
Event Control

through Motion Detection

Project submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology

in

Computer Science and Engineering

by

Vivek Bhatt

Ankur Samantara

Kamaljeet Singh

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

May 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53187897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Event Control

through Motion Detection

Project submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology

in

Computer Science and Engineering

by

Vivek Bhatt(107CS021)

Ankur Samantara(107CS026)

Kamaljeet Singh(107CS054)

Under the guidance of

Prof. Pankaj Kumar Sa

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

May 2011

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, India. www.nitrkl.ac.in

Dr. Pankaj K Sa
Assistant Professor

May 09, 2011

Certificate

This is to certify that the work in the project entitled Event Control through

Motion Detection by Vivek Bhatt, Ankur Samantara, and Kamaljeet

Singh is a record of an original work carried out by them under my supervision

and guidance in partial fulfillment of the requirements for the award of the degree

of Bachelor of Technology in Computer Science and Engineering. Neither this

project nor any part of it has been submitted for any degree or academic award

elsewhere.

Pankaj K Sa

Acknowledgment

We are grateful to numerous local and global peers who have contributed towards

shaping this project. At the outset, We would like to express our sincere thanks to

Prof. Pankaj Kumar Sa for his advice during our project work. As our supervisor,

he has constantly encouraged us to remain focused on achieving our goal. His

observations and comments helped us to establish the overall direction of the

research and to move forward with investigation in depth. He has helped us

greatly and been a source of knowledge.

We are higly indebted to Prof. Ashok Kumar Turuk, Head-CSE, for his con-

tinuous encouragement and support, as he has always been eager to help. We are

also thankful to all the professors of the department for their support.

We are thankful to all our friends. Our sincere thanks to everyone who has

provided us with inspirational words, a welcome ear, new ideas, constructive crit-

icism, and their invaluable time, We are truly indebted.

We must acknowledge the academic resources that we have acquired from NIT

Rourkela. We would like to thank the administrative and technical staff members

of the department who have been kind enough to advise and help in their respec-

tive roles.

Last, but not the least, we would like to dedicate this project to our families,

for their love, patience, and understanding.

Vivek Bhatt, Ankur Samantara and Kamaljeet Singh

Abstract

Computer Vision is the study of machines that extract information from an image

and perform some processing on the captured images to extract necessary data

to solve some task. As a scientific discipline, the study of computer vision is

concerned with the theories behind artificial systems that extract information

from images. The image data could in several different forms and formats, such as

video sequences, views from multiple cameras, or multi-dimensional data acquired

from a medical scanner. As a technological discipline, computer vision intends to

apply its theories and models to the construction and design of computer vision

systems

The role of computer vison in robots is providing detailed information about

the environment. A robust vision system should be able to detect and identify

objects reliably and provide an accurate representation of the environment to

higher level processes. The vision system should also be highly efficient, allowing

a resource limited agent to respond quickly to a changing environment. Each

frame acquired by a digital camera must be processed in a small, usually fixed,

amount of time. Algorithmic complexity is therefore constrained, introducing a

tradeoff between processing time and the quality of the information acquired. In

most robotic applications, the vision system is the main perception device and

autonomous robots must be capable of using it in order to self-localize and locate

the objects that they have to manipulate.

The objective of the project was to build a computer controlled bot which could

collect and deposit balls rolling down a ramp with the help of overhead/onboard

camera.The ojective was achieved with the use of Motion History Image(MHI)

based image processing algortihms and microcontroller based controling of motors.

Contents

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures vii

1 Introduction 2

1.1 Real Time Systems . 2

1.2 Computer Vision . 3

1.2.1 Role of CV in Robotics . 3

1.2.2 openCV(the tool) . 4

1.3 Literature Survey . 4

1.3.1 MHI . 4

1.3.2 Serial Communication . 7

1.3.3 RGB color Coding . 7

1.4 Goal and Objectives . 9

1.4.1 Goal . 9

1.4.2 Objectives . 9

1.5 Problem Formulation . 9

1.5.1 Ramp . 10

1.5.2 Collection Platform . 10

1.5.3 Robot Specifications . 10

1.6 Hardware and Software Requirements 12

v

1.6.1 Hardware Requirements: . 12

1.6.2 Software Requirements . 15

2 Hardware Implementation 17

2.1 Initializing Microcontroller . 17

2.2 Data sending . 17

2.3 Data receiving . 18

2.4 Motor Movement . 18

2.5 Robot control . 19

3 Software Implementation 22

3.1 Ball Detection . 22

3.1.1 Capture of image: . 23

3.1.2 Separation of the background and the foreground 23

3.1.3 Detection of colour . 23

3.2 Updating Motion History Image . 25

3.2.1 Convert frame to grayscale 25

3.2.2 Get difference between frames 26

3.2.3 Threshold the image . 26

3.2.4 Update MHI . 26

3.3 Calculating motion . 27

3.3.1 Calculate Motion Gradient 28

3.3.2 Segment Motion . 28

3.3.3 Removing Noise . 29

3.3.4 Calculation Motion Centers and motion angle 29

3.4 Communicating with Robot . 30

3.4.1 Setting up of channel . 30

3.4.2 Sending data . 30

3.4.3 Recieving Data . 31

4 Conclusions 33

Bibliography 34

List of Figures

1.1 Motion History Image From Moving Silhouette 6

1.2 Direction of Flow Image . 6

1.3 Resulting Normal Motion Directions 7

1.4 RGB Color Model . 8

1.5 Arena . 11

1.6 TSOP based obstacle detector . 12

1.7 Skid Steer Relay Motor Driver . 12

1.8 AtMega Rapid Robot Controller Board 13

1.9 PC-MCU Serial Link . 14

1.10 High Torque DC geared Motor . 14

2.1 Robot Top View . 20

2.2 Robot Side View . 20

2.3 Robot Front View . 20

3.1 Original Image . 24

3.2 Image after Red Color Filter . 25

3.3 Original Image . 27

3.4 Image showing movement and its direction 27

vii

Introduction

Real Time Systems

Computer Vision

Literature Survey

Goal and Objectives

Problem Formulation

Hardware and Software Requirements

Chapter 1

Introduction

1.1 Real Time Systems

In computer science, real-time computing (RTC), or reactive computing, is the

study of hardware and software systems that are subject to a “real-time constraint”–

i.e., operational deadlines from event to system response. Real-time programs

must execute within strict constraints on response time[1]. By contrast, a non-

real-time system is one for which there is no deadline, even if fast response or

high performance is desired or preferred. The needs of real-time software are

often addressed in the context of real-time operating systems, and synchronous

programming languages, which provide frameworks on which to build real-time

application software.

A real-time system may be one where its application can be considered (within

context) to be mission critical. The anti-lock brakes on a car are a simple ex-

ample of a real-time computing system the real-time constraint in this system is

the time in which the brakes must be released to prevent the wheel from locking.

Real-time computations can be said to have failed if they are not completed before

their deadline, where their deadline is relative to an event. A real-time deadline

must be met, regardless of system load.

2

1.2 Computer Vision

1.2 Computer Vision

It is the study of machines that are able to extract information from an image

that is necessary to solve some task. As a scientific discipline, computer vision is

concerned with the theory behind artificial systems that extract information from

images. The image data can take many forms, such as video sequences, views from

multiple cameras, or multi-dimensional data from a medical scanner. As a tech-

nological discipline, computer vision seeks to apply its theories and models to the

construction of computer vision systems. Examples of applications of computer

vision include systems for:

1. Controlling processes (e.g., an industrial robot or an autonomous vehicle).

2. Detecting events (e.g., for visual surveillance or people counting).

3. Organizing information (e.g., for indexing databases of images and image

sequences).

4. Modeling objects or environments (e.g., industrial inspection, medical image

analysis or topographical modeling).

5. Interaction (e.g., as the input to a device for computer-human interaction).

1.2.1 Role of CV in Robotics

Vision is essential for both humans and robots for providing detailed information

and the reconstruction of the environment. It should be possible for a robust

vision system to detect objects reliably and provide an accurate representation of

the world for processing by the higher level processes. The vision system must

necessarily be highly efficient, allowing a resource constrained agent to respond

quickly and timely to a changing environment. Each frame acquired by a digital

camera must be processed in a small, and fixed, amount of time. Algorithmic

complexity is therefore a guiding factor, introducing a tradeoff between processing

time and the quality of the information acquired. In most robotic systems, the

3

1.3 Literature Survey

vision system is the main perception medium and autonomous robots must be

capable of using it in order to self-localize and locate and identify the objects that

they have to manipulate, and respond accordingly.

1.2.2 openCV(the tool)

The OpenCV Library is mainly aimed at real time computer vision. Some ex-

ample areas would be Human-Computer Interaction (HCI); Object Identification,

Segmentation, and Recognition; Face Recognition; Gesture Recognition; Motion

Tracking, Ego Motion,and Motion Understanding; Structure From Motion (SFM);

and Mobile Robotics.

The OpenCV Library is a collection of low-overhead, high-performance operations

performed on images. The OpenCV implements a wide variety of tools for image

interpretation. It is compatible with Intel Image Processing Library (IPL) that

implements low-level operations on digital images. In spite of primitives such as

binarization, filtering, image statistics, pyramids, OpenCV is mostly a high-level

library implementing algorithms for calibration techniques (Camera Calibration),

feature detection (Feature) and tracking (Optical Flow), shape analysis (Geom-

etry, Contour Processing), motion analysis (Motion Templates, Estimators), 3D

reconstruction (View Morphing), object segmentation and recognition (Histogram,

Embedded Hidden Markov Models, Eigen Objects)[2].

1.3 Literature Survey

1.3.1 MHI

The MHI is a static image template where pixel intensity is a function of the

motion history at that location, where brighter values correspond to more recent

motion.

Motion Representation

The formal description of MHI suggests that motion can be represented using

MHI, as the motion is most likely to occur from the faintest (least recent) to the

4

1.3 Literature Survey

brightest (most recent) pixels, in an MHI template.

This representation can be shown as follows:

A frame capturing a foreground silhouette of the moving object is shown in fig-

ure 1.1 (left) . Acquiring a clear silhouette is achieved through application of

some back-ground subtraction techniques. As the object moves, copying the most

recent foreground silhouette as the highest values in the motion history image cre-

ates a layered history of the resulting motion; normally this highest value is just

a floating point timestamp of time elapsing since the application was launched in

milliseconds.

The result, which is called the Motion History Image (MHI) is shown in figure 1.1

(right). A pixel level or a time-delta threshold, as appropriate, is set such that

pixel values in the MHI image that fall below that threshold are set to zero. The

most recent motion has the highest value, earlier motions have decreasing values

subject to a threshold below which the value is set to zero. Different stages of

creating and processing motion templates are described below.

A.Updating MHI Images

Generally, floating point images are used because system time differences, that

is, time elapsing since the application was launched, are read in milliseconds to

be further converted into a floating point number which is the value of the most

recent silhouette.

Then follows writing this current silhouette over the past silhouettes with subse-

quent thresholding away pixels that are too old (beyond a maximum mhiDuration)

to create the MHI.

B) Making Motion Gradient Image

1. Start with the MHI image as shown in Figure 1.1(left).

2. Apply 3x3 Sobel operators X and Y to the image.

5

1.3 Literature Survey

Figure 1.1: Motion History Image From Moving Silhouette

3. If the resulting response at a pixel location (X,Y) is Sx(x,y) to the Sobel op-

erator X and Sy(x,y) to the operator Y, then the orientation of the gradient

is calculated as:

A(x, y) = arctan
Sy((x, y)

Sx(x, y))

, and the magnitude of the gradient is:

M(x, y) =
√

(Sx2(x, y) + Sy2(x, y))

4. The equations are applied to the image yielding direction or angle of a flow

image superimposed over the MHI image as shown in Figure 1.2.

Figure 1.2: Direction of Flow Image

6

1.3 Literature Survey

5. The boundary pixels of the MH region may give incorrect motion angles and

magnitudes, as Figure 1.2 shows. Thresholding away magnitudes that are

either too large or too small can be a remedy in this case. Figure 1.3 shows

the ultimate results.[2][3][4]

Figure 1.3: Resulting Normal Motion Directions

1.3.2 Serial Communication

Serial communication is the process of sending data one bit at a time, sequentially,

over a communication channel or computer bus. This is in contrast to parallel com-

munication, where several bits are sent as a whole, on a link with several parallel

channels. Serial communication is used for all long-haul communication and most

computer networks, where the cost of cable and synchronization difficulties make

parallel communication impractical

1.3.3 RGB color Coding

The RGB color model is an additive color model in which red, green, and blue

light are added together in various ways to reproduce a broad array of colors. The

name of the model comes from the initials of the three additive primary colors,

red, green, and blue.

To form a color with RGB, three colored light beams (one red, one green, and

7

1.3 Literature Survey

Figure 1.4: RGB Color Model

one blue) must be superimposed (for example by emission from a black screen, or

by reflection from a white screen). Each of the three beams is called a component

of that color, and each of them can have an arbitrary intensity, from fully off to

fully on, in the mixture.

The RGB color model is additive in the sense that the three light beams are added

together, and their light spectra add, wavelength for wavelength, to make the final

color’s spectrum.[6][7]

Zero intensity for each component gives the darkest color (no light, considered the

black), and full intensity of each gives a white; the quality of this white depends

on the nature of the primary light sources, but if they are properly balanced, the

result is a neutral white matching the system’s white point. When the intensities

for all the components are the same, the result is a shade of gray, darker or lighter

depending on the intensity. When the intensities are different, the result is a col-

orized hue, more or less saturated depending on the difference of the strongest and

weakest of the intensities of the primary colors employed.

When one of the components has the strongest intensity, the color is a hue near

this primary color (reddish, greenish, or bluish), and when two components have

the same strongest intensity, then the color is a hue of a secondary color (a shade of

cyan, magenta or yellow). A secondary color is formed by the sum of two primary

colors of equal intensity: cyan is green+blue, magenta is red+blue, and yellow is

red+green. Every secondary color is the complement of one primary color; when

8

1.5 Problem Formulation

a primary and its complementary secondary color are added together, the result

is white: cyan complements red, magenta complements green, and yellow comple-

ments blue.[5] The RGB color model itself does not define what is meant by red,

green, and blue colorimetrically, and so the results of mixing them are not speci-

fied as absolute, but relative to the primary colors. When the exact chromaticities

of the red, green, and blue primaries are defined, the color model then becomes

an absolute color space, such as sRGB

1.4 Goal and Objectives

1.4.1 Goal

Build a computer controlled robot which can collect and deposit balls rolling down

a ramp with the help of overhead/onboard camera.

1.4.2 Objectives

1. Building Of Mechanical Robot capable of picking up balls and dropping

them at specific locations

2. Designing a developing software capable of communicating between robot

and computer

3. Designing and developing software for image processing and extracting de-

sired information.

1.5 Problem Formulation

Arena Specifications The Arena consists of two parts.

9

1.5 Problem Formulation

1.5.1 Ramp

1. It consists of a rectangular ramp of inner dimension 2400 mm × 1000 mm,

Coloured ‘green’ (the playing surface is green felt mat or carpet). The floor

under the carpet is level, flat and hard.

2. At the top end are 5 launching pods from where the balls are launched.

3. Immediately following the pods is a 300 mm wide Pin Belt consisting of 6

rows of pins, to obstruct the path of the ball and provide randomness to

their trajectories.

4. Then there is 2000 mm of completely unhindered ramp for the ball to roll

down.

5. The sides of the ramp are lined with walls 60 mm high.

6. The boundary between the ramp and platform is marked with a 30mm thick

white line.

1.5.2 Collection Platform

1. At the base of the ramp is a flat collection zone of inner dimensions 300 mm

× 1200 mm, coloured ‘green’ (the playing surface is green felt mat or carpet)

2. The platform is at a depth of 180 mm below the ramp.

3. At each end, there is a pocket of dimensions 300 mm × 60mm for collecting

balls

1.5.3 Robot Specifications

1. Only one robot is to perform the entire task and no support is provided by

any other means.

2. The robot must fit into a cube of 200 mm × 200 mm × 250 mm at all times.

It may not expand at any point during its run beyond these dimensions ,

even for performing tasks like grabbing etc.

10

1.5 Problem Formulation

Figure 1.5: Arena

3. The uses an on board power supply. No external power supply is allowed.

The max potential difference between any two points should not exceed 24V.

4. The robot can collect more than one ball at a time before depositing.

5. The robot is fully independent, with powering and motoring mechanisms

self-contained. However, it can communicate with the computer using either

wired or wireless data transfer.

6. The robotic equipment is fully autonomous. Human operators are not per-

mitted to enter any information into the equipment during a run. The

human operator should not directly control the motion of their robots with

a joystick or by keyboard commands under any circumstances.

7. The robot cannot be constructed using readymade Lego kits or any ready-

made mechanism. But use of readymade gear assemblies and readymade

wireless modules is allowed.

8. The robot has to work on the principle of image processing. Any sort of

ambiguity is not allowed.

9. The robot is allowed to touch the boundary of the ramp freely for any kind

of feedback.

11

1.6 Hardware and Software Requirements

1.6 Hardware and Software Requirements

1.6.1 Hardware Requirements:

1. TSOP based obstacle detector / proximity sensing module It is a

Figure 1.6: TSOP based obstacle detector

hardware module that gives a high value output (output 1) when an object

is within its threshold distance and low output (output 0) when it is unable

to detect the presence of an object within the threshold distance limit.

2. Skid Steer Relay Motor Driver It is a specially designed circuit for

Figure 1.7: Skid Steer Relay Motor Driver

controlling the motion of the motors in an efficient manner. It’s specific

features are:-

(a) 10 Amp. per motor capacity

(b) Provides automatic breaking (DC breaking) of motors in normal con-

dition which makes it advantageous in competitions.

12

1.6 Hardware and Software Requirements

Figure 1.8: AtMega Rapid Robot Controller Board

3. AtMega Rapid Robot Controller Board A high speed microcontroller,

Atmega 128 is used for controlling the robot and communicating with the

computer. Its specific features are:-

(a) On-board Regulator with filters and Operating voltage from 6V - 20 V

(b) 8 LED’s selectable though individual jumpers

(c) 3 switches including reset

(d) 2 switches on interrupt pins

(e) Power on/off toggle switch

(f) 16MHz crystal for maximum clock speed

(g) AREF setting potentiometer

(h) LED Power Indicator

(i) All pins accessible through FRC 10 pin male connectors

(j) 2 USART for serial communication

4. PC-MCU Serial Link This circuit module makes a virtual COM port on

any PC when connected on a USB port, so it can be used for communication

between PC software (Link Hyper Terminal) and microcontroller. Its specific

features are :-

(a) Can be used with any controller UART/USART

13

1.6 Hardware and Software Requirements

Figure 1.9: PC-MCU Serial Link

(b) Extra RTS and DTR signals

(c) External interface reduces board size and complexity

5. High Torque DC geared Motor High torque DC geared motor with

Figure 1.10: High Torque DC geared Motor

metal gearbox and off centered shaft is used for motion of the robot. A DC

motor is also used for picking and depositing the balls. Specific features

are—

(a) 450RPM 12V DC motors with Metal Gearbox

(b) 25000 RPM base motor

(c) 6mm shaft diameter

(d) Gearbox diameter 37 mm.

(e) Motor Diameter 28.5 mm

(f) Length 63 mm without shaft

(g) 300gm weight

14

1.6 Hardware and Software Requirements

(h) 20kgcm torque

(i) No-load current = 800 mA(Max), Load current = upto 9.5 A(Max)

6. Lithium Polymer (Li-Po) Rechargeable Battery 12.6V 2200mAH

20C It is light weight and small size battery compared to any other battery

of similar capacity. It is used to power the robot’s on-board equipments.

IMAX B5 5 Amp multipurpose battery charger is used for charging this

battery.[8] Its specific features are—

(a) Long life with full capacity for 1000 charge cycles

(b) 3X Li-Po 4.2V 2200mAh cells (3S1P)

(c) 192Grams Weight

(d) Volume: 10cm × 3.3cm × 2cm

(e) Discharge Current: 20 × 2200maH = 44Amp

(f) Max Charging Current: 1A

7. USB Atmega Programmer A specifically designed circuit to burn the

program on Atmega microcontroller. It has a USB based interface.

8. Other supplementary materials Some other hardware are required such

as connecting wires, USB extension cables etc.

1.6.2 Software Requirements

1. Windows Operating System

2. Open CV

3. Dev Cpp IDE

4. AVR Studio 4

5. Extreme Electronics Burner

6. PC - MCU serial link driver

15

Hardware Implementation

Initializing Microcontroller

Data sending

Data receiving

Motor Movement

Robot control

Chapter 2

Hardware Implementation

2.1 Initializing Microcontroller

The lower order 4 bits of PORTA are set to take input from the TSOP object

detector sensor. The lower order 4 bits of PORTC are set to send output to

control the movement of the motors. USART is initialized for the transmission of

data between computer and the robot. The baud rate is set to 9600.

void USART1 Init ()

{

UBRR1H=0x00 ;

UBRR1L=0x67 ;

UCSR1B=0x98 ;

UCSR1C=0x06 ;

UCSR1A=0x00 ;

}

2.2 Data sending

For transmitting data we wait till the 1st bit on UCSR0A is not equal to 1. 1st

bit on UCSR0A indicates whether output buffer is empty or not. Once output

buffer is empty we can put 8 bit data in the UDR (USART data register) for

transmission.

17

2.4 Motor Movement

void USART0 Transmit (char data)

{

/∗ Wait f o r data to be t ransmi t ∗/

while ((UCSR0A & 0x20) != 0x20)

{

}

/∗Put the data i n t o the b u f f e r ∗/

UDR0=data ;

}

2.3 Data receiving

For receiving data we wait till 4th bit on UCSR0A is not equal to 1. 4th bit on

UCSR0A indicates whether input buffer is empty or not. Once output buffer is

full we can take 8 bit data from the UDR (USART data register).

char USART0 Receive (void)

{

/∗ Wait f o r data to be r e c e i v e d ∗/

while ((UCSR0A & 0x80) != 0x80) ;

/∗ Get and re turn r e c e i v e d data from b u f f e r ∗/

char data=UDR0;

return data ;

}

2.4 Motor Movement

Photo of Motor driver board Usage :

1. Connect the 6 wires to RC circuits and 4 wires to motors

18

2.5 Robot control

2. Upon giving the battery/power supply input to circuit it will drive the mo-

tors as per the input from RC circuit.

1. Pin outs:

(a) Output section (Screwed connector)

i. Pin 1 : Motor 1 a

ii. Pin 2 : Motor 1 b

iii. Pin 3 : Motor 2 a

iv. Pin 4 : Motor 2 b

(b) Input Section (6 Pin male Header)

i. Pin 1 : Forward

ii. Pin 2 : Backward

iii. Pin 3 : Left

iv. Pin 4 : Right

(c) Pin 5 : +ve to External Circuit

(d) Pin 6 : -ve to External Circuit

2. Power Connector

(a) Power Supply +

(b) Power Supply -

2.5 Robot control

Data is received from computer for movement of the bot to specific location to

collect specific color ball. On reaching the destination, the bot corrects its position

based upon the correction data sent by the computer. After collecting the ball,

bot goes to the targeted pit depending upon the color of the ball and deposits the

ball there and comes back to the edge of the arena platform to wait for the next

command.

19

2.5 Robot control

Figure 2.1: Robot Top View

Figure 2.2: Robot Side View

Figure 2.3: Robot Front View

20

Software Implementation

Ball Detection

Updating Motion History Image

Calculating motion

Communicating with Robot

Chapter 3

Software Implementation

Steps of IP Algorithm

1. Ball Detection

2. Updating MHI

3. Calculating Motion

4. Communicating with the Robot

3.1 Ball Detection

The first step in solving the given problem statement involves the detecton o f the

ball as it rolls down the ramp. This also involves the identification tof the colour

of the rolling ball.

The following sub-steps have to be followed to perform this step

1. Capture of image

2. Separation of the background and the foreground:

3. Detection of colour

22

3.1 Ball Detection

3.1.1 Capture of image:

Image is captpured from hte image feed from the overhead camera.

In opencv caputure is a Image variable

capture = cvCaptureFromFile(argv[1]);

3.1.2 Separation of the background and the foreground

Here first all the pixels having RGB values for colours other than GREEN, which

is the background are selected. These pixel groups give us the presence of an

object which is ball in this case.

3.1.3 Detection of colour

Different Color filters are applied to the image obtained by seperating the fore-

ground and the background (the input frame) and results were stored in different

Image varaibles

Filter for RED colour

input image = imageIn

output image = imageR

for (int i =1; i<imageIn−>he ight ; i++)

{

for (int j =0; j<imageIn−>width ; j++)

{

s1=cvGet2D (imageIn , i , j) ;

R=s1 . va l [0] ;

G=s1 . va l [1] ;

B=s1 . va l [2] ;

i f (R>=100&&G<100&&B<100)

{

23

3.1 Ball Detection

s2 . va l [0]=255 ;

s2 . va l [1]=255 ;

s2 . va l [2]=255 ;

}

else

{

s2 . va l [0] = 0 ;

s2 . va l [1] = 0 ;

s2 . va l [2] = 0 ;

}

cvSet2D (imageR , i , j , s2) ;

}

}

The above code snippet identifies the red coloured balls rolling down the ramp.

Similarly filter for other colours can be applied using approprite RGB values and

other colours can be identified.

Figure 3.1: Original Image

24

3.2 Updating Motion History Image

Figure 3.2: Image after Red Color Filter

3.2 Updating Motion History Image

1. Convert frame to grayscale

2. Get difference between frames

3. Threshold the image

4. Update MHI

Once the ball is located and its colour has been identified, the next step is to

create and update a Motion History Image (MHI). The following are the sub-

steps involves:

3.2.1 Convert frame to grayscale

To begin with the input image , which is a filtered image and consists of only one

colour pixels is taken and it is converted into grayscale. This steps leads to an

image which has all background pixels as black pixels and all the pixels where ball

is present as white pixels. This allows to easily find the difference between two

frames.

cvCvtColor(img, buf[last], CV_BGR2GRAY)

where RGB[A]->Gray: Y<-0.299*R + 0.587*G + 0.114*B

25

3.2 Updating Motion History Image

3.2.2 Get difference between frames

Next find the difference between successive frames taking the grayscale images aas

the input

cvAbsDiff(const CvArr* src1, const CvArr* src2, CvArr* dst);

where, src1=First Source Array

src2=Second Source Array

dst=Destination Array

3.2.3 Threshold the image

Threshold values for several parameters are specified that govern, by what mini-

mum values several parameters of two successive images should differ to be con-

sidered as a differences between two images.

cvThreshold(silh, silh, 30, 1, CV_THRESH_BINARY);

where, silh=Source Array

silh=Destination Array

30 =Threshold Value

3.2.4 Update MHI

Finally the Motion History image is updated using silhuotte image over the MHI

image.The function UpdateMotionHistory updates the motion history image with

a silhouette, assigning the current timestamp value to those mhi pixels that have

corresponding non-zero silhouette pixels. The function also clears mhi pixels older

than timestamp mhiDuration if the corresponding silhouette values are 0.

cvUpdateMotionHistory(silh, mhi, timestamp, MHI_DURATION);

26

3.3 Calculating motion

Figure 3.3: Original Image

Figure 3.4: Image showing movement and its direction

3.3 Calculating motion

1. Calculate Motion Gradient

2. Segment Motion

3. Removing Noise

4. Calculation Motion Centers and motion angle

27

3.3 Calculating motion

3.3.1 Calculate Motion Gradient

The function finds minimum (m(x,y)) and maximum (M(x,y)) MHI values over

each pixel (x,y) neighborhood and assumes the gradient is valid only if

”MIN TIME DELTA <= M(x, y)−m(x, y) ≤MAX TIME DELTA”.

cvCalcMotionGradient(mhi, mask, orient, MAX_TIME_DELTA,

MIN_TIME_DELTA, 3);

where ,

mhi = Motion history image.

mask =Mask image, marks pixels where motion gradient data

is correct.

orient=Motion gradient orientation image; contains angles

from 0 to ~360.

3 = Aperture size of derivative operators used by the function

The function cvCalcMotionGradient calculates the derivatives dx and dy of

MHI and then calculates gradient orientation as:

orientation(x, y) = arctan
dy

dx

3.3.2 Segment Motion

Identifying the several sequence of motion components

seq = cvSegmentMotion(mhi, segmask, storage, timestamp, MAX_TIME_DELTA);

where

segMask = Image where the mask found should be stored, single-channel,

32-bit floating-point.

storage = Memory storage that will contain a sequence of motion connected

components.

timestamp = Current time in milliseconds or other units.

segthresh = Segmentation threshold.

28

3.3 Calculating motion

3.3.3 Removing Noise

Noise in Motion segments is removed on the basis of:

1. Size of Motion segment

2. Percentage motion in Motion segment

Size of Motion segment

Very small motion sizes can also be neglected as the grayscale image of the same

object by the same digital camera differs by a few isolated pixels , so these can be

attributee to this feature.

Percentage motion in Motion segment

All differences below a certain percenatge is neglected as that can be associated

with the noise in the signal. Only the differences above a certain value are con-

sidered to be be rolling balls.

3.3.4 Calculation Motion Centers and motion angle

This step involves detection of the direction and angle of motion using the motion

History image.

angle

angle = cvCalcGlobalOrientation(orient, mask, mhi, timestamp,

MHI_DURATION);

angle = 360.0 - angle;

// adjust for images with top-left origin

count = cvNorm(silh, 0, CV_L1, 0);

// calculate number of points within silhouette ROI

29

3.4 Communicating with Robot

center

center = cvPoint((comp_rect.x + comp_rect.width/2),

(comp_rect.y + comp_rect.height/2));

3.4 Communicating with Robot

Once the ball and its colour has been detected and the angle and direction of mo-

tion are established, these values are to be communicated to the ROBOT using

SERIAL communication.

Following steps are involved in setting up the serial communication :

1. Setting up of channel

2. Sending data

3. Recieving data

3.4.1 Setting up of channel

Here we create a handle on pcCommPort (Com4) with read/write exclusive access

and default security attributes. Its attributes are then set to BaudRate = 9600,

ByteSize =8, Parity = NOPARITY, StopBits = ONESTOPBIT

HANDLE hCom = CreateFile(pcCommPort, GENERIC_READ |GENERIC_WRITE,

0,NULL,OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,NULL)

3.4.2 Sending data

void Se r i a lPutc (HANDLE ∗hCom, char txchar)

{

BOOL bWriteRC ;

stat ic DWORD iBytesWritten ;

30

3.4 Communicating with Robot

bWriteRC = WriteFi l e (∗hCom, &txchar , 1,& iBytesWritten ,NULL) ;

i f (! bWriteRC)

{ p r i n t f (” e r r o r ”) ; }

return ;

}

3.4.3 Recieving Data

char Se r i a lGe t c (HANDLE ∗hCom)

{

char rxchar ;

BOOL bReadRC ;

stat ic DWORD iBytesRead ;

bReadRC = ReadFile (∗hCom, &rxchar , 1 , &iBytesRead , NULL) ;

i f (! bReadRC)

{ p r i n t f (” e r r o r ”) ; }

return rxchar ;

}

31

Conclusions

Chapter 4

Conclusions

An image processing system was designed as per the problem statement which suc-

cessfully made runs and achieved the objective. The system successfully collected

balls rolling down the ramp and deposited them in the desired locations.

Future work may include randomization of problem statement to get results

under more varying circumstances and a more realistic approach. Also better

image processing can be done to avoid lighting condition dependency and better

shadow removal techniques can be developed.

33

Bibliography

[1]Ben-Ari, M., Principles of Concurrent and Distributed Programming,Prentice

Hall, 1990. ISBN 0-13-711821-X. Ch16, Page 164.

[2] Intel OpenCV Reference Manual 1999-2001, http://developer.intel.com.

[3]J. Davis and Bobick , The Representation and Recognition of Action Using

Temporal Templates,MIT Media Lab Technical Report 402, 1997.

[4] G. Bradski and J. Davis , Motion Segmentation and Pose Recognition with

Motion History Gradients,IEEE WACV’00, 2000.

[5]Rafeel C. Gonzalez and Richard E. Woods, Digital Image Processing, third edi-

tion,ISBN 978-81-317-2695-2 ,Prentice Hall PTR, 2008.

[6]Charles A. Poynton , Digital Video and HDTV: Algorithms and Interfaces,Morgan

Kaufmann. ISBN 1558607927, 2003.

[7]Nicholas Boughen, Lightwave 3d 7.5 Lighting, Wordware Publishing, Inc. ISBN

1556223544, 2003.

[8]Roboshop, www.robokits.co.in.

[9]R. Fisher, K Dawson-Howe, A. Fitzgibbon, C. Robertson, E. Trucco , Dictionary

of Computer Vision and Image Processing,ISBN 0-470-01526-8,John Wiley,2005.

[10]Online Free Encyclopedia. http://en.wikipedia.org.

[11]Adam Osborne, An Introduction to Microcomputers Volume 1: Basic Concepts,Osborne-

McGraw Hill Berkeley California USA, 1980 ISBN 0-931988-34-9 pp. 116-126.

[12]AVR Atmega128 datasheet , http://www.atmel.com/atmel/acrobat/doc2467.

pdf.

[13]Pedram Azad, Tilo Gockel, Rdiger Dillmann, Computer Vision - Principles

and Practice,Elektor International Media BV. ISBN 0905705718, 2008.

[14]Wilhelm Burger and Mark J. Burge, Wilhelm Burger and Mark J. Burge,Springer.

34

Bibliography

ISBN 1846283795 and ISBN 3540309403,2007.

[15]Tim Morris, Computer Vision and Image Processing, Palgrave Macmillan.

ISBN 0-333-99451-5, 2004.

[16]Gady Agam, Introduction to programming with OpenCV,

http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.

html, 2006.

35

