2,242 research outputs found

    Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    Full text link
    The Fermi surface of a metal is the fundamental basis from which its properties can be understood. In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report the discovery of a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency demonstrates that it is a distinct Fermi surface and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction caused by the charge-density-wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap.Comment: 23 pages, 5 figure

    Anisotropy of the Optimally-Doped Iron Pnictide Superconductor Ba(Fe0.926Co0.074)2As2

    Full text link
    Anisotropies of electrical resistivity, upper critical field, London penetration depth and critical currents have been measured in single crystals of the optimally doped iron pnictide superconductor Ba(Fe1x_{1-x}Cox_x)2_2As2_2, xx=0.074 and TcT_c \sim23 K. The normal state resistivity anisotropy was obtained by employing both the Montgomery technique and direct measurements on samples cut along principal crystallographic directions. The ratio γρ=ρc/ρa\gamma_{\rho} = \rho_c /\rho_a is about 4±\pm1 just above TcT_c and becomes half of that at room temperature. The anisotropy of the upper critical field, γH=Hc2,ab/Hc2,c\gamma_{H} = H_{c2,ab} /H_{c2,c} , as determined from specific heat measurements close to TcT_c, is in the range of 2.1 to 2.6, depending on the criterion used. A comparable low anisotropy of the London penetration depth, γλ=λc/λab\gamma_{\lambda}=\lambda_{c}/\lambda_{ab}, was recorded from TDR measurements and found to persist deep into the superconducting state. An anisotropy of comparable magnitude was also found in the critical currents, γj=jc,ab/jc,c\gamma_j=j_{c,ab}/j_{c,c}, as determined from both direct transport measurements (\sim1.5) and from the analysis of the magnetization data (\sim3). Overall, our results show that iron pnictide superconductors manifest anisotropies consistent with essentially three-dimensional intermetallic compound and bear little resemblance to cuprates

    1D TiO2 nanostructures probed by 2D transmission electron microscopy

    Get PDF
    Hybrid solar cells based on nanoparticulate TiO2, dye and poly(3-hexylthiophene) are a common benchmark in the field of solid-state dye-sensitized solar cells. One-dimensionally nanostructured titanium dioxide is expected to enhance power-conversion efficiency (PCE) due to a high surface area combined with a direct path for electrons from the active interface to the back electrode. However, current devices do not meet those expectations and cannot surpass their mesoporous counterparts. This work approaches the problem by detailed investigation of diverse nanostructures on a nanoscale by advanced transmission electron microscopy (TEM). Anodized TiO2 nanotubes are analyzed concerning their crystallinity. An unexpectedly large grain size is found, and its implication is shown by corresponding solar cell characteristics which feature an above-average fill factor. Quasi-single crystalline rutile nanowires are grown hydrothermally, and a peculiar defect structure consisting of free internal surfaces is revealed. A growth model based on Coulombic repulsion and steric hindrance is developed to explain the resulting V-shaped defect cascade. The influence of the defects on solar cell performance is investigated and interpreted by a combination of TEM, electronic device characterization and photoluminescence spectroscopy, including lifetime measurements. A specific annealing treatment is proposed to counter the defects, suppressing several loss mechanisms and resulting in an improvement of PCEs by 35 %. Simultaneously, a process is developed to streamline electron-tomographic reconstruction of complex nanoparticles. Its suitability is demonstrated by the reconstruction of a gold nanostar and a number of iron-based particles distributed on few-layered graphene

    High Speed Human Action Recognition using a Photonic Reservoir Computer

    Full text link
    The recognition of human actions in videos is one of the most active research fields in computer vision. The canonical approach consists in a more or less complex preprocessing stages of the raw video data, followed by a relatively simple classification algorithm. Here we address recognition of human actions using the reservoir computing algorithm, which allows us to focus on the classifier stage. We introduce a new training method for the reservoir computer, based on "Timesteps Of Interest", which combines in a simple way short and long time scales. We study the performance of this algorithm using both numerical simulations and a photonic implementation based on a single non-linear node and a delay line on the well known KTH dataset. We solve the task with high accuracy and speed, to the point of allowing for processing multiple video streams in real time. The present work is thus an important step towards developing efficient dedicated hardware for video processing

    Interfacial charge transfer in nanoscale polymer transistors

    Get PDF
    Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors. While the details remain elusive in many systems, this charge transfer has been inferred in a number of photoemission experiments. We present electronic transport measurements in very short channel (L<100L < 100 nm) transistors made from poly(3-hexylthiophene) (P3HT). As channel length is reduced, the evolution of the contact resistance and the zero-gate-voltage conductance are consistent with such charge transfer. Short channel conduction in devices with Pt contacts is greatly enhanced compared to analogous devices with Au contacts, consistent with charge transfer expectations. Alternating current scanning tunneling microscopy (ACSTM) provides further evidence that holes are transferred from Pt into P3HT, while much less charge transfer takes place at the Au/P3HT interface.Comment: 19 preprint pages, 6 figure

    Event Control through Motion Detection

    Get PDF
    Computer Vision is the study of machines that extract information from an image and perform some processing on the captured images to extract necessary data to solve some task. As a scientic discipline, the study of computer vision is concerned with the theories behind articial systems that extract information from images. The image data could in several dierent forms and formats, such as video sequences, views from multiple cameras, or multi-dimensional data acquired from a medical scanner. As a technological discipline, computer vision intends to apply its theories and models to the construction and design of computer vision systems The role of computer vison in robots is providing detailed information about the environment. A robust vision system should be able to detect and identify objects reliably and provide an accurate representation of the environment to higher level processes. The vision system should also be highly ecient, allowing a resource limited agent to respond quickly to a changing environment. Each frame acquired by a digital camera must be processed in a small, usually xed, amount of time. Algorithmic complexity is therefore constrained, introducing a tradeo between processing time and the quality of the information acquired. In most robotic applications, the vision system is the main perception device and autonomous robots must be capable of using it in order to self-localize and locate the objects that they have to manipulate. The objective of the project was to build a computer controlled bot which could collect and deposit balls rolling down a ramp with the help of overhead/onboard camera.The ojective was achieved with the use of Motion History Image(MHI) based image processing algortihms and microcontroller based controling of motors
    corecore