4 research outputs found

    Leakage Current Reduction Using Subthreshold Source-Coupled Logic

    Get PDF
    The performance of subthreshold source-coupled logic (STSCL) circuits for ultra-low power applications is explored. It is shown that the power consumption of STSCL circuits can be reduced well below the subthreshold leakage current of static CMOS circuits. STSCL circuits exhibit a better power-delay performance compared to their static CMOS counterparts in situations where the leakage current constitutes a significant part of the power dissipation of static CMOS gates. The superior control on power consumption, in addition to lower sensitivity to the process and supply voltage variations make STSCL topology very suitable for implementing ultra-low-power low-frequency digital systems in modern nanometer scale technologies. An analytical approach for comparing the power-delay performance of these two topologies is proposed

    FORCED STACK SLEEP TRANSISTOR (FORTRAN): A NEW LEAKAGE CURRENT REDUCTION APPROACH IN CMOS BASED CIRCUIT DESIGNING

    Get PDF
    Reduction in leakage current has become a significant concern in nanotechnology-based low-power, low-voltage, and high-performance VLSI applications. This research article discusses a new low-power circuit design the approach of FORTRAN (FORced stack sleep TRANsistor), which decreases the leakage power efficiency in the CMOS-based circuit outline in VLSI domain. FORTRAN approach reduces leakage current in both active as well as standby modes of operation. Furthermore, it is not time intensive when the circuit goes from active mode to standby mode and vice-versa. To validate the proposed design approach, experiments are conducted in the Tanner EDA tool of mentor graphics bundle on projected circuit designs for the full adder, a chain of 4-inverters, and 4-bit multiplier designs utilizing 180nm, 130nm, and 90nm TSMC technology node. The outcomes obtained show the result of a 95-98% vital reduction in leakage power as well as a 15-20% reduction in dynamic power with a minor increase in delay. The result outcomes are compared for accuracy with the notable design approaches that are accessible for both active and standby modes of operation

    InP microdisks for optical signal processing and data transmission

    Get PDF
    The performance increase in telecommunication and computing systems demands an ever increasing input-output (IO) bandwidth and IO density, which can be met by integrated photonics. Using photonic integration, much higher densities of optical components can be achieved allowing for short-range optical communication systems in, e.g., high performance computers. The key functionalities required for these optical communication systems are light generation, light modulation and light detection. In addition to this other functionalities are also desirable, such as wavelength conversion. This thesis highlights the design and fabrication of indium phosphide (InP) microdisks heterogeneously integrated on silicon-on-insulator substrates. The fabrication of the microdisks in a laboratory clean-room environment is described. These devices can fulfil the above-mentioned functions required in optical communication. Experiments are then performed on the fabricated devices dealing with these various functionalities that are required for optical communication. The lasing properties of the devices are shown and simulated with a spatiallydependent rate equation model accurately predicting the device behaviour. A detailed speed analysis is given, including a parameter extraction of the devices. The operation of the devices as detectors is highlighted. Furthermore the PhD thesis provides a deep analysis of the use of InP microdisks as modulators. Besides the forward-biased operation principle using the free-carrier plasma-dispersion effect, also a high-speed reversely biased operation mode is proposed and demonstrated experimentally. The thesis also describes various approaches on how to improve the performance of the devices, in particular when using them as lasers. Ways how to increase the output power and how to enhance the operation speed are discussed. Because the device is strongly dependent on the coupling between the resonant InP cavity and the silicon waveguide, an extensive analysis of the coupling and the influence of certain process steps on the device performance are given. The PhD thesis concludes the work carried out on InP microdisks and gives an outlook about improving the device performance with respect to specific applications and how to further improve the manufacturability of the devices. Finally, for the InP microdisk-based devices an outlook is given about suitable applications, such as on-chip optical links for instance
    corecore