61 research outputs found

    Lattice congruences of the weak order

    Full text link
    We study the congruence lattice of the poset of regions of a hyperplane arrangement, with particular emphasis on the weak order on a finite Coxeter group. Our starting point is a theorem from a previous paper which gives a geometric description of the poset of join-irreducibles of the congruence lattice of the poset of regions in terms of certain polyhedral decompositions of the hyperplanes. For a finite Coxeter system (W,S) and a subset K of S, let \eta_K:w \mapsto w_K be the projection onto the parabolic subgroup W_K. We show that the fibers of \eta_K constitute the smallest lattice congruence with 1\equiv s for every s\in(S-K). We give an algorithm for determining the congruence lattice of the weak order for any finite Coxeter group and for a finite Coxeter group of type A or B we define a directed graph on subsets or signed subsets such that the transitive closure of the directed graph is the poset of join-irreducibles of the congruence lattice of the weak order.Comment: 26 pages, 4 figure

    Combinatorial generation via permutation languages. II. Lattice congruences

    Full text link
    This paper deals with lattice congruences of the weak order on the symmetric group, and initiates the investigation of the cover graphs of the corresponding lattice quotients. These graphs also arise as the skeleta of the so-called quotientopes, a family of polytopes recently introduced by Pilaud and Santos [Bull. Lond. Math. Soc., 51:406-420, 2019], which generalize permutahedra, associahedra, hypercubes and several other polytopes. We prove that all of these graphs have a Hamilton path, which can be computed by a simple greedy algorithm. This is an application of our framework for exhaustively generating various classes of combinatorial objects by encoding them as permutations. We also characterize which of these graphs are vertex-transitive or regular via their arc diagrams, give corresponding precise and asymptotic counting results, and we determine their minimum and maximum degrees. Moreover, we investigate the relation between lattice congruences of the weak order and pattern-avoiding permutations

    Celebrating Loday’s associahedron

    Get PDF
    We survey Jean-Louis Loday’s vertex description of the associahedron, and its far reaching influence in combinatorics, discrete geometry, and algebra. We present in particular four topics where it plays a central role: lattice congruences of the weak order and their quotientopes, cluster algebras and their generalized associahedra, nested complexes and their nestohedra, and operads and the associahedron diagonal

    From the Tamari lattice to Cambrian lattices and beyond

    Full text link
    In this chapter, we trace the path from the Tamari lattice, via lattice congruences of the weak order, to the definition of Cambrian lattices in the context of finite Coxeter groups, and onward to the construction of Cambrian fans. We then present sortable elements, the key combinatorial tool for studying Cambrian lattices and fans. The chapter concludes with a brief description of the applications of Cambrian lattices and sortable elements to Coxeter-Catalan combinatorics and to cluster algebras.Comment: This is a chapter in an upcoming Tamari Festscrift. There have been minor changes since the first version poste

    Combinatorial generation via permutation languages

    Get PDF
    In this work we present a general and versatile algorithmic framework for exhaustively generating a large variety of different combinatorial objects, based on encoding them as permutations. This approach provides a unified view on many known results and allows us to prove many new ones. In particular, we obtain the following four classical Gray codes as special cases: the Steinhaus-Johnson-Trotter algorithm to generate all permutations of an nn-element set by adjacent transpositions; the binary reflected Gray code to generate all nn-bit strings by flipping a single bit in each step; the Gray code for generating all nn-vertex binary trees by rotations due to Lucas, van Baronaigien, and Ruskey; the Gray code for generating all partitions of an nn-element ground set by element exchanges due to Kaye. We present two distinct applications for our new framework: The first main application is the generation of pattern-avoiding permutations, yielding new Gray codes for different families of permutations that are characterized by the avoidance of certain classical patterns, (bi)vincular patterns, barred patterns, Bruhat-restricted patterns, mesh patterns, monotone and geometric grid classes, and many others. We thus also obtain new Gray code algorithms for the combinatorial objects that are in bijection to these permutations, in particular for five different types of geometric rectangulations, also known as floorplans, which are divisions of a square into nn rectangles subject to certain restrictions. The second main application of our framework are lattice congruences of the weak order on the symmetric group~SnS_n. Recently, Pilaud and Santos realized all those lattice congruences as (n1)(n-1)-dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra, permutahedra etc. Our algorithm generates the equivalence classes of each of those lattice congruences, by producing a Hamilton path on the skeleton of the corresponding quotientope, yielding a constructive proof that each of these highly symmetric graphs is Hamiltonian. We thus also obtain a provable notion of optimality for the Gray codes obtained from our framework: They translate into walks along the edges of a polytope

    The facial weak order and its lattice quotients

    Get PDF
    We investigate a poset structure that extends the weak order on a finite Coxeter group WW to the set of all faces of the permutahedron of WW. We call this order the facial weak order. We first provide two alternative characterizations of this poset: a first one, geometric, that generalizes the notion of inversion sets of roots, and a second one, combinatorial, that uses comparisons of the minimal and maximal length representatives of the cosets. These characterizations are then used to show that the facial weak order is in fact a lattice, generalizing a well-known result of A. Bj\"orner for the classical weak order. Finally, we show that any lattice congruence of the classical weak order induces a lattice congruence of the facial weak order, and we give a geometric interpretation of their classes. As application, we describe the facial boolean lattice on the faces of the cube and the facial Cambrian lattice on the faces of the corresponding generalized associahedron.Comment: 40 pages, 13 figure

    Permutrees

    Get PDF
    We introduce permutrees, a unified model for permutations, binary trees, Cambrian trees and binary sequences. On the combinatorial side, we study the rotation lattices on permutrees and their lattice homomorphisms, unifying the weak order, Tamari, Cambrian and boolean lattices and the classical maps between them. On the geometric side, we provide both the vertex and facet descriptions of a polytope realizing the rotation lattice, specializing to the permutahedron, the associahedra, and certain graphical zonotopes. On the algebraic side, we construct a Hopf algebra on permutrees containing the known Hopf algebraic structures on permutations, binary trees, Cambrian trees, and binary sequences.Comment: 43 pages, 25 figures; Version 2: minor correction
    corecore