adaptively make the test query for any keyword

and any PEKS ciphertext of its choice. The challenger C returns 1 or 0 as the

test result to the attacker;

aFor simplicity, we will omit params in the input of the algorithms in the rest of the chapter.

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 87

Challenge. The attacker A sends the challenger C two keywords kw0, kw1. The

challenger picks b
$← {0, 1} and generates

CT ∗kw ← DS-PEKS(pkFS, pkBS, kwb).

The challenger C then sends CT ∗kw to the attacker A ;

Test query-II. The attacker A can continue the test query for any keyword and any

PEKS ciphertext of its choice except the challenge keywords kw0, kw1. The

challenger C returns 1 or 0 as the test result to the attacker A ;

Output. Finally, the attacker A outputs its guess b′ ∈ {0, 1} on b and wins the game

if b = b′.

We refer to such an adversarial front server A in the above game as an SS-CKA

adversary and define its advantage as

AdvSS-CKAFS,A (`) = Pr[b = b′]− 1/2.

Indistinguishability against Keyword Guessing Attack (IND-KGA). This model captures

that the trapdoor reveals no information about the underlying keyword to the ad-

versarial front server. We define the security model as follows.

Setup. The challenger C runs the KeyGen(`) algorithm to generate key pairs (pkFS, skFS)

and (pkBS, skBS). It gives (pkFS, skFS, pkBS) to the attacker A ;

Test query-I. The attacker A can adaptively make the test query for any keyword

and any PEKS ciphertext of its choice. The challenger C returns 1 or 0 as the

test result to the attacker;

Challenge. The attacker sends the challenger C two keywords kw0, kw1. The chal-

lenger C picks b
$← {0, 1} and generates

T ∗kw ← DS-Trapdoor(pkFS, pkBS, kwb).

The challenger C then sends T ∗kw to the attacker A;

Test query-II. The attacker A can continue issue the test query for any keyword and

any PEKS ciphertext of its choice except the challenge keywords kw0, kw1.

The challenger C returns 1 or 0 as the test result to the attacker A;

Output. Finally, the attacker A outputs its guess b′ ∈ {0, 1} on b and wins the game

if b = b′.

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 88

We refer to such an adversarial front server A in the above game as an IND-KGA

adversary and define its advantage as

AdvIND-KGA
FS,A (`) = Pr[b = b′]− 1/2.

Adversarial Back Server. The security models of SS-CKA and IND-KGA in terms

of an adversarial back server are similar to those against an adversarial front server.

Semantic-Security against Chosen Keyword Attack. Here the game against an adver-

sarial back server is the same as the one against an adversarial front server except

that the adversary is given the private key of the back server instead of that of the

front server. We omit the details here for simplicity.

We refer to the adversarial back server A in the SS-CKA game as an SS-CKA

adversary and define its advantage as AdvSS-CKABS,A (`) = Pr[b = b′]− 1/2.

Indistinguishability against Keyword Guessing Attack. Similarly, this security model aims

to capture that the trapdoor does not reveal any information to the back server and

hence is the same as that against the front server except that the adversary owns

the private key of the back server instead of that of the front server. Therefore, we

also omit the details here.

We refer to the adversarial back server A in the IND-KGA game as an IND-KGA

adversary and define its advantage as AdvIND-KGA
BS,A (`) = Pr[b = b′]− 1/2.

Indistinguishability against Keyword Guessing Attack-II (IND-KGA-II). Apart from the

above two security models, we should also guarantee that the internal testing-state

does not reveal any information about the keyword to the back server. We hence

define another type of keyword guessing attack to capture such a requirement. The

security, namely Indistinguishability against Keyword Guessing Attack-II guarantees

that the back server cannot learn any information about the keywords from the

internal testing-state. The security model is defined as follows.

Setup. The challenger C runs the KeyGen(`) algorithm to generates key pairs (pkFS, skFS)

and (pkBS, skBS). It gives (pkFS, pkBS, skBS) to the attacker A.

Challenge. The attacker A sends the challenger C three different keywords kw0, kw1,

kw2. The challenger C picks {b1, b2} ⊂ {0, 1, 2} randomly and computes

CT ∗kw ← DS-PEKS(pkFS, pkBS, kwb1),

T ∗kw ← DS-Trapdoor(pkFS, pkBS, kwb2),

C∗ITS ← FrontTest(skFS, CT
∗
kw, T

∗
kw).

The challenger C then sends C∗ITS to the attacker A.

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 89

Output. Finally, the attacker A outputs its guess on {b1, b2} as {b′1, b′2} ⊂ {0, 1, 2}
and wins the game if {b′1, b′2} = {b1, b2}.

We refer to such an adversary A in the above two games as a IND-KGA-II adversary

and define its advantage as,

AdvIND-KGA-II
BS,A (`) = Pr[{b′1, b′2} = {b1, b2}]− 1/3.

We should remark that in the above game, b1 and b2 can be equivalent. In this case,

the adversary (i.e., back server) will know that the same keyword has been used in

the generation of the PEKS ciphertext and the trapdoor, and the adversary’s goal

is to guess which keyword among the three has been used.

Based on the security models defined above, we give the following security defi-

nition for a DS-PEKS scheme.

Definition 5.1 We say that a DS-PEKS is secure if for any polynomial time at-

tacker Ai (i = 1, . . . , 5), we have that AdvSS-CKABS,A1
(`),AdvSS−CKABS,A2

(`), AdvIND-KGA
FS,A3

(`),

AdvIND-KGA
BS,A4

(`) and AdvIND-KGA-II
BS,A5

(`) are all negligible functions of the security param-

eter `.

5.3 Linear and Homomorphic SPHF

In this chapter, we consider a new variant of smooth projective hash function. We

consider two new properties: linear and homomorphic, which are defined below. It

is worth noting that Abdalla et al. [ACP09] introduced conjunction and disjunction

of languages for smooth projective hashing that was later used in the construction

of blind signature [BBC+13b,BPV], oblivious signature-based envelope [BPV], and

authenticated key exchange protocols for algebraic languages [BBC+13a]. As shown

in the following, our definition for the new SPHF here is different from their work

since we consider the operations on the words belonging to the same language,

whereas theirs considers operations among different languages.

Let SPHF=(SPHFSetup,HashKG,ProjKG,Hash,ProjHash) be a smooth projec-

tive hash function over the language L ⊂ X onto the set Y and W be the witness

space of L. We first describe the operations on the sets < L,Y ,W > as follows.

a). } : L × L → L. For any W1 ∈ L,W2 ∈ L, W1 }W2 ∈ L;

b). ~ : Y × Y → Y . For any y1 ∈ Y , y2 ∈ Y , y1 ~ y2 ∈ Y ;

c). �,⊕ :W×W →W . For any w1 ∈ W , w2 ∈ W , w1�w2 ∈ W and w1⊕w2 ∈ W ;

d). ⊗ :W ×L → L. For any w ∈ W ,W ∈ L, w ⊗W ∈ L;

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 90

e). • :W ×Y → Y . For any w ∈ W , y ∈ Y , w • y ∈ Y .

Moreover, for any element y ∈ Y , we define y ~ y−1 = 1Y which is the identity

element of Y .

Our new SPHF requires the underlying language to be also linear and homo-

morphic language, which is defined below.

Definition 5.2 (Linear and Homomorphic Language) A language L is linear

and homomorphic if it satisfies the following properties.

1). For any word W ∈ L with witness w and ∆w ∈ W, there exists a word W ∗ ∈ L
such that ∆w ⊗W = W ∗ with the witness w∗ = ∆w � w.

2). For any two words W1,W2 ∈ L with the witness w1, w2 ∈ W respectively, there

exists a word W ∗ ∈ L such that W1}W2 = W ∗ with the witness w∗ = w1⊕w2.

We then give the definition of Lin-Hom SPHF as follows.

Definition 5.3 (Lin-Hom SPHF (LH-SPHF)) We say SPHF is a Lin-Hom

SPHF (LH-SPHF) if the underlying language L is a linear and homomorphic lan-

guage and SPHF satisfies the following properties.

1). For any word W ∈ L with the witness w ∈ W and ∆w ∈ W, we have

Hash(hk, (L, param),∆w ⊗W) = ∆w • Hash(hk, (L, param),W).

In other words, suppose ∆w ⊗W = W ∗, we have,

ProjHash(hp, (L, param),W ∗, w∗) = ∆w • ProjHash(hp, (L, param),W,w),

where w∗ = ∆w � w.

2). For any two words W1,W2 ∈ L with the witness w1, w2 ∈ W, we have

Hash(hk, (L, param),W1 }W2) =

Hash(hk, (L, param),W1)~ Hash(hk, (L, param),W2).

In other words, suppose W1 }W2 = W ∗, we have,

ProjHash(hp, (L, param),W ∗, w∗) =

ProjHash(hp, (L, param),W1, w1)~ ProjHash(hp, (L, param),W2, w2)

where w∗ = w1 ⊕ w2.

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 91

In this chapter, we also assume that the LH-SPHF has the following property:

for any y ∈ Y , W ∈ L and the witness w ∈ W of W , there exists a projection key

hp such that ProjHash(hp, (L, param),W,w) = y.

5.4 Generic Construction of DS-PEKS

In this section, we show how to generically construct a Dual-Server Public Key En-

cryption with keyword search based on Lin-Hom Smooth Projective Hash Functions.

5.4.1 Generic Construction

Suppose SPHF = (SPHFSetup,HashKG,ProjKG,Hash,ProjHash) is an LH-SPHF

over the language L onto the set Y . Let W be the witness space of the language

L and KW be the keyword space. Our generic construction DS-PEKS works as

follows.

Setup(1`). Take as input the security parameter `, run SPHFSetup algorithm and

generate the global parameters param, the description of the language L and

a collision-resistant hash function Γ : KW → Y . Set the system parameter

P =< param,L,Γ >.

KeyGen(P). Take as input P , run the algorithms < HashKG,ProjHash > to generate

the public/private key pairs (pkFS, skFS), (pkBS, skBS) for the front server and

the back server respectively.

pkFS ← HashKG(P), skFS = ProjKG(pkFS),

pkBS ← HashKG(P), skBS = ProjKG(pkBS).

DS-PEKS(pkFS, pkBS, kw1). Take as input params, pkFS, pkBS and the keyword

kw1, pick a word W1 ∈ L randomly with the witness w1 and generate the

PEKS ciphertext CTkw1 of kw1 as following.

x1 = ProjHash(pkFS,W1, w1),

y1 = ProjHash(pkBS,W1, w1),

C1 = x1 ~ y1 ~ Γ(kw1).

Set CTkw1 =< W1, C1 > and return CTkw1 as the keyword ciphertext.

DS-Trapdoor(pkFS, pkBS, kw2). Take as input params, pkFS, pkBS and the keyword

kw2, pick a word W2 ∈ L randomly with the witness w2 and generate the

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 92

trapdoor Tkw2 of kw2 as follows.

x2 = ProjHash(pkFS,W2, w2),

y2 = ProjHash(pkBS,W2, w2),

C2 = x2 ~ y2 ~ Γ(kw2)−1.

Set Tkw2 =< W2, C2 > and return Tkw2 as the trapdoor.

FrontTest(skFS, CTkw, Tkw). Takes as input params, the front server’s secret key

skFS, the PEKS ciphertext CTkw1 =< W1, C1 > and the trapdoor Tkw2 =<

W2, C2 >, pick ∆w ∈ W randomly, generate the internal testing-state CITS

as follows.

W = W1 }W2,

x = Hash(skFS,W),

C = C1 ~ C2 ~ x
−1,

W ∗ = ∆w ⊗W,C∗ = ∆w • C.

Set CITS =< W ∗, C∗ > and return CITS as the internal testing-state.

BackTest(skBS, CITS). Takes as input params, the back server’s secret key skBS

and the internal testing-state CITS =< W ∗, C∗ > , test as follows.

Hash(skBS,W
∗)

?
= C∗

If yes output 1, else output 0.

Correctness Analysis. One can see that the correctness of this construction is

guaranteed by the important properties of the LH-SPHF. To be more precise, we

give the analysis as follows.

For the algorithm FrontTest, we have

x = Hash(skFS,W)

= Hash(skFS,W1 �W2)

= Hash(skFS,W1)~ Hash(skFS,W2)

= ProjHash(pkFS,W1, w1)~ ProjHash(pkFS,W2, w2)

= x1 ~ x2.

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 93

Therefore,

C = C1 ~ C2 ~ x
−1

= x1 ~ y1 ~ Γ(kw1)~ x2 ~ y2 ~ Γ(kw2)−1 ~ (x1 ~ x2)−1

= y1 ~ y2 ~ Γ(kw1)~ Γ(kw2)−1.

For the algorithm BackTest, we have

Hash(skBS,W
∗)

= Hash(skBS,∆w ⊗W)

= ∆w • Hash(skBS,W)

= ∆w • Hash(skBS,W1 }W2).

= ∆w • (Hash(skBS,W1)~ Hash(skBS,W2))

= ∆w • (ProjHash(pkBS,W1, w1)~ ProjHash(pkBS,W2, w2))

= ∆w • (y1 ~ y2).

It is easy to see that if kw1 = kw2, then Hash(skBS,W
∗) = ∆w•C = C∗. Otherwise,

Hash(skBS,W
∗) 6= C∗ due to the collision-resistant property of the hash function Γ.

5.4.2 Security Analysis

In this subsection, we analyse the security of the above generic construction.

Theorem 5.1 The generic construction DS-PEKS is semantically secure under

chosen keyword attacks.

The above theorem can be obtained from the following two lemmas.

Lemma 5.2 For any PPT adversary A, AdvSS-CKAFS,A (`) is a negligible function.

Proof: We define a sequence of games as follows.

Game0. This is the original SS-CKA game against the adversarial front server.

Setup. The challenger runs the Setup,KeyGen to generate system parameter params,

key pairs (pkFS, skFS) and (pkBS, skBS). It then gives adversary A the key

pair (P, pkFS, skFS, pkBS).

Test Query-I. The adversary makes a query on < kw,CT >. Suppose CT = (W,C),

the challenger computes the following.

T ← DS-Trapdoor(pkFS, pkBS, kw),

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 94

CITS ← FrontTest(skFS, C, T).

The challenger then runs the algorithm BackTest(skBS, CITS) and returns the

output to the adversary.

Challenge. A chooses two keywords kw0, kw1 and sends kw0, kw1 to the challenger.

The challenger first picks b
$← {0, 1}, and then picks a word W1 ∈ L randomly

with the witness w1 and generates the PEKS ciphertext CT ∗kw of kwb as follows.

x1 = ProjHash(pkFS,W1, w1), y1 = ProjHash(pkBS,W1, w1),

C1 = x1 ~ y1 ~ Γ(kwb).

The challenger sets CT ∗kw =< W1, C1 > as the keyword ciphertext and sends

CT ∗kw to A.

Test Query-II. The procedure is the same as that in Test Query-I.

Output. Finally, A outputs its guess b′ ∈ {0, 1} on b and wins the game if b = b′.

We define the advantage of A in Game0 as AdvGame0
FS,A (`) and have that

AdvGame0
FS,A (`) = AdvSS−CKAFS,A (`)

as Game0 strictly follows the SS-CKA model.

Game1. Let Game1 be the same game as Game0, except that the challenger chooses

y1
$← Y instead of computing y1 as ProjHash(pkBS,W1, w1). Due to the correctness

and pseudo-randomness of SPHF , that is, the distribution {(W1, pkBS, y1)|y1 =

ProjHash(pkBS,W1, w1)} is computationally indistinguishable from the distribution

{(W1, pkBS, y1)|y1
$← Y}, we have that

|AdvGame1
FS,A (`)− AdvGame0

FS,A (`)| ≤ AdvPRA (`).

Game2. Let Game2 be the same game as Game1, except that the challenger chooses

C1
$← Y instead of computing C1 = x1 ~ y1 ~ Γ(kwb). We can see that

AdvGame2
FS,A (`) = AdvGame1

FS,A (`).

It is easy to see that the adversary in Game2 can only win with probability 1/2

as C1 is independent of b. Therefore, we have that AdvGame2
FS,A (`) = 0.

Therefore, from Game0,Game1 and Game2, we have that

|AdvGame2
FS,A (`)− AdvSS-CKAFS,A (`)| ≤ AdvPRA (`).

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 95

As AdvGame2
FS,A (`) = 0 and AdvPRA (`) is negligible, we have that AdvSS-CKAFS,A (`) is also

negligible, which completes the proof.

Lemma 5.3 For any PPT adversary A, AdvSS-CKABS,A (`) is a negligible function.

The proof of Lemma 5.3 can be easily obtained by following the proof of Lemma 5.2,

and hence is omitted.

Theorem 5.4 The generic construction DS-PEKS is secure against keyword guess-

ing attack.

The above theorem can be obtained from the following lemmas.

Lemma 5.5 For any PPT adversary A, AdvIND-KGA
FS,A (`) is a negligible function.

Lemma 5.6 For any PPT adversary A, AdvIND-KGA
BS,A (`) is a negligible function.

The proofs of Lemma 5.5 and Lemma 5.6 are similar to those of Lemma 5.2

and Lemma 5.3 as the generation of a trapdoor is the same as that of a PEKS

ciphertext, and the security model of IND-KGA is also similar to that of SS-CKA.

Therefore, we omit the proof details here. For the security against the keyword

guessing attack-II, we have the following lemma.

Lemma 5.7 For any PPT adversary A, AdvIND-KGA-II
BS,A (`) is a negligible function.

Proof: In the IND-KGA-II game, if b1 = b2, then it is easy to see that the adversary

has no advantage since the two keywords are canceled out in the internal testing-

state CITS, which means CITS is independent of the keywords. In the following, we

focus on the case that b1 6= b2.

Here, we use the game-hopping technique again to prove this lemma. We define

a sequence of attack games as follows.

Game0. Let the original IND-CKA game be Game0.

Setup. The challenger runs the Setup,KeyGen to generate system parameter params,

key pairs (pkFS, skFS) and (pkBS, skBS). It gives adversary A the key pairs

(P, pkFS, pkBS, skBS).

Challenge. A chooses challenge keywords kw0, kw1, kw2 adaptively and sends them

to the challenger. The challenger firstly picks {b1, b2} ⊂ {0, 1, 2} randomly.

The challenger picks two words W1,W2 ∈ L randomly with the witness w1, w2

respectively and generates the internal testing-state CITS as follows.

x1 = ProjHash(pkFS,W1, w1), y1 = ProjHash(pkBS,W1, w1),

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 96

x2 = ProjHash(pkFS,W2, w2), y2 = ProjHash(pkBS,W2, w2),

W = W1 }W2, x = Hash(skFS,W),

C = x1 ~ x2 ~ y1 ~ y2 ~ x
−1 ~ Γ(kwb1)~ Γ(kwb2)

−1,

W ∗ = ∆w ⊗W,C∗ = ∆w • C.

Set C∗ITS =< W ∗, C∗ > and return C∗ITS to A.

Output. Finally, A outputs its guess on {b1, b2} as {b′1, b′2} ⊂ {0, 1, 2} and wins the

game if {b′1, b′2} = {b1, b2}.

We define the advantage of A in Game0 as AdvGame0
BS,A (`) and have that

AdvGame0
BS,A (`) = AdvIND-KGA-II

BS,A (`)

as Game0 strictly follows the IND-KGA-II model.

Game1. Let Game1 be the same game as Game0, except that the challenger chooses

y
$← Y and computes C∗ as follows.

C∗ = (x1 ~ x2 ~ y1 ~ y2 ~ x
−1)~ y.

In other words, the challenger replaces the part ∆w · (Γ(kwb1)~ Γ(kwb2)
−1) with a

random chosen element y ∈ Y during the generation of C∗. We now prove that the

replacement in this way can make at most a negligible difference, that is,

Claim. For any PPT adversary A,

|AdvGame1
BS,A (`)− AdvGame0

BS,A (`)| ≤ AdvPRA (`).

Proof: Since the language L is a linear and homomorphic language, we have that

the witness of W ∗ is w∗ = ∆w⊗w where w is the witness of W . Then based on our

definition of LH-SPHF there exists a projection key hp′ that

ProjHash(hp′,W,w) = Γ(kwb1)~ Γ(kwb2)
−1.

As SPHF is a Lin-Hom SPHF, we have that

ProjHash(hp′,W ∗, w∗) = ∆w • ProjHash(hp′,W,w)

= ∆w • (Γ(kwb1)~ Γ(kwb2)
−1).

Moreover, the distribution {(W ∗, hp′, y)|y = ProjHash(hp′,W ∗, w∗)} is computation-

ally indistinguishable from the distribution {(W ∗, hp′, y)|y $← Y} due to the correct-

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 97

ness and pseudo-randomness of SPHF . Therefore, we have that

|AdvGame1
BS,A (`)− AdvGame0

BS,A (`)| ≤ AdvPRA (`).

Game2. Let Game2 be the same game as Game1, except that the challenger chooses

C∗
$← Y . We can see that

AdvGame2
BS,A (`) = AdvGame1

BS,A (`).

It is easy to see that the adversary can only win in the Game2 with probability

1/3 as C∗ is independent of b1, b2. Therefore, we have that AdvGame2
BS,A (`) = 0.

Therefore, from Game0,Game1 and Game2, we have that

|AdvGame2
BS,A (`)− AdvIND-KGA-II

BS,A (`)| ≤ AdvPRA (`).

As AdvGame2
BS,A (`) = 0 and AdvPRA (`) is negligible, we have that AdvIND-KGA-II

BS,A (`) is also

a negligible function, which proves the lemma.

5.5 The Proposed DS-PEKS Scheme

In this section, we first introduce a concrete LH-SPHF and then show how to con-

struct a DS-PEKS based on it.

5.5.1 LH-SPHF Based on The Diffie-Hellman Language

In the following, we present the language we use in the instantiation of LH-SPHF.

Specifically, we introduce the Diffie Hellman language LDH and show how to con-

struct a LH-SPHF based on it.

Diffie-Hellman Language. Let G be a group of primer order params and g1, g2 ∈
G the generators of G. The Diffie-Hellman Language is defined as follows.

LDH = {(u1, u2)|∃r ∈ Zp, s.t., u1 = gr1, u2 = gr2}

One can see that the witness space of LDH is W = Zp and LDH ⊂ G2. We have the

following theorems.

Theorem 5.8 The Diffie-Hellman language LDH is a linear and homomorphic lan-

guage.

Proof: We show that LDH satisfies the properties of a linear and homomorphic

language.

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 98

1). For a word W = (gr1, g
r
2) with the witness w = r ∈ Zp and ∆r ∈ Zp, we have,

W ∗ = ∆r ⊗W = (gr∆r1 , gr∆r2) ∈ LDH ,

which has the witness w∗ = r∆r.

2). For any two word W1 = (gr11 , g
r1
2) (witness w1 = r1), W2 = (gr21 , g

r2
2) (witness

w2 = r2), we have,

W ∗ = W1 }W2 = (gr1+r2
1 , gr1+r2

2) ∈ LDH ,

which has the witness w∗ = w1 ⊕ w2 = r1 + r2.

LH-SPHF on LDH. Here we show how to construct an LH-SPHF (denoted by

SPHFDH) over the language LDH ⊂ X = G2 onto the group Y = G. The concrete

construction is as follows.

SPHFSetup(1`): param = (G, p, g1, g2);

HashKG(LDH , param): hk = (α1, α2)
$← Z2

p;

ProjKG(hk, (LDH , param)): hp = gα1
1 gα2

2 ∈ Zp;

Hash(hk, (LDH , param),W = (gr1, g
r
2)): hv = grα1

1 grα2
2 ∈ Zp;

ProjHash(hp, (LDH , param),W = (gr1, g
r
2), w = r): hv′ = hpr ∈ Zp.

Theorem 5.9 SPHFDH is a smooth projective hash function.

Proof: We show that SPHFDH is projective, smooth and pseduo-random.

1).Correctness. With the above notations, we have

Hash(hk, (LDH , param),W) = grα1
1 grα2

2 = hpr = ProjHash(hp, (LDH , param),W,w).

2). Smoothness. Suppose g2 = gθ1. Note that hp = gα1
1 gα2

2 which constraints (α1, α2)

to satisfy

logg1 hp = α1 + θα2. (5.1)

Let W ′ = (gr11 , g
r2
2) ∈ X\LDH where r1 6= r2, then the hash value hv1 of W ′ is

hv1 = Hash(hk, (LDH , param),W ′) = gr1α1
1 gr2α2

2 ,

which also constraints (α1, α2) to satisfy

logg1 hv1 = r1α1 + r2θα2. (5.2)

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 99

For the above two equations, we have

(α1, α2) ·A = (logg1 hp, logg1 hv1),

where A is a matrix defined as

A =

[
1 r1

θ r2θ

]
.

Since the determinant of A is θ · (r2 − r1) that is nonzero (r1 6= r2), we have

that the equation (1) is independent of the equation (2). Therefore, we have

that hv1 is statistically indistinguishable from any element randomly chosen

from G.

3). Pseudo-randomness. In the following, we prove that SPHFDH is pseudo-

random. More precisely, we show that if there is an adversary that wins

in the PR-game with non-negligible probability, then we can use it to solve

the decision Diffie-Hellman (DDH) problem. Formally, suppose the adversary

A has the advantage AdvPRA , then we have an algorithm B that solves the

DDH problem with advantage AdvDDH
B = 2 · AdvPRA . Let the DDH instance be

(g, ga, gb, Z), B then works as follows to decide whether Z equals gab (outputs

1) or not (outputs 0).

Setup. B sets g1 = g, g2 = ga, picks hk = (α1, α2)
$← Zp and sets param =

(g1, g2,G, p)computes hp = gα1
1 gα2

2 . B sends (param, hp) to A.

Challenge. The challenger computes hv = gbα1
1 Zα2 and sends (gb1, Z, hv) to A

Output. Finally, A outputs its guess b′ which B outputs as its solution to the

given DDH problem.

Let W ′ = (gb1, Z). If Z = gab, then W ′ ∈ LDH as Z = gab = gb2 which is

the case that b = 1 in the PR-game. If Z 6= gab, then W ′ /∈ LDH and hence

hv = gbα1
1 Zα2 = Hash(hk, (LDH , param),W ′) is statistically indistinguishable

from a random element v
$← Y which is the case b = 0. Therefore, we have

that

AdvDDH
B = Pr[b′ = 1|Z = gab]− Pr[b′ = 1|Z 6= gab]

= Pr[b′ = 1|Z = gab]− (1− Pr[b′ = 0|Z 6= gab])

= AdvPRA + 1/2− (1− (AdvPRA + 1/2))

= 2 · AdvPRA .

Theorem 5.10 SPHFDH is a Lin-Hom SPHF.

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 100

Proof: As shown above, LDH is a linear and homomorphic language. Now we show

that SPHFDH satisfies the following properties.

1). For a word W = (gr1, g
r
2) with the witness w = r ∈ Zp and ∆r ∈ Zp, we have

∆r ⊗W = (gr∆r1 , gr∆r2). Therefore, we have

Hash(hk, (LDH , param),∆r ⊗W)

= gr∆rα1
1 gr∆rα2

2

= (gr1α1
1 gr2α2

2)∆r

= ∆r • Hash(hk, (LDH , param),W).

2). For any two word W1 = (gr11 , g
r1
2), W2 = (gr21 , g

r2
2), we have W1 } W2 =

(gr1+r2
1 , gr1+r2

2) ∈ LDH . Therefore, we have

Hash(hk, (LDH , param),W1 }W2)

= g
(r1+r2)·α1

1 · g(r1+r2)·α2

2

= gr1α1
1 gr1α2

2 · gr2α1
1 gr2α2

2

= Hash(hk, (L, param),W1)~ Hash(hk, (L, param),W2).

This proves the theorem.

5.5.2 A Concrete DS-PEKS Scheme Based on SPHFDH

Construction. The concrete scheme based on SPHFDH introduced above is as

follows.

Setup. Let G be a group with prime order params and g1, g2 be two generators

of G. H : {0, 1}∗ → G is a collision-resistant hash function. The system

parameter is (p, g1, g2,G, H).

KeyGen. Pick α1, α2, β1, β2 from Zp randomly and generate the public/secret key

pair (pkFS, skFS), (pkBS, skBS) for the front server and the back server respec-

tively as follows,

pkFS = h1 = gα1
1 gα2

2 , skFS = (α1, α2),

pkBS = h2 = gβ11 g
β2
2 , skBS = (β1, β2).

PEKS. For a keyword kw1, pick r1
$← Zp, generate the PEKS ciphertext of kw1 as

follows,

CTkw = (gr11 , g
r1
2 , h

r1
1 h

r1
2 H(kw1))

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 101

Trapdoor. For a keyword kw2, pick r2
$← Zp, generate the trapdoor of kw2 as follows,

Tkw = (gr21 , g
r2
2 , h

r2
1 h

r2
2 H(kw2)−1)

FrontTest. Pick γ
$← Zp and compute the internal testing-state CITS as follows,

CTkw · Tkw′ = (C1, C2, C3) = (gr1+r2
1 , gr1+r2

2 , hr1+r2
1 hr1+r2

2 (H(kw1)H(kw2)−1))

CITS = (C∗1 , C
∗
2 , C

∗
3) = (Cγ

1 , C
γ
2 , (C3/(C

α1
1 Cα2

2))γ)

BackTest. For an internal testing-state CITS = (C∗1 , C
∗
2 , C

∗
3), do the testing as fol-

lows,

C∗β11 C∗β22
?
= C∗3 .

If the equation holds, outputs 1, otherwise outputs 0.

Correctness. It is easy to obtain the correctness as Cα1
1 Cα2

2 = g
(r1+r2)α1

1 g
(r1+r2)α2

2 =

hr1+r2
1 and we have that,

C∗3 = (C3/(C
α1
1 Cα2

2))γ = h
(r1+r2)γ
2 (H(kw)H(kw′)−1)γ.

Therefore, if kw1 = kw2, then

C∗β11 C∗β22 = C∗3 ,

otherwise, the equation does not hold due to the collision resistance property of H.

Security. The following corollary can be obtained directly from Theorem 7.1 and

Theorem 7.2.

Corollary 5.11 The concrete construction is a secure DS-PEKS scheme.

5.6 Performance Evaluation

In this section, we first give a comparison between existing schemes and our scheme

in terms of computation, size and security. We then evaluate its performance in

experiments.

Computation Costs. All the existing schemes [BCOP04, RPSL10, XJWW13] re-

quire the pairing computation during the generation of PEKS ciphertext and test-

ing and hence are less efficient than our scheme, which does not need any pairing

computation. In our scheme, the computation cost of PEKS generation, trapdoor

generation and testing are 4ExpG1
+1HashG1+2MulG1 , 4ExpG1

+1HashG1+2MulG1 ,

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 102

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Number of Searching Keyword
P

E
K

S
 G

en
er

at
io

n
T

im
e

(s
)

BCOP
RPSL
XJWW
Our Scheme

Figure 5.2: Computation Cost of PEKS Generation in Different Schemes

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

Number of Searching Keyword

T
ra

pd
oo

r
G

en
er

at
io

n
T

im
e

(s
)

BCOP
RPSL
XJWW
Our Scheme

Figure 5.3: Computation Cost of Trapdoor Generation in Different Schemes

and 7ExpG1
+3MulG1 respectively, where ExpG1

denotes the computation of one ex-

ponentiation in G1, MulG1 denotes the costs of one multiplication in G1, MulG1 and

HashG1 respectively denote the cost of one multiplication and one hashing operation

in G1.

Communication Costs. It is worth noting that although our scheme outperforms

the existing schemes in terms of computational cost, it requires more communication

costs. The size of PEKS ciphertext and trapdoor in our scheme is slightly larger

than that of the existing schemes. In particular, both the PEKS and trapdoor

of our scheme consist of three group elements (3|G1|), while the PEKS size (bits)

of [BCOP04], [RPSL10], [XJWW13] is 1|G1|+ log p, 1|G1|+ λ and 3|M | + 2|G1|
respectively, and the trapdoor size is 1|G1|, 2|G1| and 2|G1| respectively. Moreover,

our scheme requires additional communication costs between the two servers, since

the front server needs to transfer the internal testing-state to the back server for the

final testing. The size of the internal testing-state is of size of 3|G1|. We should also

note that in [XJWW13], additional communication also occurs between the server

and the user.

Experiment Results. To evaluate the efficiency of schemes in experiments, we

also implement the scheme utilizing the GNU Multiple Precision Arithmetic (GMP)

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 103

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Number of Searching Keyword
T

es
tin

g
T

im
e

(s
)

BCOP
RPSL
XJWW
Our Scheme

Figure 5.4: Computation Cost of Testing in Different Schemes

library and Pairing Based Cryptography (PBC) library. The following experiments

are based on coding language C on Linux system (more precise, 2.6.35-22-generic

version) with an Intel(R) Core(TM) 2 Duo CPU of 3.33 GHZ and 2.00-GB RAM.

For the elliptic curve, we choose an MNT curve with a base filed size of 159 bits and

p=160 bits and |q|=80 bits.

As shown in Fig. 6.4, our scheme is the most efficient in terms of PEKS com-

putation. It is because that our scheme does not include pairing computation.

Particularly, the scheme [XJWW13] requires the most computation cost due to 2

pairing computation per PEKS generation. As for the trapdoor generation indicated

in Figure 6.5, as all the existing schemes do not involve pairing computation, the

computation cost is much lower than that of PEKS generation. It is worth noting

that the trapdoor generation in our scheme is slightly higher than those of existing

schemes due to the additional exponentiation computations. When the searching

keyword number is 50, the total computation cost of our scheme is about 0.25 sec-

onds. As illustrated in Fig. 6.6, the scheme [XJWW13] cost the most time due to

an additional pairing computation in the exact testing stage. One should note that

this additional pairing computation is done on the user side instead of the server.

Therefore, it could be the computation burden for users who may use a light device

for searching data. In our scheme, although we also require another stage for the

testing, our computation cost is actually lower than that of any existing scheme as

we do not require any pairing computation and all the searching work is handled by

the server.

5.7 Chapter Summary

In this chapter, we proposed a new framework, named Dual- Server Public Key

Encryption with Keyword Search (DSPEKS), that can prevent the inside keyword

guessing attack which is an inherent vulnerability of the traditional PEKS frame-

CHAPTER 5. DUAL-SERVER PEKS FOR SECURE DATA RETRIEVAL 104

work. We also introduced a new Smooth Projective Hash Function (SPHF) and

used it to construct a generic DSPEKS scheme. An efficient instantiation of the

new SPHF based on the Diffie-Hellman problem is also presented in the chapter,

which gives an efficient DS-PEKS scheme without pairings.

Chapter 6

Server-Aided Public Key Encryp-

tion with Keyword Search

This chapter also studies the inside (off-line) KGA problem in the conventional

PEKS system. Unlike the work introduced in Chapter 5 that aims at completely

preventing the inside KGA, the work in this chapter provides a more practical and

applicable treatment that works transparently with any existing PEKS system. We

formalize a new PEKS system named Server-Aided Public Key Encryption with Key-

word Search (SA-PEKS) for the security against the off-line KGA. We then introduce

a universal transformation from any PEKS scheme to a secure SA-PEKS scheme us-

ing the deterministic blind signature. To illustrate its feasibility, we present the first

instantiation of SA-PEKS scheme. Moreover, we describe how to securely imple-

ment the client-KS protocol with a rate-limiting mechanism against on-line KGA

and evaluate the performance of our solution in experiments. The results show that

our proposed scheme enjoys the high efficiency with resistance against off-line and

on-line KGAs.

6.1 Introduction

In this work, we aim at designing a more practical treatment to address the security

issue of the PEKS system, which has been studied in Chapter 5. Moreover, we are

interested in building a system that works transparently with any existing PEKS

system. That is, the system will be backward-compatible and make no modification

on the implementation details of the underlying PEKS system.

6.1.1 Contributions

The contributions of this chapter are four-fold.

First, we formalize a new PEKS system named Server-Aided Public Key Encryp-

tion with Keyword Search (SA-PEKS) to address the security vulnerability against

(inside) off-line KGA in existing PEKS systems. Unlike prior solutions that pri-

marily alter the traditional PEKS framework and suffer from efficiency issues, we

investigate a more practical, easily-to-deploy system to prevent the off-line KGA.

Our proposed solution can work transparently with any existing PEKS system and

hence is much more applicable in practice.

105

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 106

Secondly, we show a generic construction of SA-PEKS scheme with formal se-

curity analysis. Precisely, we propose a universal transformation from any PEKS

scheme to an SA-PEKS scheme by utilizing a deterministic blind signature. The

advantage of our solution is the prospect of multi-tiered security. In particular, we

can achieve the best-case security guarantee when the adversary does not have ac-

cess to the keyword server (KS). Also, even if the attacker has access to the KS,

the KGA is limited to be on-line and hence much less effective, especially when the

KS imposes some rate-limiting measures. For the worst case where the private key

of KS is compromised to the attacker, our system still preserves the security of the

underlying PEKS. Moreover, from the security of the underlying signature scheme,

the inputs of the client (user) are also hidden from the KS.

Thirdly, to illustrate the feasibility of the proposed generic transformation, an

instantiation of the SA-PEKS scheme is presented in this chapter. Specifically, we

instantiate the scheme from the FDH-RSA blind signature and the PEKS scheme

proposed by Boneh et al. in [BCOP04]. We then show that the construction is secure

following the defined models as long as the FDH-RSA has one-more-unforgeability

and blindness.

Lastly, we present the implementation of our proposed solution and analyze its

performance in experiments. Particularly, we show how to securely implement the

client-KS protocol with a rate-limiting mechanism against on-line KGA. Following

the designed protocol, we then analyze the performance of the FDH-RSA in terms

of latency, packet drop rate, and on-line KGA resistance. Moreover, we evaluate

the efficiency of our instantiated scheme. Our results show that the proposed so-

lution can significantly reduce the brute force attack rate without degrading the

performance.

6.1.2 Related Work

In [XJWW13], Peng et al. proposed the notion of Public-key Encryption with Fuzzy

Keyword Search (PEFKS) where each keyword corresponds to an exact trapdoor

and a fuzzy trapdoor. The server is only provided with the fuzzy trapdoor and

thus can no longer learn the exact keyword since two or more keywords share the

same fuzzy keyword trapdoor. However, their scheme suffers from several limitations

regarding the security and efficiency. On one hand, the malicious server is still able

to identify a small set the underlying keyword belongs to and thus the keyword

privacy is not well preserved from the server. On the other hand, their scheme

is impractical as the receiver has to locally find the matching ciphertext by using

the exact trapdoor to filter out the non-matching ones from the set returned by

the server. Another work by Chen et al. [CMY+15] proposed a new framework

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 107

Figure 6.1: System Model of Server-Aided PEKS

of PEKS, namely Dual-Server Public Key Encryption with Keyword Search (DS-

PEKS) to achieve the security against inside KGA. Their central idea is to disallow

the stand-alone testing of PEKS by splitting the testing functionality of the PEKS

system into two parts which are handled by two independent servers. Therefore, the

security against the off-line KGA can be obtained as long as the two servers do not

collude. Nevertheless, the two-server PEKS may still suffer from the inefficiency as

the keyword searching is now separately processed by two servers. Another efficiency

issue is that the communication between the two servers can cost a lot of bandwidths

especially when the data size is large.

6.2 Server-Aided PEKS

In this section, we formally define the Server-Aided PEKS (SA-PEKS) for the secu-

rity against the off-line KGA.

6.2.1 Overview

SA-PEKS is motivated by the observation that the off-line KGA can be dealt with

by employing a semi-trusted third party, namely Keyword Server (KS) which is

separated from the Storage Server (SS), as shown in Figure.6.1. Roughly speaking,

in an SA-PEKS system, the KS owns the public/secret key pair (pk, sk). Users

authenticate themselves to the KS and are provisioned with per-user credentials.

Different from the PEKS framework where the PEKS ciphertext and the trapdoor

are derived from the original keyword directly, the user needs to interact with the KS

in an authenticated way to obtain the pre-processed keyword, namely KS-derived

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 108

keyword, before the generation of the PEKS ciphertext and the trapdoor.

More specifically, given an original keyword kw, the sender has to access the

KS through authentication and run an interactive protocol with the KS. At the end

of the protocol execution, the sender gets the corresponding KS-derived keyword of

kw as ksdkw. The sender then generates the PEKS ciphertext by regarding the KS-

derived keyword ksdkw as the final keyword. Similarly, taking as input a specified

keyword kw′, the receiver runs the interactive protocol with the KS to obtain the

KS-derived keyword ksdkw′ and then generates the corresponding trapdoor. It is

required that the derivation algorithm from original keyword to KS-derived keyword

should be deterministic, otherwise the SA-PEKS cannot work correctly. That is, if

kw = kw′, then we have that ksdkw = ksdkw′ . We can see that in this way, the

generation of PEKS ciphertexts and trapdoors turns to be in an on-line manner

(through protocol) and hence the security against the off-line KGA can be obtained.

Moreover, the KS can function as a single point of control for implementing rate-

limiting measures to reduce the on-line KGA rate. More details are deferred to

Section 6.1 where we describe a client-KS protocol with online KGA rate-limiting

control.

6.2.2 Formal Definition

An SA-PEKS scheme is defined by the six-tuple (SA-KeyGenKS , SA-KeyGenR, SA-KSD,

SA-PEKS, SA-Trapdoor, SA-Test) as follows.

SA-KeyGenKS(`). Taking as input the security parameter `, it outputs the pub-

lic/private key pair of the KS as (pkks, skks).

SA-KeyGenR(`). Taking as input parameter `, it outputs the public/private key

pair of the receiver as (pkR, skR).

SA-KSD(pkks, skks, kw). Taking as input the key pair of the KS and the keyword

kw, it returns the KS-derived keyword ksdkw.

SA-PEKS(pkR, ksdkw). Taking as input the public key pkR of the receiver and the

KS-derived keyword ksdkw, it outputs the PEKS ciphertext of kw as CTksdkw .

SA-Trapdoor(skR, ksdkw′). Taking as input the secret key skR of the receiver and

the KS-derived keyword ksdkw′ , it outputs the the trapdoor as Tksdkw′ .

SA-Test(pkR, CTksdkw , Tksdkw′). Taking as input the public key pkR, the PEKS ci-

phertext CTksdkw and the trapdoor Tksdkw′ , it outputs True if kw = kw′;

otherwise outputs False.

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 109

Correctness. It is required that for any two keywords kw, kw′, we have that

SA-Test(pkR, CTksdkw , Tksdkw′) = True if kw = kw′, where ksdkw ← SA-KSD(pkks, skks, kw),

ksdkw′ ← SA-KSD(pkks, skks, kw
′), CTksdkw ← SA-PEKS(pkR, ksdkw) and Tksdkw′ ←

SA-Trapdoor(skR, ksdkw′).

Remark 1. The algorithm SA-KSD is an interactive protocol between the user

(sender or receiver) and the KS. Both the KS and the user take as input the public

information pkks. The private input of the KS is skks while that for the user is the

original keyword. The KS and the user engage in the KS-derived keyword issuing

protocol and stop in polynomial time. When the protocol completes, the private

output of the user contains the KS-derived keyword.

6.2.3 Security Models

In this subsection, we define the security models for the SA-PEKS in terms of the

adversarial SS, the honest but curious KS and adversarial users respectively. One

should note that here we suppose the KS to be honest but curious which means that

the KS would always execute the protocol honestly and return the valid KS-derived

keywords for the user. However, the KS may be curious about the original keyword

of the user during the execution of the interactive protocol. Moreover, the KS is not

allowed to collude with the SS in the SA-PEKS, otherwise the security against the

off-line KGA cannot be obtained.

Adversarial Storage Server (SS). An adversarial SS may try to learn the un-

derlying keyword of a PEKS ciphertext. Here we propose a new notion, namely

Semantic-Security against Chosen Keyword Guessing Attack (SS-CKGA) for the

SA-PEKS. Similar to the notion of SS-CKA in PEKS, SS-CKGA guarantees that

the PEKS ciphertext in the SA-PEKS does not reveal any information about the

underlying keyword. The difference between the SS-CKGA and SS-CKA is that

the adversary against the SA-PEKS is allowed to obtain the matching trapdoor of

the challenge PEKS ciphertext. That is, the keyword privacy can still be preserved

even if the adversary is given the corresponding trapdoor. Note that this is not

allowed in the SS-CKA model of the PEKS as the adversary can launch an off-line

attack on the matching trapdoor and hence be able to distinguish a keyword from

another given the PEKS ciphertext and the trapdoor. Formally, we define the game

of SS-CKGA as follows.

Setup. The challenger generates key pairs (pkR, skR), (pkks, skks) and sends (pkR, pkks)

to the attacker.

Query-I. The attacker can adaptively query the challenger for the trapdoor and

PEKS ciphertext of any keyword.

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 110

Challenge. The attacker sends the challenger two keywords kw0, kw1. The restric-

tion here is that none of w0 nor w1 has been queried in the Query-I. The

challenger picks b
$← {0, 1} and generates

ksdkwb ← SA-KSD(pkks, skks, kwb), CT
∗ ← SA-PEKS(pkR, ksdkwb),

T ∗ ← SA-Trapdoor(skR, ksdkwb).

The challenger then sends (CT ∗, T ∗) to the attacker.

Query-II. The attacker can continue the query for the trapdoor and PEKS ciphertext

of any keyword of its choice except the challenge keywords kw0, kw1.

Output. Finally, the attacker outputs its guess b′ ∈ {0, 1} on b and wins the game

if b = b′.

We refer to such an adversary A in the above game as an SS-CKGA adversary

and define its advantage as

AdvSS-CKGASS,A (`) = Pr[b = b′]− 1/2.

Honest but Curious Keyword Server (KS). Noting that the KS may be curious

about the original keyword from the user (sender or receiver) and there may exist

adversaries that can be outside attackers who are able to either gain access to the

KS or eavesdrop on the communication channel between the KS and the user, we

require that the user should take the original keyword as a private input during

the execution of the interactive protocol to obtain the KS-derived keyword. Back

to the Fig.1, it is required that at the end of the protocol execution, the sender

learns exactly the KS-derived keyword ksdkw while the KS should learn nothing at

all about kw. That is, the protocol cannot reveal any information about the private

input of the user to the KS or other outside attackers. Formally, we define the game

of Indistinguishability against Chosen Keyword Attack (IND-CKA) as follows.

Setup. The challenger runs the algorithm KeyGen(`) and sends the attacker the

public/private key pair (pkks, skks). The attacker then sends the challenger

two keywords w0, w1.

Challenge. The challenger picks b
$← {0, 1}, runs the KS-derived keyword issuing

protocol with the attacker by taking as input the keyword kwb.

Output. After the protocol execution completes, the attacker outputs its guess

b′ ∈ {0, 1} on b and wins the game if b = b′.

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 111

We refer to such an adversary A in the above game as an IND-CKA adversary

and define its advantage as

AdvIND-CKA
KS,A (`) = Pr[b = b′]− 1/2.

Adversarial Users. It is a requirement that only the KS can generate the correct

KS-derived keywords, otherwise the security of SA-PEKS falls to that of original

PEKS, i.e., being insecure against off-line KGA. Also, we should prevent an ad-

versarial user from generating the KS-derived keyword based on the previous KS-

derived keywords obtained from the KS. Therefore, to best capture such a security

requirement, we define the game of One-More-Unforgeability under Chosen Keyword

Attack (OMU-CKA) as follows.

Setup. The challenger runs algorithm KeyGen(`) to obtain key pair (pkks, skks). The

attacker is given pkks.

KSD-Query. The attacker can adaptively query the challenger for the KS-derived

keyword for at most qk distinct original keywords of his choice kw1, kw2, ..., kwqk
through the protocol.

Output. Finally, the attacker outputs qk +1 pairs {wi, ksdkwi}i∈[1,qk+1] and wins the

game if (1) kwi 6= kwj, for any i, j ∈ [1, qk + 1] where i 6= j, and (2) ksdkwi is

a valid KS-derived keyword of kwi for any i ∈ [1, qk + 1].

We refer to such an adversary A in the above game as an OMU-CKA adversary

and define its advantage AdvOMU-CKA
U ,A (`) to be the probability that A wins in the

above game.

Based on the security models defined above, we give the following security defi-

nition for an SA-PEKS scheme.

Definition 6.1 (Secure SA-PEKS) We say that an SA-PEKS is secure if for any

polynomial time attacker Ai (i = 1, 2, 3), we have that AdvSS-CKGASS,A1
(`),AdvIND-CKA

KS,A2
(`)

and AdvOMU-CKA
U ,A3

(`) are all negligible functions of the security parameter `.

6.3 PEKS-to-SA-PEKS Transformation

In this section, we propose a universal transformation from PEKS to SA-PEKS.

6.3.1 A Universal Transformation

In this subsection, we show a universal transformation from PEKS to SA-PEKS.

Given a deterministic blind signature scheme BS = (Kg, Sign,User,Vf) and a PEKS

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 112

scheme PEKS = (KeyGen,PEKS,Trapdoor,Test), the resulting SA-PEKS scheme is

as follows. Let Ĥ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a cryptographic collision-resistant

hash function.

SA-KeyGenKS(`). Take as input the security parameter ` and output the pub-

lic/private key pair of the KS by running the algorithm Kg of BS as (pkks, skks)
$←

Kg(`).

SA-KeyGenR(`). Take as input the parameter ` and output the key pair of the re-

ceiver by running the algorithm KeyGen of PEKS as (pkR, skR)
$← KeyGen(`).

SA-KSD(pkks, skks, kw). Take as input the key pair of the KS and the keyword kw,

run the algorithm User(pkks, kw) and the algorithm Sign(skks) of BS in an

interactive signing protocol to obtain the valid signature σkw of kw. Compute

and output the KS-derived keyword as,

ksdkw = Ĥ(kw, σkw).

SA-PEKS(pkR, ksdkw). Take as input the public key pkR of the receiver and the

KS-derived keyword ksdkw, run the algorithm PEKS of PEKS as,

CTksdkw ← PEKS(pkR, ksdkw).

Output CTksdkw as the PEKS ciphertext of kw.

SA-Trapdoor(skR, ksdkw′). Take as input the secret key skR of the receiver and the

KS-derived keyword ksdkw′ , run the algorithm Trapdoor of PEKS as,

Tksdkw′ ← Trapdoor(skR, ksdkw′).

Output Tksdkw′ as the trapdoor of kw′.

SA-Test(pkR, CTksdkw , Tksdkw′). Take as input the public key pkR, the PEKS cipher-

text CTksdkw and the trapdoor Tksdkw′ , run the algorithm Test of PEKS as,

TF ← PEKS(pkR, CTksdkw , Tksdkw′).

Output TF as the testing result.

Correctness Analysis. One can see that the correctness condition of this construc-

tion holds due to the collision-resistant hash function Ĥ, the deterministic scheme

BS and correctness of PEKS. To be more precise, for any keywords kw, kw′, we

have that σkw = σ′kw and hence ksdw = ksdkw′ if kw = kw′. Therefore, due to

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 113

the correctness of PEKS, we have that True ← PEKS(pkR, CTksdkw , Tksdkw′). If

kw 6= kw′, we can see that ksdkw 6= ksdkw′ and hence the testing result would be

False.

Remark 2. It is worth noting that unlike the work in [CMY+15] where the ad-

ditional server participates in testing stage, the semi-trusted server introduced in

SA-PEKS is only in charge of keyword pre-processing and all the algorithms in the

underlying PEKS remain unchanged. Therefore, it is conceivable that our solution

can be more practical compared with the previous solutions. One can note that the

above universal transformation is also applicable for other non-interactive PEKS

systems such as SCF-PEKS [BSS08].

6.3.2 Security Analysis

In this subsection, we analyze the security of SA-PEKS based on the security

models defined above.

SS-CKGA Security. Formally, the SS-CKGA security of the above SA-PEKS

scheme SA-PEKS is guaranteed by the following theorem.

Theorem 6.1 Let hash function Ĥ be a random oracle. Suppose that there exists

a polynomial-time adversary A that can break the SS-CKGA security of the above

scheme SA-PEKS with advantage AdvSS-CKGASS,A , then there exists a polynomial-time

adversary B that can break the one-more unforgeability of the underlying signature

scheme BS with advantage at least

AdvOMU
BS,B ≥ 1/qĤ · AdvSS-CKGASS,A

where qĤ is the number of queries to Ĥ.

Proof: We prove the theorem by constructing an algorithm B who simulates the

challenger in the SS-CKGA model to play the game with A. The goal of B is to

break the one-more-unforgeability security of the scheme BS. Suppose that B is

given the public key pkks of BS. Then B interacts with A as follows.

In the Setup stage, B runs the algorithm KeyGen to generate the key pair

(pkR, skR) and gives pkR, pkks to the adversary A.

In the Query-I stage, when A queries a keyword kw for the PEKS ciphertext (or

the trapdoor), B first interacts with the signing oracle to obtain the signature of

kw and accesses to the random oracle Ĥ for the KS-derived keyword ksdkw. B then

generates the PEKS ciphertext CTksdkw (or the trapdoor Tksdkw) using (pkR, skR)

and returns the result to A.

In the Challenge stage, upon receiving two challenge keywords kw0, kw1 from A,

instead of querying kwb to the signing oracle for the signature σkwb , B just picks

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 114

randomly r and generates the challenge PEKS ciphertext and trapdoor (CT ∗, T ∗)

of kwb by regarding r as the signature of kwb. A then sends (CT ∗, T ∗) to A.

In the Query-II stage, B simulates as that in Query-I stage.

In the Ouput stage, after A outputs its guess b′ on b, B picks an input-element

from the random oracle Ĥ randomly and outputs it as its forgery signature.

Let Q be the event that A queried (kwb, σkwb) to the random oracle Ĥ. Then

the advantage of A wins in the above game is

AdvSS-CKGASS,A = Pr[b′ = b|Q] + Pr[b′ = b|Q]− 1/2.

One can note that in the above simulation, if event Q does not happen, that is,

A did not ever query Ĥ with (kwb, σkwb), then the above game is identical to the

original SS-CKGA game from the view of A due to the property of random oracle

Ĥ. However, the probability of A wins in this game under this case is at most 1/2

since (CT ∗, T ∗) is independent of b, i.e. Pr[b′ = b|Q] = 1/2. Therefore, we have that

Pr[b′ = b|Q] = AdvSS-CKGASS,A , which means that the event Q happens with probability

AdvSS-CKGASS,A . Therefore, B can successfully forgery a signature as (kwb, σkwb) with

advantage AdvOMU
BS,B ≥ 1/qĤ · AdvSS-CKGASS,A , if the number of queries to Ĥ is qĤ .

IND-CKA Security. As for the IND-CKA security which guarantees that except

the user no other entity can learn any information about the private input (keyword)

of the user, we have the following theorem.

Theorem 6.2 If there exits a polynomial-time adversary A that can break the IND-

CKA security of the above scheme SA-PEKS with advantage AdvIND-CKA
KS,A , then there

exists a polynomial-time adversary B that can break the blindness security of the

underlying signature scheme BS with advantage at least

AdvBlindnessBS,B ≥ AdvIND-CKA
KS,A .

Proof: We prove the theorem above by constructing an algorithm B who runs the

adversary A as a subroutine to break the security of blindness of the underlying

scheme BS as follows. Suppose the challenger in the blindness security attack game

against the scheme BS is C.
In the Setup stage, B receives the public/private key pair (pk, sk) from C, sends

the key pair to A and then receives the challenge keywords (kw0, kw1) from A. B
then forwards (kw0, kw1) as the challenge message to C.

In the Challenge stage, B simulates as the adversarial signer from the view of C
and as the challenger of the IND-CKA game against the scheme SA-PEKS from

the view of A. Once C starts the first execution of the signing protocol, B starts

the KS-derived keyword issuing protocol with A and forwards the message between

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 115

A and C. During the second execution of the protocol, B interacts with C honestly

using the public/private key pair (pk, sk).

In the Ouput stage, after A outputs its guess b′, B output b′ as its guess to C.
It is easy to see that the above simulation is indistinguishability from the IND-

CKA game from the view of A. Therefore, we have that AdvBlindnessBS,B ≥ AdvIND-CKA
KS,A ,

which completes the proof.

OMU-CKA Security. Here we discuss the OMU-CKA security of our universal

transformation. This notion guarantees that a user cannot forge a new KS-derived

keyword without the help of the KS even if it has seen many KS-derived keywords

before. Formally, we have the following theorem.

Theorem 6.3 If there exits a polynomial-time adversary A that can break the OMU-

CKA security of the above scheme SA-PEKS with advantage AdvOMU-CKA
U ,A , then

there exists a polynomial-time adversary B that can break the one-more-unforgeability

security of the underlying signature scheme BS with advantage at least

AdvOMU
BS,B ≥ AdvOMU-CKA

U ,A .

Proof: We give the proof of the theorem above by constructing an algorithm B
who invokes the adversary A to break the one-more-unforgeability security of the

scheme BS as follows.

In the Setup stage, B receives the public key pkks from the signing oracle and

sends pkks to A.

In the KSD-Query stage, upon receiving a queried keyword kw, B queries kw to

the signing oracle to obtain the signature σkw, returns the hash value of the returned

signature as Ĥ(kw, σkw) to A as the KS-derived keyword of kw.

In the Ouput stage, if A outputs qk +1 valid pairs {(kwi, ksdkwi)}1≤i≤qk+1 where

qk is the KS-derived keyword query number. Then for each i, B looks up kwi in the

hash query record for the corresponding signature σi and outputs {(kwi, σi)}1≤i≤qk+1

as the qk + 1 valid message/signature pairs as its forgery signatures. Otherwise, B
aborts.

One can see that the simulation above by B is indistinguishable from the orig-

inal OMU-CKA game from the view of the adversary A, therefore, A can success-

fully output qk + 1 valid keyword/KS-derived keywords pairs with the advantage

AdvOMU-CKA
U ,A (`). That is, B can break the one-more-unforgeability security of BS

with advantage at least AdvOMU
BS,B ≥ AdvOMU-CKA

U ,A .

Based on the theorems above, we have the following observation.

Theorem 6.4 The universal transformation above results in a secure SA-PEKS

scheme if the underlying blind signature is secure in terms of one-more-unforgeability

and blindness.

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 116

Further Discussions On the Multi-tiered Security. Ideally, we hope that the

adversary does not have authorized access to the KS. This means that the adver-

sary can launch neither off-line nor on-line KGA. However, in reality, the adversary

(including the adversarial SS) may have remote access to the KS. In this case, the

resulting SA-PEKS still remains SS-CKA secure as long as the underlying PEKS

is SS-CKA secure. However, we should note that even in this case, the adversarial

SS cannot efficiently launch the KGA since it needs to query the signature of each

guessing keyword in an on-line manner though the protocol and hence the brute-

force attack will be rendered less effective. As will shown in Section 6.1, with an

effective rate-limiting mechanism, the on-line KGA can be slowed down significantly.

Note that in the previous formal security models, we assume that the KS does

not collude with the SS since otherwise the construction cannot achieve the desirable

security guarantees since the SS can launch the off-line KGA once it obtains the

private key of the KS. Nevertheless, we can see that even if the private key of the

KS is leaked to the SS through any possible means, the security of the SA-PEKS is

still at the same level as that of the underlying PEKS. It is because that the PEKS

ciphertext (trapdoor) generation procedure in the SA-PEKS is the same as that of

the underlying PEKS scheme. Therefore, we have,

Theorem 6.5 The universal transformation above results in an SS-CKA secure

SA-PEKS scheme if the underlying PEKS is SS-CKA secure.

6.4 An Instantiation of SA-PEKS

In this section, we show how to implement the proposed SA-PEKS scheme by pre-

senting an instantiation.

6.4.1 Underlying Schemes

Following the above universal transformation, here we show an instantiation of

the proposed SA-PEKS scheme based on the FDH-RSA blind signature [BNPS03]

and the PEKS scheme (denoted by BCOP-PEKS) proposed by Boneh et al. in

[BCOP04]. We start with the introduction of the two building blocks.

FDH-RSA. The RSA blind signature is described in Fig.6.1. The signer has public

key N, ê and private key N, d where êd ≡ 1 mod φ(N), modulus N is the product

of two distinct primes of roughly equal length. The user uses a hash function H :

{0, 1}∗ → Z∗N to hash the message m to an element of ZN and then blinds result

with a random group element r
$← Z∗N . The resulting blinded hash, denoted m

is then sent to the signer. The signer signs m with its private key d by computing

σ ← (m)d mod N and sends back σ. The user then derive the signature by removing

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 117

Table 6.1: Blind signing protocol for FDH-RSA

User Signer
Input: N, ê,m Input: N, d

r
$← Z∗N

m← reH(m) mod N ,
m−−−−−−−−−→

σ ← (m)d mod N
σ←−−−−−−−−−

σ ← r−1σ mod N

the blinding element through σ ← r−1σ mod N . The correctness can be obtained

due to the fact that σ = (m)d mod N = (rêH(m))d mod N = rH(m)d mod N

and hence σ = r−1σ mod N .

We can see that the blindness security of the above FDH-RSA is guaranteed

by the one-time element chosen randomly to blind the signed message. As for the

unforgeability security, based on the result from [BNPS03], we have the conclusion

that the FDH-RSA blind signature scheme is polynomially-secure against one-more

forgery if the RSA known-target inversion problem is hard. More details can be

found in [BNPS03].

BCOP-PEKS. Here, we show the PEKS scheme proposed in [BCOP04]. This

scheme is based on a variant of the Computation Diffie-Hellman Problem. Let G1,Gτ

be two groups with prime order p and the bilinear map e : G1 × G1 → Gτ . Then

the non-interactive searchable encryption scheme works as follows.

KeyGen. The input security parameter determines the size p of the groups G1,Gτ .

The algorithm then picks a random α
$← Z∗p, a generate g of G1 and choose

two hash functions H1 : {0, 1}∗ → G1 and H2 : Gτ ← {0, 1}log p. Then it

outputs pkR = (g, h = gα, H1, H2), skR = α.

PEKS. For a keyword kw, pick a random r
$← Z∗p and compute t = e(H1(kw), hr).

Output the PEKS ciphertext as CTkw = (gr, H2(t)).

Trapdoor. For a keyword kw′, output the trapdoor as Tkw′ = H1(kw′)α ∈ G1.

Test. Take as input CTkw = (A,B) and Tkw′ , if H2(e(Tkw′ , A)) = B, output True,

False otherwise.

The correctness of the PEKS scheme above can be easily obtained. In terms of

security, the scheme is secure against the SS-CKA [BCOP04] but insecure against

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 118

the off-line KGA. Actually, the off-line KGA against the BCOP-PEKS scheme can

be launched in a much simpler way. Given a trapdoor Tkw∗ = H1(kw∗)α, the attacker

can easily test whether its guessing keyword kw is the underlying keyword of Tkw∗

by checking e(Tkw∗ , g)
?
= e(H1(kw), h).

6.4.2 Resulting SA-PEKS

Here we show the resulting SA-PEKS derived from the FDH-RSA and the BCOP-

PEKS schemes. The details are described in Table. 6.2.

Scheme Descriptions. Note that the KS-derived keyword issuing protocol in our

scheme requires that N < ê should be verified by the user. This is to avoid that

the KS may generate the keys dishonestly in order to learn some information about

the keyword. This condition ensures that gcd(φ(N), ê) = 1 even if N is maliciously

generated and thus ensures that the map fê : Z∗N → Z∗N , defined by fê(x) = xê

mod N for all x ∈ Z∗N , is a permutation on Z∗N . Since fê is a permutation and the

user can verify the validity of the signature, even a malicious KS cannot force the

output of signature to be a fixed value.

To obtain a KS-derived keyword, the user takes as input the private keyword

kw and accesses the KS through authentication, and then activate the KS-derived

keyword issuing protocol, i.e., the interactive RSA blind signature scheme. Note

that the user should verify that ê > N after being given the public key to avoid

the maliciously generated key. The user then blinds the hash value H(w) with a

randomly chosen element from Z∗N and sends the blinded message to the KS for

signing. The user removes the randomness upon receiving the signature from the

KS and thus obtains the signature of kw. The user then applies the hash function

Ĥ to compute the KS-derived keyword ksdkw. The other parts are the same as the

BCOP-PEKS scheme except that the PEKS ciphertext and the trapdoor are derived

from the KS-derived keyword instead of the original keyword.

Correctness. It is easy to see that for any two keywords kw, kw′, if kw = kw′, then

ksdkw = Ĥ(w, σkw) = Ĥ(kw,H(kw)d) = Ĥ(kw′, H(kw′)d) = ksdkw′ . Therefore, as

for the corresponding PEKS ciphertext CTksdkw = (A,B) and the trapdoor Tksdkw′ ,

we have that

H2(e(Tksdkw′ , A)) = H2(e(H1(ksdkw′), h
r)) = B.

Otherwise, H2(e(Tksdkw′ , A)) 6= B as ksdkw 6= ksdkw′ .

Security Analysis. The security of the resulting SA-PEKS scheme can be easily

obtained based on Theorem 6.4 as the FDH-RSA is one-more-unforgeable and of

blindness. Formally, we have the following collusion.

Corollary 6.6 The concrete SA-PEKS scheme presented above is secure.

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 119

Table 6.2: An SA-PEKS scheme from FDH-RSA and BCOP-PEKS scheme

Let G1,Gτ be two groups with prime order p and the bilinear map e : G1 × G1 → Gτ . The
public RSA-exponent ê is fixed as part of the scheme. Let Ĥ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be
a cryptographic collision-resistant hash function.

SA-KeyGenKS(`). The algorithm runs Kg(`, ê) to getN, d such that êd ≡ 1 mod φ(N) andN <

ê. It chooses hash function H : {0, 1}∗ → Z∗N , and then outputs pkks = (N, ê,H, Ĥ), skks =
(N, d).

SA-KeyGenR(`). The algorithm takes as input the security parameter, determines the size p

of the groups G1,Gτ and picks a random α
$← Z∗p, a generate g of G1, computes h = gα

and chooses hash functions H1 : {0, 1}∗ → G1 and H2 : Gτ ← {0, 1}log p. it then outputs
pkR = (g, h,H1, H2), skR = α.
SA-KSD. For a keyword kw, the algorithm runs the KS-derived keyword issuing protocol to
obtain the valid signature σkw of kw as follows.

User (N, ê,H, kw) KS (N, d)
If ê ≤ N then abort

r
$← Z∗N

kw ← rê ·H(kw) mod N
kw−−−−−−−−−→

σ ← (kw)d mod N
σ←−−−−−−−−−

σkw ← r−1σ mod N
If σêkw mod N 6= H(kw) then abort

Else return σkw

The algorithm then computes ksdkw = Ĥ(kw, σkw) = Ĥ(kw,H(kw)d), and outputs ksdkw as
the KS-derived keyword of kw.

SA-PEKS. For a KS-derived keyword ksdkw, the algorithm picks a random r
$← Z∗p, computes

t = e(H1(ksdkw), hr), CTksdkw = (gr, H2(t)).

The algorithm outputs CTksdkw as the PEKS ciphertext of ksdkw.

SA-Trapdoor. For a KS-derived keyword ksdkw′ , the algorithm computes

Tksdkw′ = H1(ksdkw′)
α.

The algorithm then outputs Tksdkw′ as the trapdoor of ksdkw′ .

SA-Test. The algorithm takes as input CTksdkw = (A,B) and Tksdkw′ , and checks

H2(e(Tksdkw′ , A))
?
= B.

If yes, output True, else output False.

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 120

Figure 6.2: The Client-KS Protocol in SA-PEKS

6.5 Implementation and Performance

In this section, we will first describe the client-KS protocol and analyze the perfor-

mance of our solution in experiments.

6.5.1 The Client-KS Protocol

Motivated by the work in [KBR13], we show a protocol for client-KS interaction

and the rate-limiting strategies which limit client queries to slow down on-line key-

word guessing attack. Our design goal is to give a low-latency protocol to avoid

performance degrading.

Protocol Implementation.The proposed protocol relies on a CA providing the

KS and each client with a unique verifiable TLS certificates. As shown in Fig. 6.2,

the execution of protocol consists of the Mutual Authentication (MA) phase and the

Query-Response (QR) phase, of which the first one is over HTTP while the later

one is over UDP.

Phase I: Mutual Authentication. The MA procedure starts with a TLS hand-

shake with mutual authentication, initiated by a client. The KS responds

immediately with the verification key pk of the underlying blind signature

scheme, a hash function H (by default SHA-256), a random session identifier

S ∈ {0, 1}128, and a random session key KS ∈ {0, 1}k. The KS then initializes

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 121

and records a sequence number with this session as NS = 0. The client stores

pk, S,KS and also initializes a sequence number NC = 0. In our protocol,

similar to [KBR13], we also set each session to last for a fixed time period.

Phase II: Query-Response. In the QR phase, the client first generates a blinded

value of a keyword as WR, increases the recorded sequence number NC ←
NC + 1, and then computes a MAC tag using the KS’s session key KS, as

T ← HMAC[H](KS, S||NC ||WR). The client then sends S||NC ||WR||T to the

KS in a UDP packet. Upon receiving the query information, the KS first

checks that NC ≥ NS and verifies the correctness of the MAC T . If the

verification fails, then the KS drops the packet without any further response.

Otherwise, it would sign the blinded keyword and returns the signature σ to

the client.

Per-Client Rate-Limiting Mechanism Against On-line KGA. Although the

off-line KGA cannot be launched against our scheme anymore, an attacker (possible

the malicious server) who is able to access to the KS can perform the on-line KGA

to break the keyword privacy of the trapdoor. As a countermeasure, we explore

the so-called exponential delay mechanism to achieve a balancing between defence

against the on-line KGA and the latency of a KS request. For the first query, the KS

performs the response with an initial small delay tI , and the delay time is doubled

after each query from the client. The doubling then stops at an upper limit tU . The

KS maintains synchronized epochs and an active client list. It checks the status of

active clients after each epoch. The delay would be reset to the initial value if the

client makes no queries during an entire epoch. It would also drop any query from

the active client who is in the list and awaiting responses.

Protocol Security. Attackers can attempt to eavesdrop and even tamper with

the communications between clients and the KS. In the protocol, due to the mutual

authentication TLS handshake in the session initialization, no adversary can start

a session pretending to be a valid client. Moreover, without the session key KS,

no adversary can create a fresh query packet without a successful MAC forgery.

Packets can neither be replayed across sessions due to the randomly picked session

identifier nor be replayed within a session due to the increasing sequence number.

Experiment Results. For the client-KS protocol, we implement FDH-RSA (RSA1024)

using SHA256 in the standard way. Similar to [KBR13], the PKI setup uses RSA2048

certificates and ECDHE-RSA-AES128-SHA ciphersuite is fixed for the handshake

in our protocol. In our implementation, the client machine is located in a university

LAN and equipped with Linux system (more precise, 2.6.35-22-generic version) with

an Intel(R) Core(TM) 2 Duo CPU of 3.33 GHZ and 2.00-GB RAM.

Latency of Protocol. Table.6.3 shows the latency of different phases in the form

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 122

Table 6.3: Latency of Protocol Under Different Load

Operation Latency (ms)

Ping (1 Round-Trip Time) 96 ±02

MA Phase 312 ± 48

QR Phase (1000 q/s) 103 ± 32

QR Phase (2000 q/s) 134 ±43

QR Phase (3000 q/s) 157 ±40

QR Phase(4000 q/s) 193 ±46

QR Phase (5000 q/s) 252 ±51

QR Phase (6000 q/s) 327 ±49

QR Phase (7000 q/s) 376 ±44

of median time plus/minus one standard deviation over 500 trials. We can note that

when the KS load is low (e.g., 1000 queries/second (q/s)), the latency is quite small

and actually almost the smallest possible time (1 Round-Trip Time (RTT) of Ping

operation). The time increases with the growth of the query rate. Specifically, the

latency is around 157±40 milliseconds when the query rate is 3000 q/s and becomes

376±44 milliseconds when the query rate increases to 7000 q/s. It is worth noting

that we only take the successful operations into account in our experiment. That is,

all the replies that timed out three times were excluded from the median calculation.

Packet Drop Rates. We also evaluate the packet drop rates of our protocol

for different query rate through a similar experiment as in [KBR13]. The client

sends 100i (1 ≤ i ≤ 64) UDP request packets per second (q/s) until a total of

10000 packets are sent. We then record the number of replied over 500 trials using

min/max/mean/standard deviation, as shown in Fig. 6.3. One can note that the

packet loss is negligible at rates up to around 2500 q/s. However, when the query

rate is 7000 q/s, the packet loss rate can be as high as 60%.

Performance Against On-line KGA. To evaluate how our rate-limiting mech-

anism works in real settings, we estimate the effect of on-line KGA against our

protocol in experiments. In our protocol, the proposed rate-limiting mechanism,

i.e., exponential delay mechanism, gives a balancing between on-line KGA speed

and KS request latency, as the delay increases exponentially with the growth of

queries from a client.

For the exponential delay mechanism in our experiment, we set the initial small

delay tI to 10 milliseconds and the epoch duration tE to one week. We then evaluate

the performance of protocol, i.e., the maximum query rates (in queries per second)

by setting the upper limit tU to different values. To evaluate the effectiveness of the

introduced mechanism, we also run the protocol without rate-limiting. The maxi-

mum query rates that an attacker who compromised a client can achieve are given

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 123

1000 2000 3000 4000 5000 6000 7000
20

40

60

80

100

Query Rate (/s)

P
er

fe
nt

ag
e

of
 Q

ue
rie

s
R

ep
lie

d

Max
Mean
Min

Figure 6.3: Packet Loss of the Client-KS Protocol

Table 6.4: KGA Rate for Different Rate Limiting Approaches

Setting Attack Rate (queries/second)

No Rate Limiting 2700

tU = 400 ms 8.23

tU = 600 ms 4.21

tU = 800 ms 2.54

tU = 1000 ms 1.21

in Table.6.4. One can note from the result that our exponential delay mechanism

can significantly slow down the on-line KGA. Specifically, the attack rate is around

2700 q/s if we put no rate-limiting on the KS. By forcing the exponential delay

mechanism, the attack rate can be significantly reduced to less than 10 q/s. The

attack rate decreases with the growth of the upper limit tU and is only 1.21 q/s if

we set tU to 1000 ms.

6.5.2 The Instantiated Scheme

In this section, we evaluate the performance of our concrete SA-PEKS scheme.

We first compare the computation cost between the PEKS schemes in [BCOP04],

[XJWW13] with our instantiated scheme described in Section 6.4.

Comparison of Schemes. As shown in Table 6.5, compared to the BCOP scheme

[BCOP04] (the underlying PEKS scheme of our SA-PEKS construction), our scheme

requires 4 additional RSA exponentiations during the generation of PEKS ciphertext

and trapdoor. In the testing phase, our scheme has the same computation cost as

the BCOP scheme does. While the scheme [XJWW13] can also achieve a certain

level of security against off-line KGA, its computation cost is much higher due to the

additional pairing computation. Specifically, in our scheme, the computation cost of

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 124

Table 6.5: Comparisons between Existing Works and Our Scheme

Schemes
Computation

PEKS Generation Trapdoor Generation Testing

[BCOP04]
2ExpG1

+2HashG1

+ 1PairingG1,Gτ
1HashG1

+1ExpG1
1HashG1

+ 1PairingG1,Gτ

[XJWW13]
4ExpG1

+4HashG1

+2 PairingG1,Gτ
2 HashG1+2ExpG1

2HashG1+2PairingG1,Gτ

Our Scheme
2ExpG1

+2ExpZ∗N
+2HashG1

+ 1PairingG1,Gτ

1HashG1+1ExpG1

+2ExpZ∗N
1HashG1+ 1PairingG1,Gτ

0 10 20 30 40 50
0

0.5

1

1.5

2

of Keyword

T
im

e
of

 P
E

K
S

 G
en

er
at

io
n

(s
)

BCOP
XJWW
Our Scheme

Figure 6.4: Computation Cost of PEKS Generation (excluding latency)

PEKS generation, trapdoor generation and testing are 2ExpG1
+4ExpZ∗N

+2HashG1+

1PairingG1,Gτ , 1HashG1+1ExpG1
+4ExpZ∗N

and 1HashG1+ 1PairingG1,Gτ respectively,

where ExpG1
,ExpZ∗N

denote the computation of one exponentiation in G1 and Z∗N
respectively, HashG1 denotes the cost of one hashing operation in G1.

In terms of communication cost, one can note that our scheme only introduces

very small communication overhead over the basic scheme [BCOP04], while the

work in [XJWW13] and [CMY+15] cost huge bandwidth to transfer either the fuzzy

matching data [XJWW13] or internal testing state [CMY+15].

Experiment Results. To evaluate the efficiency of our scheme in experiments,

we implement the scheme utilizing the GNU Multiple Precision Arithmetic (GMP)

library and Pairing Based Cryptography (PBC) library. The following experiments

are based on coding language C on a Linux system (more precise, 2.6.35-22-generic

version) with an Intel(R) Core(TM) 2 Duo CPU of 3.33 GHZ and 2.00-GB RAM.

For the elliptic curve, we choose an MNT curve with a base field of size 159 bits,

|p|=160 and |q|=80.

We mainly analyze the computation cost of PEKS generation, trapdoor gen-

eration and testing in the schemes of [BCOP04, XJWW13] and our scheme. As

shown in Fig.6.4 and Fig.6.5, the computation cost of our scheme is only slightly

higher than that of the BCOP scheme in terms of PEKS generation and trapdoor

generation. It is because that the computation involved in the underlying FDH-

RSA scheme is quite small. It is worth noting that the result would also hold when

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 125

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

of KeywordT
im

e
of

 T
ra

pd
oo

r
G

en
er

at
io

n
(s

)

BCOP
XJWW
Our Scheme

Figure 6.5: Computation Cost of Trapdoor Generation (excluding latency)

0 10 20 30 40 50
0

0.5

1

1.5

2

of Keyword

T
im

e
of

 T
es

tin
g

(s
)

BCOP
XJWW
Our Scheme

Figure 6.6: Computation Cost of Testing

we adopt our solution using other PEKS system to achieve security against off-line

KGA as our client-KS protocol works transparently with the underlying PEKS sys-

tem. Since our solution does not introduce any additional operation in the testing

phase, the corresponding computation cost remains the same with the underlying

PEKS system, as illustrated in Fig. 6.6. As for the scheme in [XJWW13] which

achieves a certain level of security against off-line KGA, the computation cost is

more than that of the PEKS scheme in [BCOP04] and our scheme in terms of all

the operations. Particularly, it takes about 2 seconds to generate a PEKS cipher-

text for the scheme in [XJWW13] when the keyword number is 50, while that of

the scheme in [BCOP04] and our scheme is around 0.9 second and 1 second, respec-

tively. For the trapdoor generation, the computation is slightly higher than that of

our scheme as the exponentiation in G1 is usually more expensive than the exponen-

tiation in Z∗N . To be more precise, the time of trapdoor generation for 50 keywords

in [XJWW13] is about 0.12 seconds while that of our scheme is 0.08 seconds. Re-

garding the testing operation, the computation cost in [XJWW13] is almost twice

that of our scheme. Specifically, the computation cost of testing is around 1.6 second

for the scheme in [XJWW13] and 0.8 seconds for our scheme. This is because the

testing in [XJWW13] requires an additional pairing computation.

CHAPTER 6. SERVER-AIDED PEKS FOR SECURE DATA RETRIEVAL 126

6.6 Chapter Summary

In this work, we provided a practical and applicable treatment on (inside) off-line

KGA by formalizing a new PEKS system, namely Server-Aided Public Key Encryp-

tion with Keyword Search (SA-PEKS). We introduced a universal transformation

from any PEKS scheme to a secure SA-PEKS scheme, also with the first instan-

tiation of SA-PEKS scheme and showed how to securely implement the client-KS

protocol with a rate-limiting mechanism against on-line KGA. The experimental

results showed that our proposed scheme achieves much better efficiency while pro-

viding resistance against both off-line and on-line KGAs.

Chapter 7

Strongly Leakage-Resilient Authen-

ticated Key Exchange

Authenticated Key Exchange (AKE) protocols have been widely deployed in many

real-world applications for securing communication channels. In this chapter, we

make the following contributions. First, we revisit the security modelling of leakage-

resilient AKE protocols, and show that the existing models either impose some un-

natural restrictions or do not sufficiently capture leakage attacks in reality. We then

introduce a new strong yet meaningful security model, named challenge-dependent

leakage-resilient eCK (CLR-eCK) model, to capture challenge-dependent leakage at-

tacks on both long-term secret key and ephemeral secret key (i.e., randomness).

Second, we propose a general framework for constructing one-round CLR-eCK-secure

AKE protocols based on smooth projective hash functions (SPHFs). This framework

ensures the session key is private and authentic even if the adversary learns a large

fraction of both long-term secret key and ephemeral secret key, and hence provides

stronger security guarantee than existing AKE protocols which become insecure if

the adversary can perform leakage attacks during the execution of a session. Finally,

we also present a practical instantiation of the general framework based on the De-

cisional Diffie-Hellman assumption without the random oracle. Our result shows

that the instantiation is efficient in terms of the communication and computation

overhead and captures more general leakage attacks.

7.1 Introduction

Leakage-resilient cryptography, particularly leakage-resilient cryptographic primi-

tives such as encryption, signature, and pseudo-random function, has been exten-

sively studied in recent years. However, there are only very few works that have

been done on the modelling and construction of leakage-resilient authenticated key

exchange (AKE) protocols. This is somewhat surprising since AKE protocols are

among the most widely used cryptographic primitives. In particular, they form a

central component in many network standards, such as IPSec, SSL/TLS, SSH. In

practice, the communication channel over a public network can be easily attacked by

a malicious attacker and hence is insecure by default for message transmission. An

AKE protocol enables a secure channel to be established among a set of communicat-

ing parties by first allowing them to agree on a cryptographically strong secret key,

127

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 128

and then applying efficient symmetric key tools to ensure the data confidentiality

and authenticity.

Many practical AKE protocols such as the ISO protocol (a.k.a. SIG-DH) [ISO,

CK01] and the Internet Key Exchange protocol (a.k.a. SIGMA) [Kra03] have been

proposed and deployed in the aforementioned network standards. In such an AKE

protocol, each party holds a long-term public key and the corresponding long-term

secret key, which are static in the establishment of different session keys for multiple

communication sessions. In order to establish a unique session key for an individual

session, each party also generates their own ephemeral secret key and exchanges

the corresponding ephemeral public key. Both parties can derive a common session

key based on their own secret keys and the public keys of the peer entity. We

should note that in practice, an AKE protocol proven secure in the traditional model

could be completely insecure in the presence of leakage attacks. For example, an

attacker can launch a memory attack [HSH+08,AGV09] to learn partial information

about the static long-term secret key, and also obtain partial information about

the ephemeral secret key (i.e., randomness) of an AKE session (e.g., via poorly

implemented PRNGs [Mar,SF,Zet]).

7.1.1 Motivations

The general theme in formulating leakage resilience of cryptographic primitives is

that in addition to the normal black-box interaction with an honest party, the ad-

versary can also learn some partial information of a user secret via an abstract

leakage function f . More precisely, the adversary is provided with access to a leak-

age oracle: the adversary can query the oracle with a polynomial-time computable

function f , and then receive f(sk), where sk is the user secret key. This approach

was applied to model leakage resilience of many cryptographic schemes, such as

pseudorandom generators [YSPY10], signature schemes [BSW13] and encryption

schemes [NS09, CDRW10]. One of the major problems of leakage-resilient cryp-

tography is to define a meaningful leakage function family F for a cryptographic

primitive such that the leakage functions in F can cover as many leakage attacks

as possible while at the same time it is still feasible to construct a scheme that can

be proven secure. That is, in order to allow the software-level solution to solve the

leakage problem in one go, the leakage function set F should be as large as possible

and adaptively chosen by the adversary under minimal restrictions.

Limitations in Existing Leakage-Resilient AKE Models. The above mod-

elling approach has been applied to define leakage-resilient AKE protocols in [ADW09,

DHLW10,MO,ASB14]. This was done by allowing the adversary to access the leak-

age oracle in addition to other oracles defined in a traditional AKE security model.

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 129

However, we find that the existing leakage-resilient AKE models fail to fully capture

general leakage attacks due to the following reasons.

1). Unnatural Restrictions. The de facto security definition of AKE requires

that the real challenge session key should be indistinguishable from a ran-

domly chosen key even when the adversary has obtained some information

(e.g., by passively eavesdropping the ephemeral public keys, or injecting an

ephemeral public key in an active attack) of the challenge session. However,

such a definition will bring a problem when it comes to the leakage setting.

During the execution of the challenge session, the adversary can access to

the leakage oracle by encoding the available information about the challenge

session into the leakage function and obtain partial information about the

real session key. The previous security definitions for leakage-resilient AKE,

e.g., [ADW09, DHLW10, MO, YMSW13], bypassed the definitional difficulty

outlined above by only considering challenge-independent leakage. Namely,

the adversary cannot make a leakage query which involves a leakage function

f that is related to the challenge session. Specifically, in those models, the ad-

versary is disallowed to make any leakage query during the challenge session.

This approach indeed bypasses the technical problem, but it also puts some

unnatural restrictions on the adversary by assuming leakage would not hap-

pen during the challenge AKE session. Such a definitional difficulty was also

recognized in the prior work on leakage-resilient encryption schemes. For ex-

ample, Naor and Segev wrote in [NS09] that “it will be very interesting to find

an appropriate framework that allows a certain form of challenge-dependent

leakage.” We should note that there are some recent works on challenge-

dependent leakage-resilient encryption schemes [HL11, YZYL14], which ad-

dressed the problem by weakening the security notions.

2). Insufficient Leakage Capturing. Although the notions proposed in [ADW09,

DHLW10,MO,YMSW13,ASB14] have already captured some leakage attacks,

they only focused on partial leakage of the long-term secret key. We should

note that the partial leakage is independent from the (long-term/ephemeral)

secret key reveal queries in CK/eCK models. In reality, an attacker may com-

pletely reveal one (long-term/ephemeral) secret key and learn partial informa-

tion about the other (ephemeral/long-term) secret key. Such an adversarial

capability has never been considered in the previous models. In practice, as

mentioned before, potential weakness of the randomness can be caused due

to different reasons such as the poor implementation of pseudo-random num-

ber generators (PRNGs) [Mar, SF, Zet]. Moreover, real leakage attacks (e.g.,

timing or power consumption analysis) can also be closely related to the ran-

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 130

domness. The problem has been recognized in prior work on leakage-resilient

encryption and signature schemes. For example, Halevi and Lin mentioned

in [HL11] that “Another interesting question is to handle leakage from the

encryption randomness, not just the secret key”, which was later answered by

the works in [BCH12,YZYL14]. In terms of the signature schemes, the notion

of fully leakage-resilient signatures was also proposed by Katz and Vaikun-

tanathan [KV09]. In a fully leakage-resilient setting, the adversary is allowed

to obtain leakage of the state information, including the secret keys and in-

ternal random coins. However, to date there is no formal treatment on the

randomness leakage in AKE protocols. This is surprising as randomness plays

a crucial role in AKE protocols and determines the value of a session key.

On After-the-Fact Leakage. It is worth noting that inspired by the work in

[HL11], Alawatugoda et al. [ASB14] modelled after-the-fact leakage for AKE pro-

tocols. Their proposed model, named bounded after-the-fact leakage eCK model

(BAFL-eCK), captures the leakage of long-term secret keys during the challenge ses-

sion. However, the BAFL-eCK model has implicitly assumed that the long-term se-

cret has split-state since otherwise their definition is unachievable in the eCK-model.

Moreover, the central idea of their AKE construction is to utilize a split-state en-

cryption scheme with a special property (i.e., pair generation indistinguishability),

which is a strong assumption. We also note that the split-state approach seems

not natural for dealing with ephemeral secret leakage. The work in [ABS14] also

introduced a continuous after-the-fact leakage eCK model which is a weaker variant

of the one in [ASB14] and hence also suffers from the aforementioned limitations.

Goal of This Work. In this work, we are interested in designing a more general

and powerful leakage-resilient AKE model without the aforementioned limitations.

Particularly, we ask two questions: how to generally define a challenge-dependent

leakage-resilient AKE security model capturing both long-term and ephemeral secret

leakage, and how to construct an efficient AKE protocol proven secure under the pro-

posed security model. The motivation of this work is to solve these two outstanding

problems which are of both practical and theoretical importance.

7.1.2 Contributions and Techniques

In this work, we address the aforementioned open problems by designing a strong yet

meaningful AKE security model, namely challenge-dependent leakage-resilient eCK

(CLR-eCK) model, to capture the challenge-dependent leakage attacks on both the

long-term secret key and the ephemeral secret key; we then present a general frame-

work for the construction of CLR-eCK-secure one-round AKE protocol as well as an

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 131

efficient instantiation based on the DDH assumption. Below we give an overview of

our results.

Overview of Our Model. Our model is the first split-state-free model that

captures challenge-dependent leakage on both the long-term secret key and the

ephemeral secret key (or randomness), which could occur in practice due to side-

channel attacks and weak randomness implementations. In our proposed model,

we consider the partial Relative-Leakage [AGV09]. We should note that the partial

leakage here is independent from the secret key reveal queries in CK/eCK models.

In our CLR-eCK model, the adversary can make both leakage and key reveal queries

for the long-term and ephemeral secret keys. To be more precise, our model al-

lows one (long-term/ephemeral) secret key to be completely revealed and the other

(ephemeral/long-term) secret key to be partially leaked. Such an adversarial capa-

bility has never been considered in the previous models.

Our CLR-eCK security model addresses the limitations of the previous leakage-

resilient models by allowing both long-term and ephemeral key leakage queries be-

fore, during and after the test (i.e., challenge) session. Nevertheless, we should

prevent an adversaryM from submitting a leakage function which encodes the ses-

sion key derivation function of the test session since otherwise the adversary can

trivially distinguish the real session key from a random key. To address this techni-

cal problem, instead of asking adversary M to specify the leakage functions before

the system setup (i.e., non-adaptive leakage), we require M to commit a set of

leakage functions before it obtains (via key reveal queries) all the inputs, except

the to-be-leaked one, of the session key derivation function for the test session.

OnceM obtains all the other inputs, it can only use the leakage functions specified

in the committed set to learn the partial information of the last unknown secret.

To be more precise, in the CLR-eCK model, after M reveals the ephemeral secret

key of the test session, it can only use any function f1 ∈ F1 as the long-term se-

cret key leakage function where F1 is the set of leakage functions committed by

M before it reveals the ephemeral secret key. A similar treatment is done for the

ephemeral secret key leakage function f2. Under such a restriction, neither f1 nor

f2 can be embedded with the session key derivation function of the test session and

M cannot launch a trivial attack against the AKE protocol. Therefore, the ad-

versary can still make leakage queries during and after the test session, and if the

long-term/ephemeral key is not revealed, then the adversary even doesn’t need to

commit the ephemeral/long-term key leakage functions F1 or F2. We can see that

our approach still allows the adversary to adaptively choose leakage functions and

meanwhile can capture challenge-dependent leakage under the minimum restriction.

Generic AKE Construction. To illustrate the practicality of the model, we

present a general framework for the construction of AKE protocol secure in our

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 132

newly proposed challenge-dependent leakage-resilient eCK model. The framework

can be regarded as a variant of the AKE protocols proposed by Okamoto et al.

[Oka07, MO]. Roughly speaking, we apply both pseudo-random functions (PRFs)

and strong randomness extractors in the computation of ephemeral public key and

session key to obtain the security in the presence of key leakage. Specifically, we

employ an (extended) smooth projective hash function (SPHF) which is defined

based on a domain X and an NP language L ⊂ X . For any word W ∈ L, the

hash value of W can be computed using either a secret hashing key or a public

projection key with the knowledge of the witness for W . The key property of SPHF

is that the projection key uniquely determines the hash value of any word in the

language L (projective) but gives almost no information about the hash value of

any point in X \ L (smooth). During the session execution, both parties generate

their ephemeral secret key and apply a strong extractor to extract a fresh seed for

a PRF in order to derive a word in L. They then exchange their words with the

corresponding witness kept secret locally. Additionally, they also run an ephemeral

Diffie-Hellman protocol using the exponent which is also output by the PRF. At

the end of session, they derive the session key by computing the hash value of both

words along with the Diffie-Hellman shared key. The correctness of the framework

can be easily obtained due to the property of SPHF and Diffie-Hellman protocol

while the security is guaranteed by the strong extractors, pseudo-random functions,

along with the underlying (2-)smooth SPHF built on an NP language where the

subgroup decision problem is hard.

An Efficient Instantiation. We show that the building blocks in our framework

can be instantiated efficiently based on the DDH assumption. Precisely, we first

introduce the Diffie-Hellman language LDH = {(u1, u2)|∃r ∈ Zp, s.t., u1 = gr1, u2 =

gr2} where G is a group of primer order p and g1, g2 ∈ G are generators. We then

show that the subset membership problem over X = G2 and LDH is hard and use

it to construct a 2-smooth SPHF, denoted by SPHFDH. A concrete protocol based

on SPHFDH is then presented and proved to be CLR-eCK-secure. We should note

that the communication costs in eSIG-DH [ADW09] and Enc-DH [DHLW10] is higher

than our protocol due to the reason that they require their underlying primitive,

i.e., signature or encryption scheme, to be leakage-resilient. For example, according

to the result (Theorem 5.2) of [DHLW10], to obtain (1− ε)-leakage resilience, the

ciphertexts CT transferred in the Enc-DH protocol has the size of O(1/ε)|G|. Due

to the same reason, the computation overhead of those protocols is also higher than

that of our protocol.

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 133

7.1.3 Related Work

Traditional AKE Security Notions. The Bellare-Rogaway (BR) model [BR93a]

gives the first formal security notion for AKE based on an indistinguishability game,

where an adversary is required to differentiate between the real session key from a

randomly chosen session key. Its variants are nowadays the de facto standard for

AKE security analysis. In particular, the Canetti-Krawczyk (CK) model [CK01],

which can be considered as the extension and combination of the BR model and

the Bellare-Canetti-Krawczyk (BCK) model [BCK98], has been used to prove the

security of many widely used AKE protocols such as SIG-DH and SIGMA. Noting

that the CK model does not capture several attacks such as the Key Compromise

Impersonation (KCI) attacks, LaMacchia et al. [LLM07] introduced an extension of

the CK model, named eCK model, to consider stronger adversaries (in some aspects)

who is allowed to access either the long-term secret key or the ephemeral secret key

in the target session chosen by the adversary. We refer the readers to Choo et

al. [CBH05] for a detailed summary of the differences among the aforementioned

AKE models, and to Cremers et al. [Cre11] for a full analysis of these models.

Modelling Leakage Resilience. The method of protecting against leakage attacks

by treating them in an abstract way was first proposed by Micali and Reyzin [MR04]

based on the assumption that only computation leaks information. Inspired by the

cold boot attack presented by Halderman et al. [HSH+08], Akavia et al. [AGV09]

formalized a general framework, namely, Relative Leakage Model, which implicitly

assumes that, a leakage attack can reveal a fraction of the secret key, no matter

what the secret key size is. The Bounded-Retrieval Model (BRM) [ADW09] is a

generalization of the relative leakage model. In BRM, the leakage-parameter forms

an independent parameter of the system. The secret key-size is then chosen flexibly

depending on the leakage parameter. Another relatively stronger leakage model is

the Auxiliary Input Model [DKL09] where the leakage is not necessarily bounded in

length, but it is assumed to be computationally hard to recover the secret-key from

the leakage.

Leakage-Resilient AKE. Alwen, Dodis and Wichs [ADW09] presented an effi-

cient leakage-resilient AKE protocol in the random oracle model. They considered

a leakage-resilient security model (BRM-CK) by extending the CK model to the

BRM leakage setting. They then showed that a leakage-resilient AKE protocol

can be constructed from an entropically-unforgeable digital signature scheme secure

under chose-message attacks. Such a leakage-resilient signature-based AKE proto-

col, namely eSIG-DH, however, is at least 3-round and does not capture ephemeral

secret key leakage. Also, the security model considered in [ADW09] does not cap-

ture challenge-dependent leakage since the adversary is not allowed to make leakage

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 134

queries during the execution of the challenge session. In [DHLW10], Dodis et al.

proposed new constructions of AKE protocols that are leakage-resilient in the CK

security model (LR-CK). Their first construction follows the result of [ADW09], i.e.,

authenticating Diffie-Hellman (DH) key exchange using a leakage-resilient signa-

ture scheme. The second construction, i.e., Enc-DH, is based on a leakage-resilient

CCA-secure PKE scheme: both parties authenticate each other by requiring the

peer entity to correctly decrypt the DH ephemeral public key encrypted under the

long-term public key. Similar to Alwen at al. [ADW09], the security model given

by Dodis et al. [DHLW10] is not challenge-dependent, and both constructions have

at least 3-round and didn’t consider randomness leakage. Another leakage-resilient

model for AKE protocols is introduced by Moriyama and Okamoto [MO]. Their no-

tion, named λ-leakage resilient eCK (LR-eCK) security, is an extension of the eCK

security model with the notion of λ-leakage resilience introduced in [AGV09]. They

also presented a 2-round AKE protocol that is λ-leakage resilient eCK secure with-

out random oracles. One limitation of their model is that they just considered the

long-term secret key leakage (when the ephemeral secret key is revealed) but not

the ephemeral secret key leakage (when the long-term secret key is revealed). Also,

their model is not challenge-dependent. Yang et al. [YMSW13] initiated the study

on leakage resilient AKE in the auxiliary input model. They showed that in the

random oracle model, an AKE protocol secure under auxiliary input attacks can be

built based on a digital signature scheme that is random message unforgeable under

random message and auxiliary input attacks (RU-RMAA). However, their model is

based on the CK model and only captures the challenge-independent leakage of the

lone-term secret.

7.2 A New Strong Security Model for AKE

We are now ready to introduce our proposed challenge-dependent leakage-resilient

eCK (CLR-eCK) security model.

7.2.1 AKE Protocol

An AKE protocol is run among parties (A,B, C, ...) which are modelled as prob-

abilistic polynomial-time Turing Machines. Each party has a long-term secret key

(lsk) together with a certificate that binds the corresponding long-term public key

(lpk) to the party. Here we denote Â (B̂) as the long-term public key of party A
(B) with the certificate issued by a trusted certificate authority CA.

Any two parties, say A and B, can be activated to run an instance of the AKE

protocol, which is referred to as a session, and obtain a shared session key. In this

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 135

chapter, we only focus on one-round (i.e., two-pass) AKE protocols. Specifically,

during the execution of a session, party A generates an ephemeral public/secret key

pair (epkA, eskA) and sends (B̂, Â, epkA) to the peer B, and vice versa. At the end

of the session execution, each party derives the shared session key by taking as input

his/her own long-term secret key and ephemeral secret key, along with the long-term

public key and ephemeral public key received from the other party.

A session of partyA with peer B is identified by the session identifier (Â, B̂, epkA, epkB),

and the session (B̂, Â, epkB, epkA) of party B is referred to as the matching session

of (Â, B̂, epkA, epkB). If the party outputs a session key at the end of the session,

we call the session is completed successfully.

7.2.2 eCK Security Model

The extended Canetti-Krawczyk (eCK) model was proposed by LaMacchia, Lauter

and Mityagin [LLM07] based on the CK model which was formulated by Canetti

and Krawczyk [CK01] for the AKE protocols.

Roughly speaking, in the eCK definition, the adversaryM is modelled as a prob-

abilistic polynomial time Turing machine that controls all communications between

the honest parties. Note that M cannot interfere with communication between a

single party and the CA but is able to register fictitious parties. The adversary plays

a central role in the model and is responsible for activating all other parties. That

is, M schedules all activations of parties and message delivery. Initially and upon

the completion of each activation, M decides which party to activate next. The

adversaryM also decides which incoming message or external request the activated

party is to receive.

To be more precise, in the eCK model, adversary M is given the (certified)

public keys of a set of honest users, and is allowed to issue the following oracle

queries.

Send(A,B,message). Send message to party A on behalf of party B, and obtain

A’s response for this message.

EstablishParty(pid). This query allows the adversary to register a long-term public

key on behalf of party pid, which is said to be dishonest.

LongTermKeyReveal(pid). This query allows the adversary to learn the long-term

secret key of honest party pid.

SessionKeyReveal(sid). This query allows the adversary to obtain the session key of

the completed session sid.

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 136

EphemeralKeyReveal(sid). This query allows the adversary to obtain the ephemeral

secret key of session sid.

Eventually, in the challenge phase, adversaryM selects a completed session sid∗

as the test session and makes a query Test(sid∗) as follows.

Test(sid∗). To answer this query, the challenger pick b
$← {0, 1}. If b = 1, the

challenger returns SK∗ ← SessionKeyReveal(sid∗) . Otherwise, the challenger

sends M a random key R∗
$← {0, 1}|SK∗|.

Note that the Test query can be issued only once but at any time during the

game, and the game terminates as soon as M outputs its guess b′ on b. Here, we

require the test session to be a fresh session which is defined as follows.

Definition 7.1 (Fresh Session in eCK Model) Let sid be the completed session

owned by an honest party A with peer B, who is also honest. If there exists the

matching session to session sid, we denote the matching session as sid. Session sid

is said to be fresh if none of the following conditions hold:

1). M issues a SessionKeyReveal(sid) query or a SessionKeyReveal(sid) query (If sid

exists).

2). sid exists and M issues either

LongTermKeyReveal(A) ∧ EphemeralKeyReveal(sid), or

LongTermKeyReveal(B) ∧ EphemeralKeyReveal(sid).

3). sid does not exist and M issues either

LongTermKeyReveal(A) ∧ EphemeralKeyReveal(sid), or

LongTermKeyReveal(B).

We remark that the freshness of the test session can be identified only after the

game is completed as M can continue the other queries after the Test query. That

is, M wins the game if he correctly guesses the challenge for the test session which

remains fresh until the end of the game. Formally, we have the following notion for

eCK security.

Definition 7.2 (eCK Security) Let the test session sid∗ be fresh where adversary

M issues Test(sid∗) query. We define the advantage of M in the eCK game by

AdveCKM (`) = Pr[b′ = b]− 1/2,

where k is the security parameter of the AKE protocol. We say the AKE protocol

is eCK-secure if the matching session computes the same session key and for any

probabilistic polynomial-time adversary M, AdveCKM (`) is negligible.

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 137

7.2.3 Challenge-Dependent Leakage-Resilient eCK Model

We introduce a new eCK-based security notion to capture various side-channel at-

tacks against AKE protocols. Our notion, named Challenge-Dependent Leakage-

Resilient eCK (CLR-eCK) model is the first split-state-free security model that cap-

tures both long-term and ephemeral key leakage and allows the adversary to issue

leakage queries even after the activation of the test session. Formally, adversaryM
is allowed to issue the following queries.

Send(A,B,message). Send message to party A on behalf of party B, and obtain

A’s response for this message.

EstablishParty(pid). Register a long-term public key on behalf of party pid, which

is said to be dishonest.

LongTermKeyReveal(pid). Query the long-term secret key of honest party pid.

SessionKeyReveal(sid). Query the session key of the completed session sid.

EphemeralKeyReveal(sid). Query the ephemeral secret key of session sid.

LongTermKeyLeakage(f1, pid). This query allows M to learn f1(lsk) where f1 de-

notes the leakage function and lsk denotes the long-term secret key of party

pid.

EphemeralKeyLeakage(f2, sid). This query allows M to learn f2(esk) where f2 de-

notes the leakage function and esk denotes the ephemeral secret key used by

an honest user in the session sid.

Test(sid∗). To answer this query, the challenger pick b
$← {0, 1}. If b = 1, the

challenger returns SK∗ ← SessionKeyReveal(sid∗). Otherwise, the challenger

sends the adversary a random key R∗
$← {0, 1}|SK∗|.

Note that the Test query can be issued only once but at any time during the

game, and the game terminates as soon as M outputs its guess b′ on b.

Restrictions on the Leakage Function. In our CLR-eCK security model, we

consider several restrictions on the leakage function to prevent the adversary M
from trivially breaking the AKE protocol.

The first restriction is that the output size of the leakage function f1 and f2

must be less than |lsk| and |esk|, respectively. Specifically, following some previous

work on leakage resilient cryptography [NS09], we require the output size of a leakage

function f is at most λ bits, which means the entropy loss of sk is at most λ bits upon

observing f(sk). Formally, we define the bounded leakage function family Fbbd-I for

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 138

the long-term secret key and Fbbd-II for the ephemeral secret key as follows. Fbbd-I(`)

is defined as the class of all polynomial-time computable functions: f : {0, 1}|lsk| →
{0, 1}≤λ1(`), where λ1(`) < |lsk|. Fbbd-II(`) is defined as the class of all polynomial-

time computable functions: f : {0, 1}|esk| → {0, 1}≤λ2(`), where λ2(`) < |esk|. We

then require that the leakage function submitted by the adversary should satisfy

that f1 ∈ Fbbd-I and f2 ∈ Fbbd-II.

Another restriction that must be enforced is related to the challenge-dependent

leakage security of AKE protocols. Consider a test session sid∗ which is owned by

party A with peer B. Note that for a 2-pass AKE protocol, the session key of

sid∗ is determined by (Â, B̂, lskA, esk
∗
A, lpkB, epk∗B) which contains only two secret

keys (i.e., lskA, esk
∗
A). Since M is allowed to reveal esk∗A (lskA) in the eCK model,

M can launch a trivial attack by encoding the session key derivation function into

the leakage function of lskA (esk∗A) and hence wins the security game. Therefore,

adversaryM should not be allowed to adaptively issue leakage query after it obtains

all the other (secret) information for session key computation, otherwise the security

of AKE protocol is unachievable. More precisely, we describe the restrictions on

LongTermKeyLeakage(f1,A) and EphemeralKeyLeakage(f2, sid∗) as follows.

1). M is allowed to ask for arbitrary leakage function f1 ∈ Fbbd-I before it obtains

the ephemeral secret key esk∗A, i.e., by issuing EphemeralKeyReveal(sid∗) query;

however, after obtaining esk∗A, M can only use the leakage functions f1 ∈
F1 ⊂ Fbbd-I where F1 is a set of leakage functions chosen and submitted by

M before it issues EphemeralKeyReveal(sid∗).

2). M is allowed to ask for arbitrary leakage function f2 ∈ Fbbd-II before it obtains

the long-term secret key lskA, i.e., by issuing LongTermKeyReveal(A) query;

however, after obtaining lskA, M can only use the leakage functions f2 ∈
F2 ⊂ Fbbd-II where F2 is a set of leakage functions chosen and submitted by

M before it issues LongTermKeyReveal(A).

We should note that if sid∗ exists, the above restriction must also be enforced for

the leakage query LongTermKeyLeakage(f1,B) and EphemeralKeyLeakage(f2, sid∗),

since the session key of sid∗ is also determined by (Â, B̂, lpkA, epk
∗
A, lskB, esk

∗
B).

Adaptive Leakage. One can see that our proposed model enables adversaryM to

choose F1,F2 adaptively andM can submit F1,F2 even after the challenge phase as

long as the restriction holds. That is,M can specify function set F1,F2 after seeing

epk∗A and epk∗B. Also, if there is no long-term (ephemeral, respectively) key reveal

query, then F1 (F2, respectively) is the same as Fbbd-I (Fbbd-II, respectively). Im-

plicitly, M is allowed to obtain f1(lskA), f ′1(lskB), f2(esk∗A), f ′2(esk∗B) where f1, f
′
1 ∈

Fbbd-I, f2, f
′
2 ∈ Fbbd-II can be dependent on (lpkA, lpkB, epk

∗
A, epk

∗
B), or to obtain

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 139

f1(lskA), f2(esk∗B) where f1 ∈ F1, f2 ∈ F2 can be dependent on (lpkA, lpkB, lskB,

epk∗A, epk
∗
B) and (lpkA, lpkB, epk

∗
A, esk

∗
A, epk

∗
B), respectively. Since the leakage can

happen during or after the challenge session and can be related to the challenge ses-

sion, our proposed security model captures the challenge-dependent leakage security

for AKE protocols.

We define the notion of a fresh session in the CLR-eCK model as follows.

Definition 7.3 ((λ1, λ2)-Leakage Fresh Session in the CLR-eCK Model) Let sid

be a completed session owned by an honest party A with peer B, who is also honest.

Let sid denote the matching session of sid, if it exists. Session sid is said to be fresh

in the CLR-eCK model if the following conditions hold:

1). sid is a fresh session in the sense of eCK model.

2). M only issues the queries LongTermKeyLeakage(f1,A), LongTermKeyLeakage(f ′1,B),

EphemeralKeyLeakage(f2, sid), EphemeralKeyLeakage(f ′2, sid) (if sid exists), such

that f1, f
′
1, f2, f

′
2 satisfy the restriction given above.

3). The total output length of all the LongTermKeyLeakage queries to A (B, respec-

tively) is at most λ1.

4). The total output length of all the EphemeralKeyLeakage query to sid (sid, re-

spectively, if it exists) is at most λ2.

We now describe the notion of CLR-eCK security.

Definition 7.4 (CLR-eCK Security) Let the test session sid∗ be (λ1, λ2)-leakage

fresh where adversary M issues Test(sid∗) query. We define the advantage of M
in the CLR-eCK game by AdvCLR-eCK

M (`) = Pr[b′ = b] − 1/2, where k is the security

parameter of the AKE protocol. We say the AKE protocol is (λ1, λ2)-challenge-

dependent leakage-resilient eCK-secure ((λ1, λ2)-CLR-eCK-secure) if the matching

session computes the same session key and for any probabilistic polynomial-time

adversary M, AdvCLR-eCK
M (`) is negligible.

Remark. Here we give a further discussion on the relationship between the reveal

oracle, e.g., LongTermKeyReveal and the leakage oracle, e.g., LongTermKeyLeakage.

We can see that it is meaningless forM to issue the leakage query on the long-term

secret key (ephemeral secret key) if it has already obtained the whole key through

querying the reveal oracle. Indeed, adversary M can compute by itself the leakage

function f1(lskA) if lskA is known to him.

Therefore, we can observe that the meaningful queries that adversary M will

ask in CLR-eCK model are as follows. Suppose session sid∗ is the test session owned

by A with the peer B. If sid∗ exists, M will only make queries that form a subset

of any one of the following cases:

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 140

1). {LongTermKeyReveal(A), LongTermKeyReveal(B),EphemeralKeyLeakage(sid∗),

EphemeralKeyLeakage(sid∗)},a

2). {EphemeralKeyReveal(sid∗),EphemeralKeyReveal(sid∗), LongTermKeyLeakage(A),

LongTermKeyLeakage(B)},

3). {LongTermKeyReveal(A),EphemeralKeyReveal(sid∗),EphemeralKeyLeakage(sid∗),

LongTermKeyLeakage(B)},

4). {EphemeralKeyReveal(sid∗), LongTermKeyReveal(B), LongTermKeyLeakage(A),

EphemeralKeyLeakage(sid∗)}.

If sid∗ does not exist, we have the following cases:

5). {LongTermKeyReveal(A),EphemeralKeyLeakage(sid∗), LongTermKeyLeakage(B)},

6). {EphemeralKeyReveal(sid∗), LongTermKeyLeakage(A), LongTermKeyLeakage(B)}.

7.3 One-Round CLR-eCK-Secure AKE

In this section, we present a generic construction of one-round CLR-eCK-secure AKE

protocol.

7.3.1 Extended Smooth Projective Hash Function

In order to make the SPHF notion well applied for our construction, similar to

[CS02], we also need an extension of the SPHF in this chapter. Precisely, we in-

troduce the WordG algorithm and slightly modify the Hash,ProjHash algorithms for

SPHF as follows.

WordG(w)b : generates a word W ∈ L with w the witness ;

Hash(hk,W, aux): outputs the hash value hv ∈ Y on the word W from the hashing

key hk and the auxiliary input aux;

ProjHash(hp,W,w, aux): outputs the hash value hv′ ∈ Y , on the word W from the

projection key hp, the witness w for the fact that W ∈ L and the auxiliary

input aux.

aFor simplicity, we will omit the leakage function in the input of the leakage query in the rest
of the chapter.

bFor simplicity, we will omit (L, param) in the input of the SPHF algorithms in the rest of the
chapter.

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 141

Property. A smooth projective hash function SPHF c should satisfy the following

properties,

Correctness. Let W = WordG(w), then for all hashing key hk and projection key

hp , we have

Hash(hk,W, aux) = ProjHash(hp,W,w, aux)

Smoothness. For any W ∈ X\L. Then the following two distributions are perfectly

indistinguishable:

V1 = {(L, param,W, hp, aux, hv)|hv = Hash(hk,W, aux)},

V2 = {(L, param,W, hp, aux, hv)|hv
$← Y}.

Definition 7.5 (2-smooth SPHF) For any W1,W2 ∈ X\L, let aux1, aux2 be the

auxiliary inputs such that (W1, aux1) 6= (W2, aux2), we say an SPHF is 2-smooth if

the following two distributions are perfectly indistinguishable :

V1 = {(L, param,W1,W2, hp, aux1, aux2, hv1, hv2)|hv2 = Hash(hk,W2, aux2)},

V2 = {(L, param,W1,W2, hp, aux1, aux2, hv1, hv2)|hv2
$← Y}.

where hv1 = Hash(hk, (L, param),W1, aux1).

7.3.2 General Framework

Table 7.1 describes a generic construction of the CLR-eCK secure AKE protocol.

Suppose that ` is the system security parameter. Let G be a group with prime

order p and g is a random generator of G. Let SPHF denote a 2-smooth SPHF

over L ⊂ X and onto the set Y such that the subset membership problem between

L and X is hard. Denote the hashing key space by HK, the projection key space

by HP , the auxiliary input space by AUX and the witness space by W . Pick two

collision-resistant hash functions H1 : {0, 1}∗ → AUX , H2 : G→ Y .

Let λ1 = λ1(`) be the bound on the amount of long-term secret key leakage

and λ2 = λ2(`) be that of the ephemeral secret key leakage. Let Ext1,Ext2,Ext3

be strong extractors as follows. Ext1 : HK × {0, 1}t1(`) → {0, 1}l1(`) is an average-

case (|HK| − λ1, ε1)-strong extractor. Ext2 : {0, 1}u(`) × {0, 1}t2(`) → {0, 1}l2(`) is an

average-case (k − λ2, ε2)-strong extractor. Ext3 : Y × {0, 1}t3(`) → {0, 1}l3(`) is an

cIn the rest of this chapter, all the SPHFs are referred to as the extended SPHF and defined
by algorithms (SPHFSetup,HashKG,ProjKG,WordG,Hash,ProjHash).

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 142

Table 7.1: Framework for CLR-eCK secure AKE

A B
hk

$← HashKG, hk′
$← HashKG,

hp
$← ProjKG(hk), hp′

$← ProjKG(hk′),

rA1

$← {0, 1}t1(`), rA2

$← {0, 1}t2(`), rB1
$← {0, 1}t1(`), rB2

$← {0, 1}t2(`),
lskA = hk, lpkA = (hp, rA1

, rA2
). lskB = hk′, lpkB = (hp′, rB1 , rB2).

eskA
$← {0, 1}u(`), tA

$← {0, 1}t3(`), eskB
$← {0, 1}u(`), tB

$← {0, 1}t3(`),
l̂skA = Ext1(lskA, rA1

), l̂skB = Ext1(lskB, rB1),

êskA = Ext2(eskA, rA2
), êskB = Ext2(eskB, rB2),

(wA, x) = F̂
l̂skA

(eskA) + F
êskA

(rA1
), (wB, y) = F̂

l̂skB
(eskB) + F

êskB
(rB1),

WA = WordG(wA), X = gx, WB = WordG(wB), Y = gy ,
Erase all state except (eskA,WA, X, tA). Erase all state except (eskB,WB, Y, tB).

(B̂,Â,WA,X,tA)−−−−−−−−−−−→
(Â,B̂,WB,Y,tB)←−−−−−−−−−−−

Set sid = (Â, B̂,WA, X, tA,WB, Y, tB) Set sid = (Â, B̂,WA, X, tA,WB, Y, tB)
aux = H1(sid),KA1 = Y x, aux = H1(sid),KA1 = Xy ,

KA2
= ProjHash(lpkB,WA, wA, aux), KB2 = Hash(lskB,WA, aux),

KA3 = Hash(lskA,WB, aux), KB3 = ProjHash(lpkA,WB, wB, aux),
sA = Ext3(H2(KA1

)⊕KA2
⊕KA3

, tA ⊕ tB), sB = Ext3(H2(KB1)⊕KB2 ⊕KB3 , tA ⊕ tB),

SKA = F̃sA (sid). SKB = F̃sB (sid).

average-case (|Y| − λ1, ε3)-strong extractor. Here ε1 = ε1(`), ε2 = ε2(`), ε3 = ε3(`)

are negligible.

Let F̂ and F be PRF families and F̃ be a πPRF family as follows.

F̂k,
∑

F̂
,D

F̂
,R

F̂ :
∑

F̂ = {0, 1}l1(`),DF̂ = {0, 1}u(`),RF̂ =W × Zp,

F
k,
∑

F,DF,RF :
∑

F = {0, 1}l2(`),DF = {0, 1}t1(`),RF =W × Zp,

F̃k,
∑

F̃
,D

F̃
,R

F̃ :
∑

F̃ = {0, 1}l3(`),DF̃ = (Λk)
2 × L2 ×G2 × {0, 1}2t3(`),RF̃ = {0, 1}l4(`).d

Let F̂ ← F̂k,
∑

F̂
,D

F̂
,R

F̂ , F ← F
k,
∑

F,DF,RF and F̃ ← F̃k,
∑

F̃
,D

F̃
,R

F̃ .

The system parameter is (param,G, p, g,H1, H2,Ext1,Ext2,Ext3, F̂ , F , F̃) where

param← SPHFSetup(1`).

Key Generation. At the long-term key generation stage, A runs the algorithm

HashKG to obtain a hashing key hk and then the algorithm ProjKG to obtain the

projection key hp, picks rA1

$← {0, 1}t1(`), rA2

$← {0, 1}t2(`), then sets its long-term

key pair as lskA = hk, lpkA = (hp, rA1 , rA2). Similarly, B generates its long-term key

pair as lskB = hk′, lpkB = (hp′, rB1 , rB2).

Session Execution (A
 B). The key exchange protocol between A and B
executes as follows.

(A⇀ B). A performs the following steps.

dIn this chapter, we denote the space of a certified long-term public key (such as Â) by Λk.

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 143

1. Selects the ephemeral secret key eskA
$← {0, 1}u(`) and picks tA

$←
{0, 1}t3(`).

2. Sets l̂skA = Ext1(lskA, rA1), êskA = Ext2(eskA, rA2).

3. Computes (wA, x) = F̂l̂skA(eskA) + F êskA
(rA1).

4. Runs the algorithm WordG(wA) to obtain a word WA and computes

X = gx.

5. Erase all state except (eskA,WA, X, tA), sets (WA, X, tA) as the ephemeral

public key and sends (B̂, Â,WA, X, tA) to B.

(B ⇀ A). Similarly, B executes the following steps.

1. Selects the ephemeral secret key eskB
$← {0, 1}u(`) and picks tB

$←
{0, 1}t3(`).

2. Sets l̂skB = Ext1(lskB, rB1), êskB = Ext2(eskB, rB2).

3. Computes (wB, y) = F̂l̂skB(eskB) + F êskB
(rB1).

4. Runs the algorithm WordG(wB) to obtain a word WB and computes Y =

gy.

5. Erase all state except (eskB,WB, Y, tB), sets (WB, Y, tB) as the ephemeral

public key and sends (Â, B̂,WB, Y, tB) to A.

Session Key Output. WhenA receives (Â, B̂,WB, Y, tB),A sets sid = (Â, B̂,WA, X,

tA,WB, Y, tB) and computes the session key as follows.

1. Reconstructs (wA, x) from (lskA, lpkA, eskA), and computes aux = H1(sid).

2. Computes KA1 = Y x, KA2 = ProjHash(lpkB,WA, wA, aux), KA3 = Hash(lskA,

WB, aux).

3. Sets sA = Ext3(H2(KA1)⊕KA2 ⊕KA3 , tA ⊕ tB).

4. Computes SKA = F̃sA(sid).

Similarly, party B sets sid = (Â, B̂,WA, X, tA,WB, Y, tB) and then computes the

session key as follows.

1. Reconstructs (wB, y) from (lskB, lpkB, eskB) and computes aux = H1(sid).

2. Computes KB1 = Xy, KB2 = Hash(lskB,WA, aux), KB3 = ProjHash (lpkA,WB,

wB, aux).

3. Sets sB = Ext3(H2(KB1)⊕KB2 ⊕KB3 , tA ⊕ tB).

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 144

4. Computes SKB = F̃sB(sid).

Correctness Analysis. One can note that KA1 = KB1 as KA1 = Y x = Xy =

KB1 = gxy. Due to the property of SPHF, we have

KA2 = ProjHash(lpkB,WA, wA, aux) = Hash(lskB,WA, aux) = KB2 ,

KA3 = Hash(lskA,WB, aux) = ProjHash(lpkA,WB, wB, aux) = KB3 .

Therefore, we can obtain that sA = Ext3(H2(KA1) ⊕KA2 ⊕KA3 , tA ⊕ tB) = sB =

Ext3(H2(KB1)⊕KB2 ⊕KB3 , tA ⊕ tB), which guarantees that SKA = SKB.

7.3.3 Security Analysis

Theorem 7.1 The AKE protocol following the general framework is (λ1, λ2)-CLR-eCK-

secure if the underlying smooth projective hash function is 2-smooth, the DDH as-

sumption holds in G, H1, H2 are collision-resistant hash functions, F̂ and F are PRF

families and F̃ is a πPRF family. Here λ1 ≤ min{|HK| − 2 log(1/ε1) − l1(`), |Y| −
2 log(1/ε3)− l3(`)}, λ2 ≤ u(`)− 2 log(1/ε2)− l2(`).

Proof: Let session sid∗ = (Â, B̂,W ∗
A, X

∗, t∗A,W
∗
B, Y

∗, t∗B) be the target session chosen

by adversary M. A is the owner of the session sid∗ and B is the peer. We then

analyze the security of the AKE protocol in the following two disjoint cases.

Case I. There exists a matching session, sid∗, of the target session sid∗.

we analyse the security based on the type of the reveal query and leakage query

that the adversary issues to the target session, the matching session and the corre-

sponding parties.

a). LongTermKeyReveal(A), LongTermKeyReveal(B),EphemeralKeyLeakage(sid∗),

EphemeralKeyLeakage(sid∗). In this sub-case, suppose that the adversary ob-

tains at most λ2-bits of the ephemeral secret key of target session sid∗, we

have that

êsk
∗
A = Ext2(esk∗A, rA2)

s≡ε2 êsk
′
A

$← {0, 1}l2(`), (7.1)

Therefore, (w∗A, x
∗) = F̂l̂skA(esk∗A) + F

êsk
∗
A

(rA1)
c≡ (w′A, x

′)
$← W × Zp. Sim-

ilarly, suppose that the adversary obtains at most λ2-bits of the ephemeral

secret key of matching session sid∗, we have that

êsk
∗
B = Ext2(esk∗B, rB2)

s≡ε2 êsk
′
B

$← {0, 1}l2(`), (7.2)

and thus (w∗B, y
∗) = F̂l̂skB(esk∗B) + F

êsk
∗
B
(rB1)

c≡ (w′B, y
′)

$←W × Zp.

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 145

b). EphemeralKeyReveal(sid∗),EphemeralKeyReveal(sid∗), LongTermKeyLeakage(A),

LongTermKeyLeakage(B). In this sub-case, suppose that the adversary obtains

at most λ1-bits of the long-term secret key of party A, we have that

l̂sk
∗
A = Ext1(lskA, rA1)

s≡ε1 l̂sk
′
A

$← {0, 1}l1(`), (7.3)

hence (w∗A, x
∗) = F̂

l̂sk
∗
A

(esk∗A) + F
êsk
∗
A

(rA)
c≡ (w′A, x

′)
$← W × Zp. Similarly,

suppose that the adversary obtains at most λ1-bits of the long-term secret key

of party B, we have that

l̂sk
∗
B = Ext1(lskB, rB1)

s≡ε1 l̂sk
′
B

$← {0, 1}l1(`), (7.4)

and therefore (w∗B, y
∗) = F̂

l̂sk
∗
B
(esk∗B) + F

êsk
∗
B
(rB1)

c≡ (w′B, y
′)

$←W × Zp.

c). LongTermKeyReveal(A),EphemeralKeyReveal(sid∗),EphemeralKeyLeakage(sid∗),

LongTermKeyLeakage(B). In this sub-case, suppose that the adversary obtains

at most λ2-bits of the ephemeral secret key of target session sid∗, at most

λ1-bits of the long-term secret key of party B, then based on the Equation

(7.1),(7.4), we have that (w∗A, x
∗) = F̂

l̂sk
∗
A

(esk∗A) + F
êsk
∗
A

(rA1)
c≡ (w′A, x

′)
$←

W × Zp and (w∗B, y
∗) = F̂

l̂sk
∗
B
(esk∗B) + F

êsk
∗
B
(rB1)

c≡ (w′B, y
′)

$←W × Zp.

d). EphemeralKeyReveal(sid∗), LongTermKeyReveal(B), LongTermKeyLeakage(A),

EphemeralKeyLeakage(sid∗). In this sub-case, suppose that the adversary ob-

tains at most λ1-bits of the long-term secret key of party A, at most λ2-bits

of the ephemeral secret key of matching session sid∗, then based on Equation

(7.2),(7.3), we have that (w∗A, x
∗) = F̂

l̂sk
∗
A

(esk∗A) + F
êsk
∗
A

(rA1)
c≡ (w′A, x

′)
$←

W × Zp and (w∗B, y
∗) = F̂

l̂sk
∗
B
(esk∗B) + F

êsk
∗
B
(rB1)

c≡ (w′B, y
′)

$←W × Zp.

Therefore, regardless of the type of the reveal query and leakage query, (x∗, y∗)

are uniformly random elements in Z2
p from the view of adversary M. Therefore,

K∗A1
= K∗B1 = gx

∗y∗ is computationally indistinguishable from a random element in

G according to the DDH assumption and hence H2(K∗A1
) is a uniform random string

from the view of M who is given X∗ = gx
∗
, Y ∗ = gy

∗
. We then have that the seed

s∗A for the πPRF function is uniformly distributed and unknown to the adversary

and thus the derived session key SK∗A is computationally indistinguishable from a

random string. It is worth noting that in this case we only require F̃ to be a normal

PRF.

Case II. There exists no matching session of the test session sid∗.

In this case, the adversary cannot issue LongTermKeyReveal query to reveal the

long-term secret key of B but may issues the leakage query LongTermKeyLeakage to

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 146

learn some bit-information of lskB. We prove the security of the AKE protocol as

follows.

In the simulation, we modify the security game via the following steps to obtain

two new games.

Game 1: ReplaceK∗A2
= ProjHash(lpkB,W

∗
A, w

∗
A, aux

∗) byK∗A2
= Hash(lskB,W

∗
A, aux

∗).

Game 2: Choose W ∗
A ∈ X \ L instead of deriving it from L through the algorithm

WordG.

We can see that Game 1 is identical to the original game from the view of

adversary M due to the fact that ProjHash(lpkB,W
∗
A, w

∗
A) = Hash(lskB,W

∗
A), and

Game 2 is indistinguishable from Game 1 (and hence also the original game) due to

the difficulty of the subset membership problem which ensures that the distribution

of X \ L is indistinguishable from L.

Note that adversaryM may actives a session sid, which is not matching to ses-

sion sid∗, with B. Precisely,M can choose W ∈ X \L (e.g., by replaying W ∗
A), send

W to B and issues SessionKeyReveal(sid) query to learn the shared key. According

to the property of 2-smooth of the underlying smooth projective hash function, we

have that K∗A2
is pairwisely independent from any other such key (denoted by K̃)

and all public information (i.e., param,L, lpkB,W ∗
A, aux

∗) and hence

H̃∞(K∗A2
|K̃, param,L, lpkB,W ∗

A, aux
∗) = |Y|.

Suppose that the leakage of lskB is at most λ1-bits (denoted by l̃skB), and therefore

(see Lemma 1)

H̃∞(K∗A2
|K̃, param,L, lpkB,W ∗A, aux∗, l̃skB) ≥ H̃∞(K∗A2

|K̃, param,L, lpkB,W ∗A, aux∗)− λ1

= |Y| − λ1.

Therefore, by using the strong extractor Ext3, it holds that

s∗A = Ext3(H2(KA1)
∗ ⊕K∗A2

⊕K∗A3
, t∗A ⊕ t∗B)

s≡ε3 s′A
$← {0, 1}l3(`).

One can see that A obtains a variable s∗A which is pairwisely independent from

any other such variables and thus the derived session key SK∗A is computationally

indistinguishable from a truly random element fromM’s view due to the application

of πPRF, which completes the proof.

Simulation for Non-test Session. Note that for the two cases above, we have to

simulate the non-test session correctly with the adversary. Specifically, when adver-

sary M activates a non-test session with A or B, the session execution simulated

should be identical to the session run by A or B from the view of M. One can

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 147

note that this can be easily guaranteed when the query LongTermKeyReveal(A) or

LongTermKeyReveal(B) is issued in the game. Since we know the long-term secret key

of A or B, we can just select an ephemeral secret key and compute the ephemeral

public key correctly by using the long-term secret key and long-term public key.

Nevertheless, if the query LongTermKeyReveal(A) or LongTermKeyReveal(B) is not

issued, that is, without the long-term secret key of A or B, the simulation of the

non-test session owned by A or B can no longer be simulated as shown above. In

this case, we simulate the session as follows. Suppose that we are to simulate the

session owned by A without knowing lskA, we pick (r1, r2)
$← W × Zp and then

compute WA = WordG(r1), X = gr2 . We say that the session simulated in this way

can be identical to the real session fromM’s view due to the pseudo-randomness of

the PRF. To be more precise, even whenM obtains at most λ1-bits of lskA through

LongTermKeyLeakage(A), the variable l̂skA, which comes from Ext1(lskA, rA) and

inputs to the pseudo-random function F̂ , still remains unknown to adversary M.

Therefore, the value of F̂l̂skA(eskA) is computationally indistinguishable from a ran-

dom element.

7.4 An Instantiation from DDH Assumption

In this section, we first introduce an SPHF based on the DDH assumption and then

show how to construct a CLR-eCK-secure AKE protocol based on this function.

7.4.1 DDH-based SPHF

In the following, we present the language we use in the instantiation of our generic

CLR-eCK-secure AKE protocol. Specifically, we introduce the Diffie-Hellman lan-

guage LDH and show how to construct a 2-smooth SPHF on LDH.

Diffie-Hellman Language. Let G be a group of primer order p and g1, g2 ∈ G.

The Diffie-Hellman Language is as follows.

LDH = {(u1, u2)|∃r ∈ Zp, s.t., u1 = gr1, u2 = gr2}

One can see that the witness space of LDH is W = Zp and LDH ⊂ X = G2. We have

the following theorems.

Theorem 7.2 The subset membership problem over X = G2 and LDH is hard.

Proof: One can easily obtain the theorem above from the DDH assumption and

hence we omit the proof here. Actually, if an adversary can distinguish a word

randomly picked from LDH from a random element chosen from X\LDH, we can

build a distinguisher for the DDH problem by using the adversary as a subroutine.

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 148

SPHF on LDH. Here we show how to construct a 2-smooth SPHF (denoted by

SPHFDH) over the language LDH ⊂ X = G2 onto the group Y = G. Let H1 :

{0, 1}∗ → Zp denote a collision-resistant hash function. The concrete construction

is as follows.

SPHFSetup(1`): param = (G, p, g1, g2);

HashKG: hk = (α1, α2, β1, β2)
$← Z4

p;

ProjKG(hk): hp = (hp1, hp2) = (gα1
1 gα2

2 , gβ11 g
β2
2) ∈ G2

p;

WordG(hk, w = r): W = (gr1, g
r
2);

Hash(hk,W = (u1, u2) = (gr1, g
r
2), aux = d = H1(W,aux′)): hv = uα1+dβ1

1 uα2+dβ2
2 ;

ProjHash(hp,W = (u1, u2) = (gr1, g
r
2), w = r, aux = d = H1(W,aux′)): hv′ =

hpr1hpdr2 .

Note that Y = G,HK = Z4
p,HP = G2

p,AUX = Zp,W = Zp. Then we have the

following theorem.

Theorem 7.3 SPHFDH is a 2-smooth SPHF.

Proof: We show that SPHFDH is projective and smooth (2-smooth).

Correctness. With the above notations, for a word W = (u1, u2) = (gr1, g
r
2) we have

Hash(hk, (W,d)

= uα1+dβ1
1 uα2+dβ2

2

= hpr1hpdr2

= ProjHash(hp, (W, r, d).

Smoothness (2-smooth). Suppose g2 = gθ1. Note that hp1 = gα1
1 gα2 , hp2 = gβ11 g

β2
2

which constraints (α1, α2, β1, β2) to satisfy

logg1 hp1 = α1 + θα2.

logg1 hp2 = β1 + θβ2.

Let W1 = (gr11 , g
r2
2),W2 = (g

r′1
1 , g

r′2
2) ∈ X\LDH where r1 6= r2, r

′
1 6= r′2, suppose

aux1 = d1 = H1(W1, aux
′
1), aux2 = d2 = H1(W2, aux

′
2), then the hash value

hv1 of W1, hv2 of W2 are as follows,

hv1 = Hash(hk,W1, aux1) = g
r1(α1+d1β1)
1 g

r2(α2+d1β2)
2 ,

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 149

hv2 = Hash(hk,W2, aux2) = g
r′1(α1+d2β1)
1 g

r′2(α2+d2β2)
2 ,

which also constraint (α1, α2, β1, β2) to satisfy

logg1 hv1 = r1α1 + r2θα2 + r1d1β1 + r2d1θβ2. (7.5)

logg1 hv2 = r′1α1 + r′2θα2 + r′1d2β1 + r′2d2θβ2. (7.6)

From the above equations, we have

(α1, α2, β1, β2) ·A = (logg1 hp1, logg1 hp2, logg1 hv1, logg1 hv2),

where A is a matrix defined as

A =

1 θ 0 0

0 0 1 θ

r1 θr2 r1d1 θr2d1

r′1 θr′2 r′1d2 θr′2d2

 .

Since (W1, aux1) 6= (W2, aux2) where aux1 = d1 = H1(W1, aux
′
1), aux2 = d2 =

H1(W2, aux
′
2), we have that d1 6= d2. Furthermore, as θ 6= 0, r1 6= r2 and r′1 6=

r′2, we can obtain that the determinant of A is θ2·(r2−r1)·(r′2−r′1)·(d2−d1) 6= 0

and hence the equation (7.6) is independent of the equation (7.5). Therefore,

we have that hv2 is perfectly indistinguishable from any element randomly

chosen from G.

7.4.2 Concrete AKE Protocol

We then show a concrete AKE protocol based on SPHFDH in Table 7.2.

Protocol Description. In the system setup phase, let G be a group of primer

order p and g1, g2 ∈ G. For the SPHFDH, we have that Y = G,HK = Z4
p,HP =

G2
p,AUX = Zp,W = Zp. We then choose a collision-resistant hash functions

H1 : {0, 1}∗ → G. e We pick strong extractors as follows. Let Ext1 : Z4
p ×

{0, 1}t1(`) → {0, 1}l1(`) be average-case (4 · log p − λ1, ε1)-strong extractor, Ext2 :

{0, 1}u(`) × {0, 1}t2(`) → {0, 1}l2(`) be average-case (u(`) − λ2, ε2)-strong extractor

and Ext3 : G× {0, 1}t3(`) → {0, 1}l3(`) be average-case (log p− λ1, ε3)-strong extrac-

tor. Choose F̂ ← F̂k,
∑

F̂
,D

F̂
,R

F̂ , F ← F
k,
∑

F,DF,RF and F̃ ← F̃k,
∑

F̃
,D

F̃
,R

F̃ . The system

parameter is (G, p, g1, g2, g,H1,Ext1,Ext2,Ext3, F̂ , F , F̃).

For the long-term key generation, A chooses (α1, α2, β1, β2)
$← Z4

p as its long-

eNote that in the concrete construction, H2 is not needed as the hash value space Y = G.

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 150

Table 7.2: The Concrete CLR-eCK secure AKE Protocol

A B
hk = (α1, α2, β1, β2)

$← Z4
p, hk′ = (α′1, α

′
2, β
′
1, β
′
2)

$← Z4
p,

hp = (hp1, hp2) = (gα1
1 gα2

2 , gβ11 gβ22) ∈ G2
p, hp′ = (hp′1, hp

′
2) = (g

α′1
1 g

α′2
2 , g

β′1
1 g

β′2
2) ∈ G2

p,

r1
$← {0, 1}t1(`), r2

$← {0, 1}t2(`), r′1
$← {0, 1}t1(`), r′2

$← {0, 1}t2(`),
lskA = hk, lpkA = (hp, r1, r2). lskB = hk′, lpkB = (hp′, r′1, r

′
2).

e
$← {0, 1}u(`), t $← {0, 1}t3(`), e′

$← {0, 1}u(`), t′ $← {0, 1}t3(`),
l̂skA = Ext1(lskA, r1), l̂skB = Ext1(lskB, r

′
1),

êskA = Ext2(e, r2), êskB = Ext2(e′, r′2),

(r, x) = F̂
l̂skA

(e) + F
êskA

(r1), (r′, y) = F̂
l̂skB

(e′) + F
êskB

(r′1),

W = (u1, u2) = (gr1 , g
r
2), X = gx, W ′ = (u′1, u

′
2) = (gr

′
1 , g

r′
2), Y = gy ,

Erase all state except (e,W,X, t). Erase all state except (e′,W ′, Y, t′).
(B̂,Â,W,X,t)−−−−−−−−−−−→
(Â,B̂,W ′,Y,t′)←−−−−−−−−−−−

Set sid = (Â, B̂,W,X, t,W ′, Y, t′) Set sid = (Â, B̂,W,X, t,W ′, Y, t′)
d = H1(sid),KA1

= Y x, d = H1(sid),KA1
= Xy ,

KA2
= hp′r1 hp′dr2 ,KA3

= u′α1+dβ1
1 u′α2+dβ2

2 , KB2 = u
α′1+dβ

′
1

1 u
α′2+dβ

′
2

2 ,KA3
= hpr

′
1 hpdr

′
2 ,

sA = Ext3(KA1
⊕KA2

⊕KA3
, tA ⊕ tB), sB = Ext3(KB1 ⊕KB2 ⊕KB3 , tA ⊕ tB),

SKA = F̃sA (sid). SKB = F̃sB (sid).

term secret key, computes (hp1, hp2) = (gα1
1 gα2

2 , gβ11 g
β2
2), picks r1

$← {0, 1}t1(`), r2
$←

{0, 1}t2(`) and sets its long-term public key as (hp1, hp2, r1, r2). Similarly, B sets its

long-term secret/public key pair as ((α′1, α
′
2, β

′
1, β

′
2), (hp′1, hp′2, r

′
1, r
′
2)).

After a session is activated, A picks an ephemeral secret key e and the extrac-

tion key t
$← {0, 1}t3(`), derives (r, x) using the secret keys and sends (B̂, Â,W =

(u1, u2) = (gr1, g
r
2), X = gx, t) to B. Simultaneously, B executes the same procedure

and returns (Â, B̂,W ′ = (u′1, u
′
2) = (gr

′
1 , g

r′
2), Y = gy, t′) to A.

To compute the shared session key, A runs the ProjHash algorithm to compute

the hash value of W using the witness r and the long-term public key of B, runs the

Hash algorithm to compute the hash value of W ′ using its long-term secret key. B
runs the Hash algorithm to compute the hash value of W using its long-term secret

key, runs the Hash algorithm to compute the hash value of W ′ using the witness r′

and the long-term public key of A. Note that the auxiliary input to all the hash

value computation is d = H1(Â, B̂,W,X, t,W ′, Y, t′). Both A and B also compute

the value of gxy. They then finally apply the πPRF function F̃ to derive the session

key.

Correctness. The correctness of the protocol can be easily obtained from the

correctness of SPHFDH. Precisely, u
α′1+dβ′1
1 u

α′2+dβ′2
2 = hp′r1 hp′dr2 , u′α1+dβ1

1 u′α2+dβ2
2 =

hpr
′

1 hpdr
′

2 , Xy = Y x = gxy.

Based on Theorem 7.1, Theorem 7.2 and Theorem 7.3, we have the following

result for the concrete AKE protocol.

Theorem 7.4 The concrete AKE protocol is (λ1, λ2)-CLR-eCK-secure, where λ1 ≤

CHAPTER 7. STRONGLY SECURE AKE FOR DATA TRANSMISSION 151

min{4 log p− 2 log(1/ε1)− l1(`), log p− 2 log(1/ε3)− l3(`)}, λ2 ≤ u(`)− 2 log(1/ε2)−
l2(`).

7.5 Chapter Summary

In this chapter, we introduced a new leakage-resilient security model for AKE pro-

tocols to overcome the limitations in the previous models. Our model is the first

to allow the adversary to obtain challenge-dependent leakage on both long-term

and ephemeral secret keys, and hence are strong yet meaningful compared with the

previous models. We also presented a generic framework to construct efficient one-

round AKE protocol that is secure under the proposed security model, as well as

an efficient instantiation of the general framework under the DDH assumption. Our

framework ensures the session key are private and authentic even if the adversary

learns a large fraction of both the long-term secret key and ephemeral secret key

and provides qualitatively stronger privacy guarantees than existing AKE protocols

constructed in prior and concurrent works, since such protocols necessarily become

insecure if the adversary can perform leakage attacks during the execution of session.

Part III

Conclusion and Future Work

152

Chapter 8

Conclusion and Future Work

In this chapter, we summarize the work presented in this thesis and put forward

several directions for further research.

8.1 Conclusion

8.1.1 Secure Data Storage in Cloud Computing

Data Auditing. We gave a formal treatment on Merkle Hash Tree for secure

dynamic cloud auditing. We first revisited a well-known authentication structure

named Merkle Hash Tree (MHT) and demonstrated how to extend its basic version

to a sequence-enforced version that allows position checking. In order to support

efficient and verifiable dynamic data operations, we further proposed a variant of

MHT, named rank-based MHT (rMHT) that can be used to support verifiable dy-

namic data auditing. We also reviewed a cloud storage data auditing protocol named

Oruta and showed that the protocol is vulnerable to replace and replay attacks. We

then employed the proposed rMHT to fix the security problems in Oruta without

sacrificing any desirable features of the protocol. It is of independent interest to find

other security applications for rMHT.

Data Deduplication. We formalized a new primitive called Block-Level Message-

Locked Encryption for DLSB-deduplication of large files to achieve space-efficient

storage in cloud. We also presented a concrete BL-MLE scheme that can efficiently

realize our design ideas. We showed that our proposed scheme can achieve significant

savings in space and bandwidth. Moreover, we also showed that our BL-MLE scheme

can be easily modified to achieve efficient data auditing, which makes our scheme

multi-purpose for secure cloud storage.

8.1.2 Secure Data Retrieval in Cloud Computing

Data Searching. To overcome the inherent insecurity (under inside KGA) of the

conventional PEKS system, we proposed two different solutions. The first solu-

tion is a new framework, named Dual-Server Public Key Encryption with Keyword

Search (DSPEKS). A new Smooth Projective Hash Function (SPHF) is then in-

troduced and used to construct a generic DS-PEKS scheme. We also showed an

efficient instantiation of the new SPHF based on the Diffie-Hellman problem, which

153

CHAPTER 8. CONCLUSION AND FUTURE WORK 154

results in an efficient DS-PEKS scheme without pairings. As the second solution,

we provided a practical and applicable treatment on (inside) off-line KGA by for-

malizing a new PEKS system, namely Server-Aided Public Key Encryption with

Keyword Search (SA-PEKS). We introduced a universal transformation from any

PEKS scheme to a secure SA-PEKS scheme, along with the first instantiation of

SA-PEKS. We also showed how to securely implement the client-KS protocol with

a rate-limiting mechanism against on-line KGA. The experimental results showed

that our proposed scheme achieves much better efficiency while providing resistance

against both off-line and on-line KGAs.

Data Transmission. We introduced a new leakage-resilient security model for

AKE protocols to overcome the limitations in the previous models. Our model is

the first to allow the adversary to obtain challenge-dependent leakage on both long-

term and ephemeral secret keys, and hence are strong yet meaningful compared with

the previous models. We also presented a generic framework to construct efficient

one-round AKE protocol that is secure under the proposed security model, as well as

an efficient instantiation of the general framework under the DDH assumption. Our

framework ensures the session key are private and authentic even if the adversary

learns a large fraction of both the long-term secret key and ephemeral secret key

and provides qualitatively stronger privacy guarantees than existing AKE protocols

constructed in prior and concurrent works, since such protocols necessarily become

insecure if the adversary can perform leakage attacks during the execution of session.

8.2 Future Work

We put forward the following directions for further research.

1. Regarding the data deduplication, we ask whether a fully randomized BL-

MLE can be constructed for lock-dependent messages [ABM+13] to obtain

stronger privacy. Secondly, our proposed scheme in Chapter 4 is proven secure

in the random oracle model, we ask whether it is possible to design efficient

BL-MLE schemes that are proven secure in the standard model. Thirdly, our

proposed scheme uses public-key techniques in tag constructions and hence is

less computation-efficient than the MLE schemes, we ask if there are other

more efficient ways to construct BL-MLE schemes. Lastly, it is also an inter-

esting research problem to design BL-MLE schemes supporting variable size

data blocks.

2. For the purpose of helping the data owner enjoy fine-grained access control of

data stored on untrusted cloud servers, a feasible solution would be encrypting

data through certain cryptographic primitive(s), and disclosing decryption

CHAPTER 8. CONCLUSION AND FUTURE WORK 155

keys only to authorized users. Unauthorized users, including cloud servers,

are not able to do decryption since they do not have the data decryption keys.

Moreover, the new cryptographic primitive(s) needs to be able to support

dynamic requests so that data owners can add or revoke access privileges to

other users. Therefore, one critical issue with this branch of approaches is

how to achieve the desired security goals outlined above without introducing

high complexity on computation, privilege revocation and key management.

3. In terms of secure data transmission, we leave the construction of efficient

AKE protocols that are secure under stronger leakage setting as the future

work. More precisely, noting that the intermediate value generated (not the

ephemeral secret key) during the execution of an AKE protocol might also

be leaked, we ask whether a fully leakage-resilient AKE protocol can be con-

structed.

4. It is of independent interest to find other security applications of our proposed

rMHT and LH-SPHF. We leave the constructions of new auditing protocols

based on rMHT and new cryptographic schemes based on LH-SPHF as the

future work.

Bibliography

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier,

and David Pointcheval. Sphf-friendly non-interactive commitments. In

ASIACRYPT, pages 214–234, 2013. 20

[ABC+02] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ron-

nie Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin

Theimer, and Roger Wattenhofer. FARSITE: federated, available, and

reliable storage for an incompletely trusted environment. In OSDI,

2002. 53

[ABC+05] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi

Kohno, Tanja Lange, John Malone-Lee, Gregory Neven, Pascal Pail-

lier, and Haixia Shi. Searchable encryption revisited: Consistency

properties, relation to anonymous ibe, and extensions. In CRYPTO,

pages 205–222, 2005. 82, 83

[ABC+07] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring,

Lea Kissner, Zachary Peterson, and Dawn Song. Provable data pos-

session at untrusted stores. In Proc. ACM Conf. Comput. Commun.

Security, pages 598–609, 2007. 24, 25, 26, 49, 72, 73

[ABM+13] Mart́ın Abadi, Dan Boneh, Ilya Mironov, Ananth Raghunathan, and

Gil Segev. Message-locked encryption for lock-dependent messages. In

CRYPTO, pages 374–391, 2013. 57, 61, 65, 77, 154

[ABS14] Janaka Alawatugoda, Colin Boyd, and Douglas Stebila. Continuous

after-the-fact leakage-resilient key exchange. In ACISP, pages 258–273,

2014. 130

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth

projective hashing for conditionally extractable commitments. In

CRYPTO, pages 671–689, 2009. 89

[ADPMT08] Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini, and Gene

Tsudik. Scalable and efficient provable data possession. In Proc. 4th

Conf. Security and Privacy in Commun. Netw., pages 9:1–9:10, 2008.

28

156

BIBLIOGRAPHY 157

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint

signature and encryption. In Lars R. Knudsen, editor, Proceedings:

Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture

Notes in Computer Science, pages 83–107, Amsterdam, The Nether-

lands, April 28 - May 2 2002. Springer. 16

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient

public-key cryptography in the bounded-retrieval model. In CRYPTO,

pages 36–54, 2009. 128, 129, 132, 133, 134

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultane-

ous hardcore bits and cryptography against memory attacks. In TCC,

pages 474–495, 2009. 6, 128, 131, 133, 134

[AKK09] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of

storage from homomorphic identification protocols. In ASIACRYPT,

pages 319–333, 2009. 24, 72

[AKSX04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong

Xu. Order-preserving encryption for numeric data. In Proceedings of

the ACM SIGMOD International Conference on Management of Data,

pages 563–574, 2004. 80

[ASB14] Janaka Alawatugoda, Douglas Stebila, and Colin Boyd. Modelling

after-the-fact leakage for key exchange. In ASIACCS, pages 207–216,

2014. 128, 129, 130

[BBC+13a] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David

Pointcheval, and Damien Vergnaud. Efficient uc-secure authenticated

key-exchange for algebraic languages. In Public-Key Cryptography -

PKC 2013, pages 272–291, 2013. 89

[BBC+13b] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David

Pointcheval, and Damien Vergnaud. New smooth projective hash func-

tions and one-round authenticated key exchange. IACR Cryptology

ePrint Archive, 2013:34, 2013. 89

[BBC+13c] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David

Pointcheval, and Damien Vergnaud. New techniques for sphfs and ef-

ficient one-round PAKE protocols. In CRYPTO, pages 449–475, 2013.

20

BIBLIOGRAPHY 158

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic

and efficiently searchable encryption. In CRYPTO, pages 535–552,

2007. 4, 53

[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interac-

tive protocols. In TCC, pages 266–284, 2012. 130

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash func-

tions for message authentication. In Neal Koblitz, editor, Proceedings:

Advances in Cryptology - CRYPTO 1996, volume 1109 of Lecture Notes

in Computer Science, pages 1–15, Santa Barbara, California, USA,

August 18-22 1996. Springer. 12

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach

to the design and analysis of authentication and key exchange protocols

(extended abstract). In ACM Symposium on the Theory of Computing,

pages 419–428, 1998. 133

[BCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe

Persiano. Public key encryption with keyword search. In EURO-

CRYPT, pages 506–522, 2004. 4, 18, 53, 80, 82, 83, 84, 101, 102, 106,

116, 117, 123, 124, 125

[BGPS07] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy,

and Jiri Schindler. An analysis of latent sector errors in disk drives.

In SIGMETRICS, pages 289–300, 2007. 2, 4

[BH11] Ayad F. Barsoum and M. Anwar Hasan. On verifying dynamic multiple

data copies over cloud servers. Cryptology ePrint Archive, Report

2011/447, 2011. http://eprint.iacr.org/. 27

[Bit] Bitcasa. http://www.bitcasa.com/. 3, 4, 25

[BJO09] Kevin D. Bowers, Ari Juels, and Alina Oprea. HAIL: a high-availability

and integrity layer for cloud storage. In Proc. ACM Conf. Comput.

Commun. Security, pages 187–198, 2009. 24

[BKR13] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-

locked encryption and secure deduplication. In EUROCRYPT, pages

296–312, 2013. 53, 55, 56, 57, 60, 61, 74

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and

Michael Semanko. The one-more-rsa-inversion problems and the secu-

http://eprint.iacr.org/
http://www.bitcasa.com/.

BIBLIOGRAPHY 159

rity of chaum’s blind signature scheme. J. Cryptology, 16(3):185–215,

2003. 116, 117

[Bon98] Dan Boneh. The decision diflie-hellman problem. In Joe P. Buhler,

editor, Proceedings: Algorithmic Number Theory - ANT 1998, volume

1423 of Lecture Notes in Computer Science, pages 48–63, Portland,

Oregon, USA, June 21-25 1998. Springer. 11, 12

[BPV] Olivier Blazy, David Pointcheval, and Damien Vergnaud. Round-

optimal privacy-preserving protocols with smooth projective hash

functions. In TCC, pages = 94–111, year = 2012,. 89

[BR93a] Mihir Bellare and Phillip Rogaway. Entity authentication and key

distribution. In CRYPTO, pages 232–249, 1993. 133

[BR93b] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A

paradigm for designing efficient protocols. In Dorothy E. Denning,

Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,

editors, Proceedings: ACM conference on Computer and communica-

tions security - CCS 1993, pages 62–73, Fairfax, VA, USA, November

3-5 1993. ACM. 12

[BRPL06] Jin Wook Byun, Hyun Suk Rhee, Hyun-A Park, and Dong Hoon Lee.

Off-line keyword guessing attacks on recent keyword search schemes

over encrypted data. In Secure Data Management, Third VLDB Work-

shop, SDM, pages 75–83, 2006. 83

[BSS06] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. On the inte-

gration of public key data encryption and public key encryption with

keyword search. In Information Security ISC, pages 217–232, 2006. 83

[BSS08] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Public key

encryption with keyword search revisited. In Computational Science

and Its Applications - ICCSA, pages 1249–1259, 2008. 83, 84, 113

[BSW13] Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient sig-

natures. J. Cryptology, 26(3):513–558, 2013. 128

[CBH05] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Ex-

amining indistinguishability-based proof models for key establishment

protocols. In ASIACRYPT, pages 585–604, 2005. 133

BIBLIOGRAPHY 160

[CDRW10] Sherman S. M. Chow, Yevgeniy Dodis, Yannis Rouselakis, and Brent

Waters. Practical leakage-resilient identity-based encryption from sim-

ple assumptions. In CCS, pages 152–161, 2010. 128

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle

methodology, revisited. In Jeffrey Scott Vitter, editor, Proceedings:

ACM Symposium on the Theory of Computing - STOC 1998, pages

209–218, Dallas, Texas, USA, May 23-26 1998. ACM. 13

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky.

Searchable symmetric encryption: improved definitions and efficient

constructions. In Proceedings of the 13th ACM Conference on Com-

puter and Communications Security, CCS 2006, pages 79–88, 2006.

80

[Cha83] David Chaum. Blind signature system. In CRYPTO, page 153, 1983.

17

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols

and their use for building secure channels. In EUROCRYPT, pages

453–474, 2001. 6, 128, 133, 135

[CKW13] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of

retrievability via oblivious RAM. In EUROCRYPT, pages 279–295,

2013. 29

[CLW06] Giovanni Di Crescenzo, Richard J. Lipton, and Shabsi Walfish. Per-

fectly secure password protocols in the bounded retrieval model. In

TCC, pages 225–244, 2006. 61

[CMY+15] Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo, and Xiaofen

Wang. A new general framework for secure public key encryption

with keyword search. In Information Security and Privacy - 20th Aus-

tralasian Conference, ACISP, pages 59–76, 2015. 106, 113, 124

[Coc01] Clifford Cocks. An identity based encryption scheme based on

quadratic residues. In Cryptography and Coding, pages 360–363, 2001.

83

[Cre11] Cas Cremers. Examining indistinguishability-based security models

for key exchange protocols: the case of ck, ck-hmqv, and eck. In

ASIACCS, 2011, pages 80–91, 2011. 133

BIBLIOGRAPHY 161

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a

paradigm for adaptive chosen ciphertext secure public-key encryption.

In EUROCRYPT, pages 45–64, 2002. 20, 140

[CS07] Giovanni Di Crescenzo and Vishal Saraswat. Public key encryption

with searchable keywords based on jacobi symbols. In INDOCRYPT,

pages 282–296, 2007. 83

[CW79] J.Lawrence Carter and Mark N. Wegman. Universalclasses of hash-

functions. Journal of Computer and System Sciences, 18(2):143–154,

April 1979. 12

[DAB+02] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and

Marvin Theimer. Reclaiming space from duplicate files in a serverless

distributed file system. In ICDCS, pages 617–624, 2002. 53

[Ded] The pros and cons of file-level vs. block-level data deduplica-

tion technology. http://searchdatabackup.techtarget.com/tip/

The-pros-and-cons-of-file-level-vs-block-level-data-deduplication-technology.

51

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryp-

tography. IEEE Transactions on Information Theory, 22(6):644–654,

November 1976. 11, 13, 15

[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and

Daniel Wichs. Efficient public-key cryptography in the presence of

key leakage. In ASIACRYPT, pages 613–631, 2010. 128, 129, 132, 134

[DKL09] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryp-

tography with auxiliary input. In STOC, pages 621–630, 2009. 133

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith.

Fuzzy extractors: How to generate strong keys from biometrics and

other noisy data. SIAM J. Comput., 38(1):97–139, 2008. 19

[Dro] Dropbox. http://www.dropbox.com/. 2, 3, 4, 25

[Dzi06] Stefan Dziembowski. Intrusion-resilience via the bounded-storage

model. In TCC, pages 207–224, 2006. 61

[EKPT09] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and

Roberto Tamassia. Dynamic provable data possession. In Proc. ACM

Conf. Comput. Commun. Security, pages 213–222, 2009. 29

http://searchdatabackup.techtarget.com/tip/The-pros-and-cons-of-file-level-vs-block-level-data-deduplication-technology
http://searchdatabackup.techtarget.com/tip/The-pros-and-cons-of-file-level-vs-block-level-data-deduplication-technology
http://www.dropbox.com/.

BIBLIOGRAPHY 162

[FOPS01] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques

Stern. Rsa-oaep is secure under the rsa assumption. In Joe Kilian,

editor, Proccedings: Advances in Cryptology - CRYPTO 2001, volume

2139 of Lecture Notes in Computer Science, pages 260–274, Santa Bar-

bara, California, USA, August 19-23 2001. Springer. 12

[GD12] Gantz and D.Reinsel. The digital universe in 2020: Big

data, bigger digital shadows, and biggest growth in the far

east. http://www.emc.com/collateral/analyst-reports/

idc-the-digital-universe-in-2020.pdf, 2012. 3

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct

random functions. J. ACM, 33(4):792–807, 1986. 20

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based

authenticated key exchange. In EUROCRYPT, pages 524–543, 2003.

20, 21, 82

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital sig-

nature scheme secure against adaptive chosen-message attacks. SIAM

Journal on Computing, 17(2):281–308, April 1988. 15, 16

[Goo] GoogleDrive. http://drive.google.com/. 2, 3, 4, 25

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pair-

ings for cryptographers. Discrete Applied Mathematics, 156(16):3113–

3121, September 2008. 11

[HHPS11] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-

Peleg. Proofs of ownership in remote storage systems. In Proc. ACM

Conf. Comput. Commun. Security, pages 491–500, 2011. 52, 54, 57,

74, 76, 77

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and

two-message oblivious transfer. J. Cryptology, 25(1):158–193, 2012. 20

[HL11] Shai Halevi and Huijia Lin. After-the-fact leakage in public-key en-

cryption. In TCC, pages 107–124, 2011. 129, 130

[HPS10] Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side

channels in cloud services: Deduplication in cloud storage. IEEE Se-

curity & Privacy, 8(6):40–47, 2010. 52

http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://drive.google.com/.

BIBLIOGRAPHY 163

[HSH+08] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clark-

son, William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob

Appelbaum, and Edward W. Felten. Lest we remember: Cold boot

attacks on encryption keys. In USENIX Security Symposium, pages

45–60, 2008. 6, 128, 133

[ISO] Entity authentication mechanisms-part3: Entity authentication using

asymmetric techniques. ISO/IEC IS 9789-3,, 1993. 6, 128

[JJ07] Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for

large files. In Proc. ACM Conf. Comput. Commun. Security, pages

584–597, 2007. 24, 25, 26

[JKHL09] Ik Rae Jeong, Jeong Ok Kwon, Dowon Hong, and Dong Hoon Lee.

Constructing PEKS schemes secure against keyword guessing attacks

is possible? Computer Communications, 32(2):394–396, 2009. 84

[KBR13] Sriram Keelveedhi, Mihir Bellare, and Thomas Ristenpart. Dupless:

Server-aided encryption for deduplicated storage. In USENIX Security,

pages 179–194, 2013. 55, 120, 121, 122

[Kha06] Dalia Khader. Public key encryption with keyword search based on k-

resilient IBE. In Computational Science and Its Applications - ICCSA,

pages 298–308, 2006. 82, 83

[KK05] Vishal Kher and Yongdae Kim. Securing distributed storage: chal-

lenges, techniques, and systems. In StorageSS, pages 9–25, 2005. 2,

4

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptog-

raphy. Chapman and Hall/CRC Press, 2007. 9, 12

[Kra03] Hugo Krawczyk. SIGMA: the ’sign-and-mac’ approach to authenti-

cated diffie-hellman and its use in the ike-protocols. In CRYPTO,

pages 400–425, 2003. 6, 128

[KRS+03] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and

Kevin Fu. Plutus: Scalable secure file sharing on untrusted storage.

In FAST, pages 29–42, 2003. 25

[KV09] Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with

bounded leakage resilience. In ASIACRYPT, pages 703–720, 2009. 130

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-

based authenticated key exchange. In TCC, pages 293–310, 2011. 20

BIBLIOGRAPHY 164

[LCY+14] Chang Liu, Jinjun Chen, Laurence T. Yang, Xuyun Zhang, Chi Yang,

Rajiv Ranjan, and Kotagiri Ramamohanarao. Authorized public au-

diting of dynamic big data storage on cloud with efficient verifiable

fine-grained updates. IEEE Trans. on Parall. and Distrib. Syst.,

25(9):2234–2244, 2014. 26, 28

[LKMS04] Jinyuan Li, Maxwell N. Krohn, David Mazires, and Dennis Shasha.

Secure untrusted data repository (sundr). In OSDI, pages 121–136,

2004. 25

[LLM07] Brian A. LaMacchia, Kristin E. Lauter, and Anton Mityagin. Stronger

security of authenticated key exchange. In Provable Security, pages 1–

16, 2007. 133, 135

[LRY+14] Chang Liu, Rajiv Ranjan, Chi Yang, Xuyun Zhang, Lizhe Wang, and

Jinjun Chen. Mur-dpa: Top-down levelled multi-replica merkle hash

tree based secure public auditing for dynamic big data storage on

cloud. IACR Cryptology ePrint Archive, 2014:391, 2014. 28

[Mar] R. Marvin. Google admits an android crypto prng flaw led to bitcoin

heist (august 2013). http://sdt.bz/64008. 6, 128, 129

[MB12] Dutch T. Meyer and William J. Bolosky. A study of practical dedu-

plication. TOS, 7(4):14, 2012. 4

[Mer87] Ralph C. Merkle. A digital signature based on a conventional encryp-

tion function. In CRYPTO, pages 369–378, 1987. 29, 57

[Mil10] R Miller. Amazon addresses ec2 power outages. In Data Center Knowl-

edge, volume 1, 2010. 2, 4

[MO] Daisuke Moriyama and Tatsuaki Okamoto. Leakage resilient eck-secure

key exchange protocol without random oracles. In ASIACCS. 128, 129,

132, 134

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography

(extended abstract). In TCC, pages 278–296, 2004. 133

[MVS00] Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to

build a trusted database system on untrusted storage. In OSDI, pages

135–150, 2000. 25

[MXZC14] Zhen Mo, Qingjun Xiao, Yian Zhou, and Shigang Chen. On deletion of

outsourced data in cloud computing. In 2014 IEEE 7th International

http://sdt.bz/64008

BIBLIOGRAPHY 165

Conference on Cloud Computing, Anchorage, AK, USA, June 27 -

July 2, 2014, pages 344–351, 2014. 28

[MZC12] Zhen Mo, Yian Zhou, and Shigang Chen. A dynamic proof of re-

trievability (por) scheme with o(logn) complexity. In Proceedings of

IEEE International Conference on Communications, ICC 2012, Ot-

tawa, ON, Canada, June 10-15, 2012, pages 912–916, 2012. 28

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key

leakage. In CRYPTO, pages 18–35, 2009. 128, 129, 137

[NYMX14] Jianbing Ni, Yong Yu, Yi Mu, and Qi Xia. On the security of an

efficient dynamic auditing protocol in cloud storage. IEEE Trans.

Parallel Distrib. Syst., 25(10):2760–2761, 2014. 27

[Odl85] Andrew M. Odlyzko. Discrete logarithms in finite fields and their

cryptographic significance. In Thomas Beth, Norbert Cot, and In-

gemar Ingemarsson, editors, Proceedings: Advances in Cryptology -

CRYPTO 1984, volume 209 of Lecture Notes in Computer Science,

pages 224–314, Paris, France, April 9-11 1985. Springer. 11

[Oka07] Tatsuaki Okamoto. Authenticated key exchange and key encapsulation

in the standard model. In ASIACRYPT, pages 474–484, 2007. 20, 132

[Ope] Opendedup. http://opendedup.org/. 4

[OR07] Alina Oprea and Michael K. Reiter. Integrity checking in cryptographic

file systems with constant trusted storage. In Proc. 16th USENIX

Security Symp., pages 183–198, 2007. 26

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a

block-cipher mode of operation for efficient authenticated encryption.

In Proc. ACM Conf. Comput. Commun. Security, pages 196–205, 2001.

60

[RPSL09] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee.

Improved searchable public key encryption with designated tester. In

ASIACCS, pages 376–379, 2009. 83

[RPSL10] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee.

Trapdoor security in a searchable public-key encryption scheme with

a designated tester. Journal of Systems and Software, 83(5):763–771,

2010. 83, 101, 102

http://opendedup.org/.

BIBLIOGRAPHY 166

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge

proof of knowledge and chosen ciphertext attack. In Joan Feigenbaum,

editor, Proceedings: Advances in Cryptology - CRYPTO 1991, volume

576 of Lecture Notes in Computer Science, pages 129–140, Santa Bar-

bara, California, USA, August 11-15 1992. Springer. 14

[RSK09] Hyun Sook Rhee, Willy Susilo, and Hyun-Jeong Kim. Secure search-

able public key encryption scheme against keyword guessing attacks.

IEICE Electronic Express, 6(5):237–243, 2009. 83

[SF] D. Shumow and N. Ferguson. On the possibility of a back door in the

nist sp800-90 dual ec prng. http://rump2007.cr.yp.to/15-shumow.

pdf. 6, 128, 129

[SGLM08] Mark W. Storer, Kevin M. Greenan, Darrell D. E. Long, and Ethan L.

Miller. Secure data deduplication. In StorageSS, pages 1–10, 2008. 53

[SSP13] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practi-

cal dynamic proofs of retrievability. In Proc. ACM Conf. Comput.

Commun. Security, pages 325–336, 2013. 29

[SvDOJ11] Emil Stefanov, Marten van Dijk, Alina Oprea, and Ari Juels. Iris: A

scalable cloud file system with efficient integrity checks. IACR Cryp-

tology ePrint Archive, 2011:585, 2011. 29

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability.

In ASIACRYPT, pages 90–107, 2008. 24, 25, 26, 27, 72

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical

techniques for searches on encrypted data. In IEEE Symp. Security

and Privacy, pages 44–55, 2000. 4, 53, 80

[WBDS04] Brent R. Waters, Dirk Balfanz, Glenn Durfee, and Diana K. Smetters.

Building an encrypted and searchable audit log. In NDSS, 2004. 82,

83

[WCW+13] Cong Wang, Sherman S. M. Chow, Qian Wang, Kui Ren, and Wenjing

Lou. Privacy-preserving public auditing for secure cloud storage. IEEE

Trans. Comput., 62(2):362–375, 2013. 27

[WLL14] Boyang Wang, Baochun Li, and Hui Li. Oruta: Privacy-preserving

public auditing for shared data in the cloud. IEEE Trans. on Cloud

Comput, 2(1):43–56, 2014. 8, 28, 40, 43, 44, 45, 46, 47, 48, 49

http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf

BIBLIOGRAPHY 167

[WW08] Zooko Wilcox-O’Hearn and Brian Warner. Tahoe: the least-authority

filesystem. In StorageSS, pages 21–26, 2008. 53

[WWR+11] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Enabling

public auditability and data dynamics for storage security in cloud

computing. IEEE Trans. Parall. and Distrib. Syst., 22(5):847–859,

2011. 26, 27, 28, 31, 48, 72

[XJWW13] Peng Xu, Hai Jin, Qianhong Wu, and Wei Wang. Public-key en-

cryption with fuzzy keyword search: A provably secure scheme under

keyword guessing attack. IEEE Trans. Computers, 62(11):2266–2277,

2013. 84, 101, 102, 103, 106, 123, 124, 125

[XZ14] Jia Xu and Jianying Zhou. Leakage resilient proofs of ownership in

cloud storage, revisited. In ACNS, pages 97–115, 2014. 73

[YCN+10] Jinhui Yao, Shiping Chen, Surya Nepal, David Levy, and John Zic.

Truststore: Making amazon s3 trustworthy with services composition.

In CCGRID, pages 600–605, 2010. 2, 4

[YHG08] Wei-Chuen Yau, Swee-Huay Heng, and Bok-Min Goi. Off-line keyword

guessing attacks on recent public key encryption with keyword search

schemes. In ATC, pages 100–105, 2008. 83

[YMSW13] Guomin Yang, Yi Mu, Willy Susilo, and Duncan S. Wong. Leakage re-

silient authenticated key exchange secure in the auxiliary input model.

In ISPEC, pages 204–217, 2013. 129, 134

[YNA+14] Yong Yu, Jianbing Ni, Man Ho Au, Hongyu Liu, Hua Wang, and

Chunxiang Xu. Improved security of a dynamic remote data possession

checking protocol for cloud storage. Expert Syst. Appl., 41(17):7789–

7796, 2014. 27

[YSPY10] Yu Yu, François-Xavier Standaert, Olivier Pereira, and Moti Yung.

Practical leakage-resilient pseudorandom generators. In CCS, pages

141–151, 2010. 128

[YTHW10] Guomin Yang, Chik How Tan, Qiong Huang, and Duncan S. Wong.

Probabilistic public key encryption with equality test. In CT-RSA,

pages 119–131, 2010. 4, 53, 65

[YY13] Jiawei Yuan and Shucheng Yu. Proofs of retrievability with pub-

lic verifiability and constant communication cost in cloud. In

SCC@ASIACCS, pages 19–26, 2013. 24, 25

BIBLIOGRAPHY 168

[YZYL14] Tsz Hon Yuen, Ye Zhang, Siu-Ming Yiu, and Joseph K. Liu. Identity-

based encryption with post-challenge auxiliary inputs for secure cloud

applications and sensor networks. In ESORICS, pages 130–147, 2014.

129, 130

[Zet] K. Zetter. How a crypto ’backdoor’ pitted the tech world against the

nsa. http://www.wired.com/threatlevel/2013/09/nsa-backdoor/

all/. 6, 128, 129

[ZL12] Dimitrios Zissis and Dimitrios Lekkas. Addressing cloud computing

security issues. Future Generation Comp. Syst., 28(3):583–592, 2012.

2, 4

http://www.wired.com/threatlevel/2013/09/nsa-backdoor/all/
http://www.wired.com/threatlevel/2013/09/nsa-backdoor/all/

	Secure data storage and retrieval in cloud computing
	Recommended Citation

	thesis-revision
	Abstract
	Acknowledgement
	Publications
	List of Notations
	List of Abbreviations
	Contents
	Introduction
	Background
	Problem Statement
	Data Storage in Cloud Computing
	Data Retrieval in Cloud Computing

	Contributions
	Thesis Organization

	Preliminaries
	Miscellaneous Notions
	Foundations of Algebra
	Bilinear Groups
	Complexity Assumptions
	Discrete Logarithm Assumption
	Computational Diffie-Hellman Assumption
	Decisional Diffie-Hellman Assumption

	Cryptographic Tools
	Hash Function
	Random Oracle Model
	Public-Key Encryption
	Digital Signature
	Blind Signature
	Public Key Encryption with Keyword Search
	Randomness Extractor
	Pseudo-Random Function
	Smooth Projective Hash Functions

	I Secure Data Storage
	A Formal Treatment on MHT For Cloud Auditing
	Introduction
	Motivations
	Contributions
	Related Work

	Merkle Hash Tree
	Merkle Hash Tree
	Sequence-Enforced Merkle Hash Tree (sMHT)

	Rank-Based Merkle Hash Tree
	Construction
	Efficient Verification
	Verifiable Dynamic Data Operations

	Review of Oruta
	Construction
	Replace Attack on Oruta
	Replay Attack

	Improving Oruta Using rMHT
	Verifiable Dynamic Data Operations Using rMHT
	Batch Auditing Using rMHT
	Security of the Improved Oruta

	Performance Evaluation
	Comparison With Oruta
	Experimental Results

	Chapter Summary

	BL-MLE for Secure Cloud Deduplication
	Introduction
	Motivations
	Contributions
	Related Work

	Block-Level Message-Locked Encryption
	Definition of BL-MLE
	Security Definitions for BL-MLE

	The proposed BL-MLE Scheme
	Construction
	Design Considerations
	Correctness Analysis

	Security Analysis
	Privacy
	Tag Consistency
	PoW Security

	Extension for Data Auditing
	Extension of Our Scheme
	Security Analysis
	Improved PoW Protocol with Stronger Security

	Performance Analysis
	Chapter Summary

	II Secure Data Retrieval
	Dual-Server PEKS for Secure Data Retrieval
	Introduction
	Motivations
	Contributions and Techniques
	Related Work

	Dual-Server PEKS
	Overview
	Formal Definition
	Security Models

	Linear and Homomorphic SPHF
	Generic Construction of DS-PEKS
	Generic Construction
	Security Analysis

	The Proposed DS-PEKS Scheme
	LH-SPHF Based on The Diffie-Hellman Language
	A Concrete DS-PEKS Scheme Based on SPHFDH

	Performance Evaluation
	Chapter Summary

	Server-Aided PEKS for Secure Data Retrieval
	Introduction
	Contributions
	Related Work

	Server-Aided PEKS
	Overview
	Formal Definition
	Security Models

	PEKS-to-SA-PEKS Transformation
	A Universal Transformation
	Security Analysis

	An Instantiation of SA-PEKS
	Underlying Schemes
	Resulting SA-PEKS

	Implementation and Performance
	The Client-KS Protocol
	The Instantiated Scheme

	Chapter Summary

	Strongly Secure AKE for Data Transmission
	Introduction
	Motivations
	Contributions and Techniques
	Related Work

	A New Strong Security Model for AKE
	AKE Protocol
	eCK Security Model
	Challenge-Dependent Leakage-Resilient eCK Model

	One-Round CLR-eCK-Secure AKE
	Extended Smooth Projective Hash Function
	General Framework
	Security Analysis

	An Instantiation from DDH Assumption
	DDH-based SPHF
	Concrete AKE Protocol

	Chapter Summary

	III Conclusion and Future Work
	Conclusion and Future Work
	Conclusion
	Secure Data Storage in Cloud Computing
	Secure Data Retrieval in Cloud Computing

	Future Work

	Bibliography

