3,368 research outputs found

    Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization

    Full text link
    Creating impact in real-world settings requires artificial intelligence techniques to span the full pipeline from data, to predictive models, to decisions. These components are typically approached separately: a machine learning model is first trained via a measure of predictive accuracy, and then its predictions are used as input into an optimization algorithm which produces a decision. However, the loss function used to train the model may easily be misaligned with the end goal, which is to make the best decisions possible. Hand-tuning the loss function to align with optimization is a difficult and error-prone process (which is often skipped entirely). We focus on combinatorial optimization problems and introduce a general framework for decision-focused learning, where the machine learning model is directly trained in conjunction with the optimization algorithm to produce high-quality decisions. Technically, our contribution is a means of integrating common classes of discrete optimization problems into deep learning or other predictive models, which are typically trained via gradient descent. The main idea is to use a continuous relaxation of the discrete problem to propagate gradients through the optimization procedure. We instantiate this framework for two broad classes of combinatorial problems: linear programs and submodular maximization. Experimental results across a variety of domains show that decision-focused learning often leads to improved optimization performance compared to traditional methods. We find that standard measures of accuracy are not a reliable proxy for a predictive model's utility in optimization, and our method's ability to specify the true goal as the model's training objective yields substantial dividends across a range of decision problems.Comment: Full version of paper accepted at AAAI 201

    Detecting Strong Ties Using Network Motifs

    Full text link
    Detecting strong ties among users in social and information networks is a fundamental operation that can improve performance on a multitude of personalization and ranking tasks. Strong-tie edges are often readily obtained from the social network as users often participate in multiple overlapping networks via features such as following and messaging. These networks may vary greatly in size, density and the information they carry. This setting leads to a natural strong tie detection task: given a small set of labeled strong tie edges, how well can one detect unlabeled strong ties in the remainder of the network? This task becomes particularly daunting for the Twitter network due to scant availability of pairwise relationship attribute data, and sparsity of strong tie networks such as phone contacts. Given these challenges, a natural approach is to instead use structural network features for the task, produced by {\em combining} the strong and "weak" edges. In this work, we demonstrate via experiments on Twitter data that using only such structural network features is sufficient for detecting strong ties with high precision. These structural network features are obtained from the presence and frequency of small network motifs on combined strong and weak ties. We observe that using motifs larger than triads alleviate sparsity problems that arise for smaller motifs, both due to increased combinatorial possibilities as well as benefiting strongly from searching beyond the ego network. Empirically, we observe that not all motifs are equally useful, and need to be carefully constructed from the combined edges in order to be effective for strong tie detection. Finally, we reinforce our experimental findings with providing theoretical justification that suggests why incorporating these larger sized motifs as features could lead to increased performance in planted graph models.Comment: To appear in Proceedings of WWW 2017 (Web-science track
    • …
    corecore