5,530 research outputs found

    Pore-scale fluid flow simulation coupling lattice Boltzmann method and pore network model

    Get PDF
    The lattice Boltzmann method and pore network model are two types of the most popular pore-scale fluid flow simulation methods. As a direct numerical simulation method, lattice Boltzmann method simulates fluid flow directly in the realistic porous structures, characterized by high computational accuracy but low efficiency. On the contrary, pore network model simulates fluid flow in simplified regular pore networks of the real porous media, which is more computationally efficient, but fails to capture the detailed pore structures and flow processes. In past few years, significant efforts have been devoted to couple lattice Boltzmann method and pore network model to simulate fluid flow in porous media, aiming to combine the accuracy of lattice Boltzmann method and efficiency of pore network model. In this mini-review, the recent advances in pore-scale fluid flow simulation methods coupling lattice Boltzmann method and pore network model are summarized, in terms of single-phase flow, quasi-static two-phase drainage flow and dynamic two-phase flow in porous media, demonstrating that coupling the lattice Boltzmann method and pore network model offers a promising and effective approach for addressing the up-scaling problem of flow in porous media.Cited as: Zhao, J., Liu, Y., Qin, F., Fei, L. Pore-scale fluid flow simulation coupling lattice Boltzmann method and pore network model. Capillarity, 2023, 7(3): 41-46. https://doi.org/10.46690/capi.2023.06.0

    Evaluation of pressure boundary conditions for permeability calculations using the lattice-Boltzmann method

    Get PDF
    Lattice-Boltzmann (LB) simulations are a common tool to numerically estimate the permeability of porous media. For valuable results, the porous structure has to be well resolved resulting in a large computational effort as well as high memory demands. In order to estimate the permeability of realistic samples, it is of importance to not only implement very efficient codes, but also to choose the most appropriate simulation setup to achieve accurate results. With the focus on accuracy and computational effort, we present a comparison between different methods to apply an effective pressure gradient, efficient boundary conditions, as well as two LB implementations based on pore-matrix and pore-list data structures.Comment: 16 pages, 6 figure

    A new lattice Boltzmann model for interface reactions between immiscible fluids

    Get PDF
    In this paper, we describe a lattice Boltzmann model to simulate chemical reactions taking place at the interface between two immiscible fluids. The phase-field approach is used to identify the interface and its orientation, the concentration of reactant at the interface is then calculated iteratively to impose the correct reactive flux condition. The main advantages of the model is that interfaces are considered part of the bulk dynamics with the corrective reactive flux introduced as a source/sink term in the collision step, and, as a consequence, the model’s implementation and performance is independent of the interface geometry and orientation. Results obtained with the proposed model are compared to analytical solution for three different benchmark tests (stationary flat boundary, moving flat boundary and dissolving droplet). We find an excellent agreement between analytical and numerical solutions in all cases. Finally, we present a simulation coupling the Shan Chen multiphase model and the interface reactive model to simulate the dissolution of a collection of immiscible droplets with different sizes rising by buoyancy in a stagnant fluid

    Large-scale grid-enabled lattice-Boltzmann simulations of complex fluid flow in porous media and under shear

    Get PDF
    Well designed lattice-Boltzmann codes exploit the essentially embarrassingly parallel features of the algorithm and so can be run with considerable efficiency on modern supercomputers. Such scalable codes permit us to simulate the behaviour of increasingly large quantities of complex condensed matter systems. In the present paper, we present some preliminary results on the large scale three-dimensional lattice-Boltzmann simulation of binary immiscible fluid flows through a porous medium derived from digitised x-ray microtomographic data of Bentheimer sandstone, and from the study of the same fluids under shear. Simulations on such scales can benefit considerably from the use of computational steering and we describe our implementation of steering within the lattice-Boltzmann code, called LB3D, making use of the RealityGrid steering library. Our large scale simulations benefit from the new concept of capability computing, designed to prioritise the execution of big jobs on major supercomputing resources. The advent of persistent computational grids promises to provide an optimal environment in which to deploy these mesoscale simulation methods, which can exploit the distributed nature of compute, visualisation and storage resources to reach scientific results rapidly; we discuss our work on the grid-enablement of lattice-Boltzmann methods in this context.Comment: 17 pages, 6 figures, accepted for publication in Phil.Trans.R.Soc.Lond.

    Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media

    Full text link
    Numerical micropermeametry is performed on three dimensional porous samples having a linear size of approximately 3 mm and a resolution of 7.5 ÎĽ\mum. One of the samples is a microtomographic image of Fontainebleau sandstone. Two of the samples are stochastic reconstructions with the same porosity, specific surface area, and two-point correlation function as the Fontainebleau sample. The fourth sample is a physical model which mimics the processes of sedimentation, compaction and diagenesis of Fontainebleau sandstone. The permeabilities of these samples are determined by numerically solving at low Reynolds numbers the appropriate Stokes equations in the pore spaces of the samples. The physical diagenesis model appears to reproduce the permeability of the real sandstone sample quite accurately, while the permeabilities of the stochastic reconstructions deviate from the latter by at least an order of magnitude. This finding confirms earlier qualitative predictions based on local porosity theory. Two numerical algorithms were used in these simulations. One is based on the lattice-Boltzmann method, and the other on conventional finite-difference techniques. The accuracy of these two methods is discussed and compared, also with experiment.Comment: to appear in: Phys.Rev.E (2002), 32 pages, Latex, 1 Figur
    • …
    corecore