47 research outputs found

    Coordinated multi-robot formation control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Unmanned Robotic Systems and Applications

    Get PDF
    This book presents recent studies of unmanned robotic systems and their applications. With its five chapters, the book brings together important contributions from renowned international researchers. Unmanned autonomous robots are ideal candidates for applications such as rescue missions, especially in areas that are difficult to access. Swarm robotics (multiple robots working together) is another exciting application of the unmanned robotics systems, for example, coordinated search by an interconnected group of moving robots for the purpose of finding a source of hazardous emissions. These robots can behave like individuals working in a group without a centralized control

    Analysis of multi-agent systems under varying degrees of trust, cooperation, and competition

    Full text link
    Multi-agent systems rely heavily on coordination and cooperation to achieve a variety of tasks. It is often assumed that these agents will be fully cooperative, or have reliable and equal performance among group members. Instead, we consider cooperation as a spectrum of possible interactions, ranging from performance variations within the group to adversarial agents. This thesis examines several scenarios where cooperation and performance are not guaranteed. Potential applications include sensor coverage, emergency response, wildlife management, tracking, and surveillance. We use geometric methods, such as Voronoi tessellations, for design insight and Lyapunov-based stability theory to analyze our proposed controllers. Performance is verified through simulations and experiments on a variety of ground and aerial robotic platforms. First, we consider the problem of Voronoi-based coverage control, where a group of robots must spread out over an environment to provide coverage. Our approach adapts online to sensing and actuation performance variations with the group. The robots have no prior knowledge of their relative performance, and in a distributed fashion, compensate by assigning weaker robots a smaller portion of the environment. Next, we consider the problem of multi-agent herding, akin to shepherding. Here, a group of dog-like robots must drive a herd of non-cooperative sheep-like agents around the environment. Our key insight in designing the control laws for the herders is to enforce geometrical relationships that allow for the combined system dynamics to reduce to a single nonholonomic vehicle. We also investigate the cooperative pursuit of an evader by a group of quadrotors in an environment with no-fly zones. While the pursuers cannot enter the no-fly zones, the evader moves freely through the zones to avoid capture. Using tools for Voronoi-based coverage control, we provide an algorithm to distribute the pursuers around the zone's boundary and minimize capture time once the evader emerges. Finally, we present an algorithm for the guaranteed capture of multiple evaders by one or more pursuers in a bounded, convex environment. The pursuers utilize properties of the evader's Voronoi cell to choose a control strategy that minimizes the safe-reachable area of the evader, which in turn leads to the evader's capture

    Formation-Based Odour Source Localisation Using Distributed Terrestrial and Marine Robotic Systems

    Get PDF
    This thesis tackles the problem of robotic odour source localisation, that is, the use of robots to find the source of a chemical release. As the odour travels away from the source, in the form of a plume carried by the wind or current, small scale turbulence causes it to separate into intermittent patches, suppressing any gradients and making this a particularly challenging search problem. We focus on distributed strategies for odour plume tracing in the air and in the water and look primarily at 2D scenarios, although novel results are also presented for 3D tracing. The common thread to our work is the use of multiple robots in formation, each outfitted with odour and flow sensing devices. By having more than one robot, we can gather observations at different locations, thus helping overcome the difficulties posed by the patchiness of the odour concentration. The flow (wind or current) direction is used to orient the formation and move the robots up-flow, while the measured concentrations are used to centre the robots in the plume and scale the formation to trace its limits. We propose two formation keeping methods. For terrestrial and surface robots equipped with relative or absolute positioning capabilities, we employ a graph-based formation controller using the well-known principle of Laplacian feedback. For underwater vehicles lacking such capabilities, we introduce an original controller for a leader-follower triangular formation using acoustic modems with ranging capabilities. The methods we propose underwent extensive experimental evaluation in high-fidelity simulations and real-world trials. The marine formation controller was implemented in MEDUSA autonomous vehicles and found to maintain a stable formation despite the multi-second ranging period. The airborne plume tracing algorithm was tested using compact Khepera robots in a wind tunnel, yielding low distance overheads and reduced tracing error. A combined approach for marine plume tracing was evaluated in simulation with promising results

    Formation-Based Odour Source Localisation Using Distributed Terrestrial and Marine Robotic Systems

    Get PDF
    This thesis tackles the problem of robotic odour source localisation, that is, the use of robots to find the source of a chemical release. As the odour travels away from the source, in the form of a plume carried by the wind or current, small scale turbulence causes it to separate into intermittent patches, suppressing any gradients and making this a particularly challenging search problem. We focus on distributed strategies for odour plume tracing in the air and in the water and look primarily at 2D scenarios, although novel results are also presented for 3D tracing. The common thread to our work is the use of multiple robots in formation, each outfitted with odour and flow sensing devices. By having more than one robot, we can gather observations at different locations, thus helping overcome the difficulties posed by the patchiness of the odour concentration. The flow (wind or current) direction is used to orient the formation and move the robots up-flow, while the measured concentrations are used to centre the robots in the plume and scale the formation to trace its limits. We propose two formation keeping methods. For terrestrial and surface robots equipped with relative or absolute positioning capabilities, we employ a graph-based formation controller using the well-known principle of Laplacian feedback. For underwater vehicles lacking such capabilities, we introduce an original controller for a leader-follower triangular formation using acoustic modems with ranging capabilities. The methods we propose underwent extensive experimental evaluation in high-fidelity simulations and real-world trials. The marine formation controller was implemented in MEDUSA autonomous vehicles and found to maintain a stable formation despite the multi-second ranging period. The airborne plume tracing algorithm was tested using compact Khepera robots in a wind tunnel, yielding low distance overheads and reduced tracing error. A combined approach for marine plume tracing was evaluated in simulation with promising results

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Get PDF
    We propose a multi-step evaluation schema designed to help procurement agencies and others to examine the ethical dimensions of autonomous systems to be applied in the security sector, including autonomous weapons systems

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    Distributed Control for Collective Behaviour in Micro-unmanned Aerial Vehicles

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.The work presented herein focuses on the design of distributed autonomous controllers for collective behaviour of Micro-unmanned Aerial Vehicles (MAVs). Two alternative approaches to this topic are introduced: one based upon the Evolutionary Robotics (ER) paradigm, the other one upon flocking principles. Three computer simulators have been developed in order to carry out the required experiments, all of them having their focus on the modelling of fixed-wing aircraft flight dynamics. The employment of fixed-wing aircraft rather than the omni-directional robots typically employed in collective robotics significantly increases the complexity of the challenges that an autonomous controller has to face. This is mostly due to the strict motion constraints associated with fixed-wing platforms, that require a high degree of accuracy by the controller. Concerning the ER approach, the experimental setups elaborated have resulted in controllers that have been evolved in simulation with the following capabilities: (1) navigation across unknown environments, (2) obstacle avoidance, (3) tracking of a moving target, and (4) execution of cooperative and coordinated behaviours based on implicit communication strategies. The design methodology based upon flocking principles has involved tests on computer simulations and subsequent experimentation on real-world robotic platforms. A customised implementation of Reynolds’ flocking algorithm has been developed and successfully validated through flight tests performed with the swinglet MAV. It has been notably demonstrated how the Evolutionary Robotics approach could be successfully extended to the domain of fixed-wing aerial robotics, which has never received a great deal of attention in the past. The investigations performed have also shown that complex and real physics-based computer simulators are not a compulsory requirement when approaching the domain of aerial robotics, as long as proper autopilot systems (taking care of the ”reality gap” issue) are used on the real robots.EOARD (European Office of Aerospace Research & Development), euCognitio

    Safe navigation and motion coordination control strategies for unmanned aerial vehicles

    Full text link
    Unmanned aerial vehicles (UAVs) have become very popular for many military and civilian applications including in agriculture, construction, mining, environmental monitoring, etc. A desirable feature for UAVs is the ability to navigate and perform tasks autonomously with least human interaction. This is a very challenging problem due to several factors such as the high complexity of UAV applications, operation in harsh environments, limited payload and onboard computing power and highly nonlinear dynamics. Therefore, more research is still needed towards developing advanced reliable control strategies for UAVs to enable safe navigation in unknown and dynamic environments. This problem is even more challenging for multi-UAV systems where it is more efficient to utilize information shared among the networked vehicles. Therefore, the work presented in this thesis contributes towards the state-of-the-art in UAV control for safe autonomous navigation and motion coordination of multi-UAV systems. The first part of this thesis deals with single-UAV systems. Initially, a hybrid navigation framework is developed for autonomous mobile robots using a general 2D nonholonomic unicycle model that can be applied to different types of UAVs, ground vehicles and underwater vehicles considering only lateral motion. Then, the more complex problem of three-dimensional (3D) collision-free navigation in unknown/dynamic environments is addressed. To that end, advanced 3D reactive control strategies are developed adopting the sense-and-avoid paradigm to produce quick reactions around obstacles. A special case of navigation in 3D unknown confined environments (i.e. tunnel-like) is also addressed. General 3D kinematic models are considered in the design which makes these methods applicable to different UAV types in addition to underwater vehicles. Moreover, different implementation methods for these strategies with quadrotor-type UAVs are also investigated considering UAV dynamics in the control design. Practical experiments and simulations were carried out to analyze the performance of the developed methods. The second part of this thesis addresses safe navigation for multi-UAV systems. Distributed motion coordination methods of multi-UAV systems for flocking and 3D area coverage are developed. These methods offer good computational cost for large-scale systems. Simulations were performed to verify the performance of these methods considering systems with different sizes
    corecore