6,917 research outputs found

    Aeroservoelastic tailoring for lateral control enhancement

    Get PDF
    The need for effective aileron power for aircraft lateral control and turning maneuvers dates back to the Wright Brothers and their wing warping concept for active stabilization of their aircraft. Early researchers in Great Britain, Japan, Germany and the United States explored ways to increase the effectiveness of control aileron to generate a roll moment. The basic problem of aileron effectiveness and the interrelationship between structural distortion and the loads applied by the control surface is illustrated. A rigid wing/aileron surface will develop the capability to generate increased roll rates as airspeed increases. A flexible surface will become less effective as airspeed increases because of the twisting distortion created by the aft-mounted control surface. This tendency is further worsened by bending distortion of an aft swept wing. This study focuses its attention on the ability of a combined effort between structural redesign of a wing and sizing and placement of a control surface to create specified roll performance with a minimum hinge moment. This design optimization problem indicates the advantages of simultaneous consideration of structural design and control design

    An in-flight simulation of lateral control nonlinearities

    Get PDF
    An in-flight simulation program was conducted to explore, in a generalized way, the influence of spoiler-type roll-control nonlinearities on handling qualities. The roll responses studied typically featured a dead zone or very small effectiveness for small control inputs, a very high effectiveness for mid-range deflections, and low effectiveness again for large inputs. A linear force gradient with no detectable breakout force was provided. Given otherwise good handling characteristics, it was found that moderate nonlinearities of the types tested might yield acceptable roll control, but the best level of handling qualities is obtained with linear, aileron-like control

    Multi-state and non-volatile control of graphene conductivity with surface electric fields

    Full text link
    Planar electrodes patterned on a ferroelectric substrate are shown to provide lateral control of the conductive state of a two-terminal graphene stripe. A multi-level and on-demand memory control of the graphene resistance state is demonstrated under low sub-coercive electric fields, with a susceptibility exceeding by more than two orders of magnitude those reported in a vertical gating geometry. Our example of reversible and low-power lateral control over 11 memory states in the graphene conductivity illustrates the possibility of multimemory and multifunctional applications, as top and bottom inputs remain accessible.Comment: Graphene ferroelectric lateral structure for multi-state and non-volatile conductivity control, 4 pages, 4 figure

    Two blowing concepts for roll and lateral control of aircraft

    Get PDF
    Two schemes to modulate aerodynamic forces for roll and lateral control of aircraft have been investigated. The first scheme, called the lateral blowing concept, consists of thin jets of air exiting spanwise, or at small angle with the spanwise direction, from slots at the tips of straight wings. For this scheme, in addition to experimental measurements, a theory was developed showing the analytical relationship between aerodynamic forces and jet and wing parameters. Experimental results confirmed the theoretically derived scaling laws. The second scheme, which was studied experimentally, is called the jet spoiler concept and consists of thin jets exiting normally to the wing surface from slots aligned with the spanwise direction

    The capability of a proportional-type lateral control system in providing aerodynamic heading-angle trajectory control during reentry

    Get PDF
    Capability of lateral control system to provide aerodynamic heading-angle control of vehicle having maximum lift-drag ratio during reentr

    Results of recent NASA research on low-speed aerodynamic characteristics of supersonic cruise aircraft

    Get PDF
    The relatively low values of lift-curve slope produced by highly swept arrow wings, coupled with the low scrape angle of the fuselage, resulted in relatively low values of take-off and approach lift coefficients. Through the use of more efficient high-lift systems and the application of propulsive-lift concepts, it is possible to optimize the engine-airframe design for maximum range potential and also to provide good low-speed performance. Nose strakes provide significant improvements in directional stability characteristics and the use of a propulsive lateral control system provides a solution to problems associated with inherently low levels of lateral control

    Wind tunnel research comparing lateral control devices, particularly at high angles of attack VIII : straight and skewed ailerons on wings with rounded tips

    Get PDF
    Tests showed the effect of the ailerons and the tip shapes on the general performance of the wing, as well as on the lateral control and stability characteristics. The hinge moments were not measured but the approximate values are given in the first report of the series

    Extended analytical study of the free-wing/free-trimmer concept

    Get PDF
    The free wing/free trimmer concept was analytically studied in order to: (1) compare the fore and aft trimmer configurations on the basis of equal lift capability, rather than equal area; (2) assess the influence of tip mounted aft trimmers, both free and fixed, on the lateral directional modes and turbulence responses; (3) examine the feasibility of using differential tip mounted trimmer deflection for lateral control; (4) determine the effects of independent fuselage attitude on the lateral directional behavior; and (5) estimate the influence of wing sweep on dynamic behavior and structural weight. Results indicate that the forward trimmer concept is feasible with the reduced size examined, but it remains inferior to the aft trimmer in every respect except structural weight. Differential motion of the aft trimmer is found to provide powerful lateral control; while the effect of fuselage deck angle is a reduction of the dutch roll damping ratio for nose-down attitudes

    Preliminary investigation of rolling moments obtained with spoilers on both slotted and plain wings

    Get PDF
    A wind-tunnel study has been made to determine the possibility of developing spoilers suitable for providing the lateral control for airplanes in place of the usual ailerons. The first tests were made on a model wing with a fixed tip slot, but when it was found that the effectiveness of the spoilers did not depend to any great extent on the slot, tests were made on a plain wing also. In both cases certain spoiler positions were found which were free from the usual adverse rolling moments with small deflections. Five different forms of spoiler were tested, the best ones being simple plates, either straight or slightly curved to fit the contour of the airfoil when not deflected. Sufficient rolling moment can probably be obtained from spoilers of reasonable size to provide satisfactory lateral control for certain types of airplanes
    corecore