10,828 research outputs found

    Using Fuzzy Linguistic Representations to Provide Explanatory Semantics for Data Warehouses

    Get PDF
    A data warehouse integrates large amounts of extracted and summarized data from multiple sources for direct querying and analysis. While it provides decision makers with easy access to such historical and aggregate data, the real meaning of the data has been ignored. For example, "whether a total sales amount 1,000 items indicates a good or bad sales performance" is still unclear. From the decision makers' point of view, the semantics rather than raw numbers which convey the meaning of the data is very important. In this paper, we explore the use of fuzzy technology to provide this semantics for the summarizations and aggregates developed in data warehousing systems. A three layered data warehouse semantic model, consisting of quantitative (numerical) summarization, qualitative (categorical) summarization, and quantifier summarization, is proposed for capturing and explicating the semantics of warehoused data. Based on the model, several algebraic operators are defined. We also extend the SQL language to allow for flexible queries against such enhanced data warehouses

    Minimal Synthesis of String To String Functions From Examples

    Full text link
    We study the problem of synthesizing string to string transformations from a set of input/output examples. The transformations we consider are expressed using deterministic finite automata (DFA) that read pairs of letters, one letter from the input and one from the output. The DFA corresponding to these transformations have additional constraints, ensuring that each input string is mapped to exactly one output string. We suggest that, given a set of input/output examples, the smallest DFA consistent with the examples is a good candidate for the transformation the user was expecting. We therefore study the problem of, given a set of examples, finding a minimal DFA consistent with the examples and satisfying the functionality and totality constraints mentioned above. We prove that, in general, this problem (the corresponding decision problem) is NP-complete. This is unlike the standard DFA minimization problem which can be solved in polynomial time. We provide several NP-hardness proofs that show the hardness of multiple (independent) variants of the problem. Finally, we propose an algorithm for finding the minimal DFA consistent with input/output examples, that uses a reduction to SMT solvers. We implemented the algorithm, and used it to evaluate the likelihood that the minimal DFA indeed corresponds to the DFA expected by the user.Comment: SYNT 201

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    Initial Experiments with TPTP-style Automated Theorem Provers on ACL2 Problems

    Get PDF
    This paper reports our initial experiments with using external ATP on some corpora built with the ACL2 system. This is intended to provide the first estimate about the usefulness of such external reasoning and AI systems for solving ACL2 problems.Comment: In Proceedings ACL2 2014, arXiv:1406.123

    Symbolic semantics and bisimulation for full LOTOS

    Get PDF
    No abstract avaliabl
    corecore