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THE CAPABILITY OF A PROPORTIONAL-TYPE LATERAL CONTROL 

SYSTEM I N  PROVIDING AERODYNAMIC HEADING-ANGLE 

TRAJECTORY CONTROL DURING REENTRY 

By Gene W. Sparrow 
Langley Research Center 

SUMMARY 

An analog invest igat ion has been made t o  determine t h e  capabi l i ty  of a 
proportional-type l a t e r a l  control  system of providing aerodynamic heading-angle 
control of a vehicle having a maximum l i f t -d rag  r a t i o  of 2.0 during reentry 
in to  t h e  ea r th ' s  atmosphere. Heading-angle changes were accomplished by means 
of a heading-angle-command s tep  input t o  control  equations which caused t h e  
vehicle t o  assume a roll a t t i t u d e .  Both r o l l  and Dutch r o l l  damping were aug- 
mented. The invest igat ion w a s  conducted a t  a l t i t u d e s  of 100,000, l5O,OOO, and 
210,000 f e e t .  Control-system gains were var ied at  each of these f l i g h t  condi- 
t ions  i n  an e f fo r t  t o  determine the  e f f e c t s  of these gains on the  vehicle 
response. Results ind ica te  t h a t  a s ides l ip- ra te  damper w a s  superior t o  a yaw- 
r a t e  damper i n  minimizing the magnitude of s ides l ip  angle during r o l l .  Though 
it w a s  found necessary t o  adjust  control-system gains at each f l i g h t  condition 
f o r  the most desirable  vehicle response (minimum s ides l ip ,  rapid heading-angle 
response), r e s u l t s  indicate  t h a t  a p a r t i a l  re laxat ion of these desirable  
responses could simplify the system with the result t h a t  only one of the  many 
control-system gains, the r o l l  damper gain, need be varied with f l i g h t  condition. 

INTRODUCTION 

Considerable research has been conducted on the problem of control l ing and 
guiding a reentry vehicle from the  f r inges  of the  e a r t h ' s  atmosphere t o  a 
landing on the  ear th .  Results of these invest igat ions have resu l ted  i n  defining 
a "footpr int ,"  or an accessible landing area which i s  subject t o  i n i t i a l  con- 
d i t ions  and r e s t r a i n t s  (such as aerodynamic heating and accelerat ions)  of the  
reentry vehicle. Basically, research has been concerned with control l ing the  
t r a j ec to ry  of the reentry vehicle by way of t r ea t ing  the vehicle as a p a r t i c l e  
subject t o  aerodynamic l i f t ,  drag, and s ide forces  (see refs. 1 t o  4) with 
l i t t l e  a t t en t ion  being given t o  the  dynamics of the vehicle necessary t o  provide 
t r a j ec to ry  control.  

In  the  present paper the  problem of providing lateral control  t o  produce 
l a t e r a l  range capabi l i ty  during reentry i s  considered. A proportional-type 
lateral  control system i s  u t i l i zed ,  which provides l a t e r a l  range capabi l i ty  by 



producing a wind-heading-angle change by means of banking the  vehicle i n  
response t o  a s tep  input of wind-heading-angle command. An analog investiga- 
t i o n  of t he  problem w a s  conducted, and results presented show the  e f f ec t s  of 
control-system gains, heading- and bank-angle inputs, and yaw- and s idesl ip-rate  
dampers on the  vehicle response and s t a b i l i t y  over a range of f l i g h t  conditions 
from 210,000 t o  100,000 feet .  Results are presented as time h i s to r i e s .  

SYMBOLS 

b wing span, f t  

l i f t - f o r c e  coef f ic ien t  

rolling-moment coef f ic ien t ,  

CL 

Rolling moment 
c2 qSb 

Cn yawing-moment coeff ic ient ,  Yawing moment 
qsb 

2 

Side force 
qs 

side-force coef f ic ien t ,  

- . .... 1 



D drag force,  l b  

Fs , X J F S  , Y A, z forces along Xs-, Ys-, and Zs-axes, l b  

FW,XJW,Y,FW,Z. forces  along G-, Yw-, and %-axes, l b  

g 

h a l t i t ude ,  f t  

accelerat ion due t o  gravity,  32.2 f t / sec2  

moment of i n e r t i a  about X - a x i s ,  s lug-ft2 I X  

I Z  moment of i n e r t i a  about Z - a x i s ,  slug-ft’ 

control-system gains 

L 

m 

M 

P 

9 

Qw 

r 

R, 

S 

t 

v 

l i f t  force,  l b  

l i f t -d rag  r a t i o  

maximum value of L/D 

mass of vehicle,  slugs 

Mach number 

r o l l  rate about X - a x i s ,  radians/sec 

dynamic pressure, lb / sq  f t  

force term defined i n  appendix 

yaw rate about Z - a x i s ,  radians/sec 

force term defined i n  appendix 

wing area, sq f t  

time, sec 

veloci ty ,  f t / s e c  

body axes 

s t a b i l i t y  axes 
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Dots 

wind axes 

side force,  l b  

angle of a t tack  

angle of side s l i p  

f l igh t -pa th  angle 

a i le ron  def lect ion 

a i le ron  def lect ion as defined by control  equation (2) 

rudder def lect ion 

rudder def lect ion as defined by damper equation ( 3 )  

command bank angle 

command bank angle as defined by control equation (1) 

body-axis Euler angles 

wind-axis Euler angles 

command wind-axis heading angle 

bank-angle e r r o r  

wind-axis heading-angle e r ro r  

above quant i ty  denote d i f f e ren t i a t ion  w i t h  respect t o  time. All  - 
angles are i n  radians unless otherwise noted. 

Scope of Problem 

The inves t iga t ion  of the problems of providing l a t e r a l  vehicle control 
during reentry w a s  conducted by way of  analyzing the vehicle lateral response 
charac te r i s t ics  a t  several  d i scre te  points  along a typica l  reentry t ra jec tory  
by means of l inear ized  equations of motion. Three f l i g h t  conditions of alti- 
tudes 100,000, 130,000, and 210,000 feet representing a range of f l i g h t  environ- 
ments were chosen f o r  the invest igat ion from the t r a j ec to ry  of a reentry vehicle 
descending i n  an unbanked a t t i t u d e  at a constant angle of a t tack  of 23' from 
nearly c i rcu lar  o r b i t a l  conditions at 380,000 feet t o  an a l t i t u d e  of 
100,000 f e e t .  
dynamic and t r a j ec to ry  parameters were held constant during an invest igat ion a t  

The f l igh t -pa th  angle w a s  i n i t i a l l y  at Oo. Although all aero- 
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a par t icu lar  f l i g h t  condition, r e su l t s  obtained were assumed t o  be val id  since 
the duration of a par t icu lar  investigation w a s  held t o  l e s s  than a minute of 
r ea l  time. Control-system gains were selected and adjusted empirically i n  a 
prescribed order ( t o  be subsequently described) at epch f l i g h t  condition on the 
bas i s  of observed vehicle responses. 

Control System 

Control-system description.- The block diagram of the l a t e r a l  control sys- 
tem used i n  the investigation i s  shown i n  figure 1. Pr ior  t o  a s tep input t o  
the control system, the reentry vehicle w a s  assumed t o  be i n  s t ra ight  and l eve l  
f l i g h t .  A command wind-axis heading angle 4Jw,c, subsequently referred t o  as 
command-heading angle, serves as input t o  the control system and together with 
heading-angle 4JW and heading-rate $w feedbacks form the mathematical con- 
t r o l  equation 

= K l ( * W , C  - 
+J - K24Jw . 

commanding a body bank-angle a t t i t ude  ' Control-system gains K1 and $ 
are,  respectively, heading-error and heading-rate gains. The command bank 
angle 
small heading-angle change and small f l ight-path F g l e .  

i s  l imited t o  &45', a value tha t  will yie ld  m a x i m u m  l a t e r a l  range fo r  
(See ref. 2.) 

The command bank angle serves as  input t o  the bank command loop of the con- 
t r o l  system and together with bank-angle $ and bank-angle-rate $8 feedbacks 
form the second mathematical control equation 

which commands the a i le ron  def lect ion E a 7 .  Control-system gains K3 and K4 
are, respectively, bank-angle-error and ro l l - r a t e  gains. 
deflection i s  l imited t o  f30°. 

"he aileron-control 

t' 

The a i le ron  and rudder (6,) deflections serve as inputs t o  the vehicle 
l a t e r a l  equations of motion (see section e n t i t l e d  Vehicle and Equations of  
Motion) and r e s u l t  i n  an output of bank angle. 
t o  *30° and provided damping i n  yaw o r  s ides l ip  through the damper equations 

The rudder control w a s  l imited 

or (3) 
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where r and are ,  respectively,  yaw and s ides l ip  rates. The t h i r d  control 
equation 

t 
$w = s i n  @ d t  (4)  

generates heading angle from the  E u l e r  body-axis angle Equation (4) i s  a~ 
approximate expression based upon an assumed coordinated tu rn  maneuver and w a s  
derived from reference 5. 
Appendix. 

@. 
The der ivat ion of equation (4) i s  given i n  the  

Selection of control-system gains.- Control-system gains K l ,  K4, and K 5  
w e r e  se lected at  each f l i g h t  condition on the bas i s  of observed vehicle responses 
and i n  a prescribed order described i n  the  following paragraph. 
a preliminary invest igat ion it was found t h a t  gains K2 and K 3  could be held 
constant over the complete f l i g h t  region with adequate control of the  vehicle 
being provided with the  remaining control-system gains.  The values of K2 and 

K 3  

angle command loop ( f i g .  1) w a s  fi>st considered independently of the  complete 
control system. w a s  used as input t o  the  bank com- 
mand loop since it represented the maximum value of t h a t  could be generated 
by the outer loop.  Control-system gain K 4  w a s  then selected t o  provide a roll 
response on the verge of overshooting the command bank a t t i t ude .  It w a s  
believed t h a t  the  u t i l i z a t i o n  of t h i s  e a s i l y  observed roll c r i t e r i a  resulted i n  
a sa t i s f ac to ry  rapid well-damped roll response. 
vide osc i l la tory  s t a b i l i t y  of the vehicle during the ro l l i ng  maneuver. 
the select ion of K4 

system w e r e  examined and a damper gain % w a s  selected.  R o l l  damper gain K4 
w a s  subsequently adjusted t o  correct  f o r  the e f f e c t  of gain 
p l e t e  control system, the bank command loop gains (K3, K4, %) were held con- 
s t an t  and the gain ICl 
response f o r  a range of heading-angle-command s tep  inputs .  
select ing control-system gains w a s  repeated a t  each f l i g h t  condition. 

On the bas i s  of 

chosen were 70 and 23, respectively.  

In  select ing control-system gains at  a given f l i g h t  condition, the bank- 

A s tep  input of @c = 45’ 
$dC 

A y a w  damper w a s  used t o  pro- 
Following 

the  e f f e c t s  of yaw and s ides l ip  dampers on t h e  control 

5. For the com- 

w a s  varied t o  provide sa t i s f ac to ry  heading-angle 
This sequence of 

Vehicle and Equations of Motion 

The reentry vehicle used i n  t h i s  invest igat ion has a maximum L/D capa- 
b i l i t y  of 2. 
are as follows: 

The physical a n d . i n e r t i a l  charac te r i s t ics  of the  reentry vehicle 

m,s lugs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  310 

Ix, slug-f t2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3,950 
Iz, slug-ft2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17,300 

S , s q f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  400 
b , f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20.7 
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The equations of motion t h a t  define the vehicle lateral degrees of freedom 
i n  the body-axis system are as follows: 

\ 

Since small angle displacements are assumed 

The aerodynamic moment coeff ic ients  and parameters used i n  the equations of 
motion previously given are presented i n  t ab le  I as functions of the three 
f l i g h t  conditions used. 

RESULTS AND DISCUSSION 

Bank Command Loop 

Selection ._ of roll damper gain.- In  figure 2 the e f f e c t  of the  roll damper 
gain K4 on the  roll response i s  shown f o r  several values of K4 a t  a l t i t udes  
of 100,000, l5O,OOO, and 210,000 f ee t .  Bank angle and aileron-control deflec- 
t i o n s  are shown p lo t ted  against  time. A value of $c of 45' i s  used with bank 
command loop gain of K3 = 23 and K5 = 2.5. A yaw damper w a s  used t o  provide 
damping i n  t h e  lateral  modes of o sc i l l a t ion .  

An examination of f igure 2 shows t h a t  the roll response t i m e s  vary i n  the  
usual sense with dynamic pressure (table I), with the  f a s t e s t  response t i m e  of 
l e s s  than a second occurring a t  the  m a x i m u m  dynamic pressure ( f i g .  2 (b) )  and the 
slowest response time of about 2 seconds occurring at  the m i n i m u m  dynamic pres- 
sure ( f i g .  2 ( c ) ) .  
l imi t ing  i n  figure 2 as it i s  throughout the  e n t i r e  invest igat ion and i s  due 
pr incipal ly  t o  the  r a the r  l a rge  value of 

The aileron-control motion i s  characterized by considerable 

K3 t h a t  was used. 

The roll damper gain required f o r  s a t i s f ac to ry  roll response also changes 
with f l i g h t  condition. I n  figure 2(b) a sa t i s f ac to ry  roll response i s  obtained 
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with a r o l l  damper gain of 2.0. However, a r o l l  damper gain of 2.0 results i n  
a much more osc i l l a to ry  r o l l  response at 100,000 f e e t  ( f i g .  2 (a ) )  than at 
l50,OOO feet. Increasing the value of Q t o  3.0 i n  figure 2(a)  produces a 
b e t t e r  damped and mre sa t i s fac tory  roll response. 
an even l a rge r  value of 
at t h i s  f l i g h t  condition. 
at the  210,000-foot f l i g h t  condition. 
f o r  values of fie 
f o r  gC = 45O, but are not presented. 
roll responses f o r  the  smaller values of 
r o l l  responses w e r e  b e t t e r  damped and somewhat slower. 

A t  210,000 feet ( f i g .  2 ( c ) )  
i s  required since the  dynamic pressure i s  smallest 

A r o l l  damper gain of 5.0 w a s  considered sa t i s fac tory  
R o l l  response results were a lso  obtained 

of 30° and 15O by us~ing r o l l  damper gains found sa t i s fac tory  
However, results d id  show sa t i s fac tory  

although as might be expected the  

Q 

fie 

Before a f i n a l  select ion of K4 i s  made it i s  necessary t o  consider the 
complete motion of t he  bank command loop and the  e f f e c t  of yaw- and s idesl ip-  
r a t e  dampers since the  choice of dampers would probably require an adjustment 
of K4. 

Comparison of yaw- .and s i d e s l i p r a t e  dampers.- Since damping augmentation 
i n  the  lateral  modes i s  required t o  provide sa t i s f ac to ry  l a t e r a l  s t a b i l i t y  of 
the vehicle during r o l l i n g  maneuver i n  the f l i g h t  region considered, the ques- 
t i o n  of whether a yaw- o r  s ides l ip- ra te  damper i s  more desirable  i s  examined. 
The e f f e c t s  of yaw- and s idesl ip-rate  dampers on the  vehicle lateral  responses 
a re  shown i n  figures 3 and 4, respectively.  The l5O,OOO-foot f l i g h t  condition 
w a s  chosen f o r  the comparison since it represented the  f l i g h t  condition with 
m a x i m u m  dynamic pressure and corresponding faster vehicle responses. 
ables $, 6a, 6r, p, and r are  p lo t ted  against  t i m e  f o r  damper gains K5 
of 0.5, 3.0, and 10.0. A s tep  input of 
gain K4 
a lso  used. 
i s  explained subsequently. 

The var i -  

= 45O i s  used and a roll damper 
of 2.0 found sa t i s fac tory  at t h i s  f l i g h t  condition ( f i g .  2 (b) )  i s  

A r o l l  damper gain of 2.5 i s  used f o r  one curve i n  figure 4(b) as 

Examination of f igure  3 shows t h a t  r a the r  la rge  t rans ien t  s ides l ip  angles 
occur during the  r o l l  response at  t h i s  f l i g h t  condition. Even though the range 
of yaw damper gains has considerable e f f e c t  on the  damping of s ides l ip  and yaw 
rate following the i n i t i a l  r o l l  disturbance, the  yaw damper i tself  has l i t t l e  
e f f e c t  on the  magnitude of t he  initial s ides l ip  disturbance. The minimum side- 
s l i p  angle which occurs i s  16.5O and represents a la teral  accelerat ion of 1.3Og 
at t h i s  f l i g h t  condition. 
on the  roll response, only one r o l l  response i s  p lo t t ed  f o r  c l a r i t y .  

Since the range of yaw damper gains has l i t t l e  effect  

Examination of figure 4, excluding the curves corresponding t o  Kl+ = 2.5, 
shows t h a t  the  sideslip-angle excursion following the i n i t i a l  roll disturbance 
decreases i n  magnitude as the  s ides l ip  damper gain increases.  Notice a l so  t h a t  
the yaw r a t e s  are  l a r g e r  i n  magnitude following the  roll disturbance f o r  the 
l a r g e r  s ides l ip  damper gain. The l a rge r  yaw r a t e s  which are 
the  C term i n  the  yaw equation with the l a rge r  s ides l ip  

nk. 

obtained through 
damper g a i n s  are 

I 

responsible f o r  the  smaller s ides l ip  angle since the  vehicle 
coordinate a turn.  A s ides l ip  damper gain of 3.0 appears t o  

i s  tending t o  
be the  most 
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sa t i s fac tory  at  t h i s  f l i g h t  condition since i t s  use results i n  about the 
smallest p obtainable, and it has the advantage of a b e t t e r  damped f3 motion 
than i s  evident with the use of a gain of 10.0. 

Unlike the yaw damper, the  s ides l ip  damper a f f ec t s  the  roll response by 
tending t o  produce r o l l  overshoot as the s ides l ip  damper gain increases.  The 
r o l l  overshoot i s  the  r e s u l t  of decreasing the  opposing r o l l i n g  moment due t o  
f3 i n  t he  rolling-moment equation. Figure 4(b) a l so  shows the  case where K4 
i s  increased from 2.0 t o  2.5 t o  reduce the roll overshoot present i n  the  satis- 
factory case where K5 = 3.0. Increasing K4 from 2.0 t o  2.3 has l i t t l e  e f f ec t  
on the vehicle motion except t o  reduce the  roll overshoot. The general proce- 
dure of adjusting K4 
f l i g h t  condition i s  followed, The amount of adjustment necessary depends p r i -  
marily upon the amount the  s ides l ip  angle can be reduced which i n  turn  depends 

which var ies  with f l i g h t  conditions. Since upon the effect iveness  of C 

the u t i l i z a t i o n  of a s ides l ip  damper resu l ted  i n  smaller s ides l ip  angle than 
the use of a yaw damper as w e l l  as providing sa t i s fac tory  overa l l  system sta- 
b i l i t y ,  it w a s  decided t h a t  a s ides l ip  damper w a s  su i tab le  and would be used i n  
the evaluation of t he  complete control system. 

a f t e r  the  se lec t ion  of a s ides l ip  damper gain a t  each 

nb 

Results of using a s ides l ip  damper a t  the two other  f l i g h t  conditions a re  

Roll-rate damper 
shown i n  f igures  5 and 6. 
f igures  3 and 4. A re%nge of s ides l ip  damper gains w a s  used. 
gains found acceptable (as far as r o l l  response i s  concerned) with the use of 
a yaw damper at  each f l i g h t  condition ( f i g .  2) are used together with an 
adjusted roll damper gain t o  reduce r o l l  overshoot due t o  the  s ides l ip  damper. 
Examination of f igure 5 (h  = 100,000 feet)  shows t h a t  the  magnitude of s ides l ip  
angle i s  very small at t h i s  f l i g h t  condition (compared with the  150,000-foot 
f l i g h t  condition). 
by using the  s ides l ip  damper i s  evident by the considerable roll overshoot 
since the roll damper gain of 3.0 w a s  o r ig ina l ly  adjusted f o r  l i t t l e  or no over- 
shoot with a yaw damper. The f a c t  t h a t  p can be reduced t o  such a small value 

term i n  the yaw as indicated previously i s  the r e s u l t  of a more e f f ec t ive  C 

equation a t  t h i s  f l i g h t  condition as shown i n  t ab le  I. A s ides l ip  damper gain 
of 10.0 appears t o  be the  most sa t i s fac tory  at t h i s  f l i g h t  condition together 
with a roll damper gain of 5.0 t o  reduce the roll overshoot. 

The same variables are p lo t t ed  against  time as i n  

The f a c t  t h a t  the  s ides l ip  angle w a s  reduced considerably 

n% 

Inspection of figure 6 shows t h a t  at 210,000 f e e t  the s ides l ip  damper does 
not succeed i n  reducing the  magnitude of s ides l ip  as well as at  the 100,000- 
foot  f l i g h t  condition, bu t  the  magnitude produced i s  comparable t o  r e s u l t s  from 
the l5O,OOO-foot f l i g h t  condition ( f i g .  4 ) .  On t h i s  basis ,  it i s  in te res t ing  t o  

at the l50,OOO- and 210,000-foot f l i g h t  condi- note t h a t  the  values of C 

t ions  are comparable whereas at the  100,000-foot f l i g h t  condition the value i s  
approximately twice t h a t  of the  150,000- and 210,000-foot f l i g h t  conditions. 
It i s  a l so  in t e re s t ing  t o  note t h a t  the  roll overshoot evident i n  figure 6 i s  
not as pronounced as it w a s  i n  figure 5 .  A s ides l ip  damper gain of 3.0 appears 
more desirable a t  t h i s  f l i g h t  condition since i t s  use y ie lds  about the  smallest 
value of f3 possible and results i n  a f a i r l y  damped s ides l ip  and yaw motion. 

nb 
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Finally, the select ion of 3 = 3.0 a t  the l50,OOO- and 210,000-foot 
f l igh t  conditions, and at the 100,000-foot f l i g h t  condition, appears 
t o  be the most sat isfactory.  However, the choice of 3 = 3.0 over the com- 
p l e t e  f l i gh t  region would a lso  provide sa t i s fac tory  damping and have the advan- 
tage of simplifying the select ion of 3 during reentry.  The use of 3 = 3.0 
over the complete f l i g h t  region would result i n  l a r g e r  s ides l ip  angles at the 
100,000-foot f l i g h t  condition than would be necessary ( f i g .  5) ,  but i t s  use 
would s t i l l  provide smaller s ides l ip  angles at the 100,000-foot f l i g h t  condition 
than at the 130,000- and 210,000-foot f l i g h t  conditions. 

3 = 10.0 

Complete Control System 

For the analyses of the complete control system all bank command loop gains 
are held fixed a t  values found sui table  at each f l i g h t  Gondition. The gain 
i s  a l so  held constant at  a value of 50 during the analysis at  each f l i g h t  con- 
d i t ion .  This value of K;! w a s  found t o  provide adequate damping of the heading- 
angle response following a heading-angle-command s tep  input. For the study of 
the complete control system a range of s tep input values of 
t o  2.0' i s  used and the heading-angle-error gain i s  varied i n  order t o  
provide sa t i s fac tory  heading-angle response as well as sa t i s fac tory  overal l  
system response at  each f l i g h t  condition. Figures 7, 8, &d 9 show the e f f ec t  
of s tep inputs of  $ 
l5O,OOO-, and 210,000-foot f l i g h t  conditions, respectively.  Time h i s to r i e s  of 
the system variables qWy 9, $c, p, and r are  shown. 

$w,c = 0.25' 

qw,c from 0.25' 

K 1  

on the vehicle l a t e r a l  responses at  the 100,000-, w,c 

Figure 7(a) with shows a range of heading-angle responses 
The variable from overdamped (K1 = 90) t o  underdamped ( K1 = 150, 

BC never reaches the l i m i t  of 43' and i t s e l f  never exceeds 18O. Thus, the 
maximum heading-rate capabi l i ty  fo r  i s  not u t i l i z e d  f o r  the small 

value. Both p (only one curve i s  used t o  represent the p motion i n  
the i n t e r e s t  of c l a r i t y )  and r do not experience the magnitude present i n  
f igure 5 (bank command loop) as the r e s u l t  of the smaller amplitude of i n  
f igure 7(a) compared with the la rger  # of 45' i n  f igure 5. Figure 7(b) shows 
the r e su l t s  of increasing $w,c from 0.25O t o  0.50. A comparison of the two 
cases of K1 = 130 i n  f igures  7(a) and 7(b)  shows t h a t  increasing $w,c from 
0.25' t o  0.5O resul ts .  i n  creating i n s t a b i l i t y  and divergent motion of the con- 
t r o l  system. However, when K1 i s  reduced t o  a value of 115 the control- 
system response becomes f a i r l y  well behaved and may be considered sat isfactory.  
Motice also tha t  l a rge r  magnitudes of  pC, py p, and r are  present f o r  K 1  
of 113 i n  f igure 7(b) than i n  figure 7(a).  $w,c 
i s  la rger  i n  figure 7(b) .  

K l  = 160 ). 

$d = 4 5 O  
qw, c 

# 

This r e s u l t  i s  expected since 

Figure 7(c)  shows the r e s u l t  of increasing 
K1 = 115 

$w,c from 0 . 5 ~  t o  m u e s  of 
are compared i n  f igures  7(b) 1.0' and 2.0°. When the two cases of 
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and 7(c)  f o r  $w,c values of O.5O and l.Oo, it is  observed that increasing 
again tends t o  destabi l ize  the vehicle response with resu l t ing  increased *w, c 

osc i l la t ions .  However, when K1 i s  reduced t o  a value of 90 for  $w,c of 1 .oo, 
the vehicle motion becomes more sat isfactory.  When $w,c i s  increased from 
l . O o  t o  2.00 f o r  
the system. Values of $w,c up t o  5.0 were used at t h i s  f l i g h t  condition 
(though not presented), and r e s u l t s  showed t h a t  a value of 
i s fac tory  f o r  $w,c values of 2.0° t o  5.0°. The r e s u l t  t h a t  K1 must decrease 
with increasing $w,c input t o  produce sa t i s fac tory  vehicle responses i s  not an 
unexpected r e s u l t  f o r  a control system being saturated (@, 

input. 
must hold f o r  a lower order systembetween an e r ro r  gain and input f o r  a time- 
optimum response . 

K1 = 90, it i s  observed that the increase tends t o  s t ab i l i ze  

of 90 w a s  sat- K1 

l i m i t i n g )  with a 
In reference 6 the author shows the nonlinear re la t ionship t h a t  qw, c 

F r o m  r e su l t s  presented ( f i g .  7) it i s  evident t h a t  at t h i s  f l i g h t  condition 
K1 
value f o r  the 'complete range of $w,c values. Using a constant K~ of 90 (as 

W ? C  
opposed t o  perhaps generating K1 as a f'unction of $w,c) f o r  a range of $ 

d u e s  appears t o  be more sa t i s fac tory  since it i s  the simplest method. Also, 
i t s  use does not su f f i c i en t ly  penalize the vehicle response except t o  produce 
slower heading-angle responses f o r  the smaller values of 
7(b) )  which may be to le ra ted  i n  the i n t e r e s t  of simplicity i n  select ing 

cannot exceed 90 f o r  system s t a b i l i t y  i f  K1 i s  t o  be held at a constant 

$w,c ( f i g s .  7(a) and 

K1. 

on the vehicle l a t e r a l  responses at 

a re  required t o  cause a 

Figure 8 shows the e f f e c t  of $,,, 
l50,OOO f e e t .  A range of d u e s  f o r  K1 i s  used. Inspection of figure 8(a) 
($w,c = 0.25O) shows t h a t  much la rger  values of 

$w 
system gain K 1  of 300, which causes a qW overshoot fo r  $w,c = 0 . 2 3 O ,  does 
not r e s u l t  i n  an overshoot f o r  $w,c = 0.50°. Thus, it appears t h a t  the prob- 
lem of decreasing K1 as $w,c increases i s  not as c r i t i c d  at l50,OOO f ee t  
as it was at 100,000 f ee t .  

quantity 0.906L mv 
100,000 f e e t .  

K1 
overshoot at l50,OOO f e e t  than at 100,000 fee t  ( f ig .  7(a)) .  A control- 

The reason i s  a t t r ibu ted  t o  the  f a c t  t h a t  the 

( t ab le  I) i s  much smaller a t  150,000 f e e t  than it i s  at 

As a result smaller heading-angle r a t e s  e x i s t  fo r  a given value 

of 6. The slower heading-rate responses due t o  the smaller value of - can 
mV 

be quickened by increasing K1 t o  generate la rger  values of @ f o r  the smaller 
JG,c values. When $w,c i s  increased suf f ic ien t ly  t o  a value of 2.0' 

( f i g .  8 (d ) )  i s  characterized by considerable l i m i t i n g  due t o  the re la t ive ly  
la rge  $w,c input. As a re su l t ,  the  first portion of the  vehicle response 

$?fC 
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1 1 1  I 
1 

I I l l  

(& 
% = 3.0. 

l imited)  i s  ident ica l  t o  the inner loop case fo r  6, = 4 5 O ,  K& = 2.5, and 
(See f i g .  4(b) . )  

The extensive l imi t ing  of $dc ( f ig .  8 ( d ) ) ,  as opposed t o  short-time 
l imit ing of 
i n i t i a l  control-system disturbance t o  d.aurp out before the system i s  disturbed 
again by 6c coming off the limits. As a r e s u l t  smaller negative magnitudes 
of s ides l ip  angle are  present f o r  the l a rges t  values of  
f o r  the smaller values of \Irw,c ( f i g s .  8(a), 8(b) ,  and 8 ( c ) )  where plc 
l imi t ing  occurs. 

#c, i s  beneficial  as it allows the t rans ien t  motion following the 

( f i g .  8 ( d ) )  than w, c q 

Examination of f igure 8 shows t h a t  a value of K1 of 200 would provide a 
sa t i s fac tory  rapid heading-angle response. However, i n  the i n t e r e s t  of keeping 
K1 constant over the range of f l i g h t  conditions, it appears t h a t  a K1 of 90 
would a l s o  appear sa t i s fac tory  at t h i s  f l i g h t  condition, and t h a t  the faster 
heading-angle responses with K1 = 200 are  not as advantageous as the simplic- 
i t y  of a constant K1 over the complete f l i g h t  region. Keeping K1 small also 
has the advantage t h a t  smaller p magnitudes a re  generated. (See, fo r  example, 
f i g s .  8(a) and 8(b)  f o r  cases of Kl = 200 and K 1  = 90.) 

Finally, f igure 9 shows the e f f ec t  of using a K 1  of 90 at 210,000 fee t .  

i s  much smaller at t h i s  f l i g h t  condition than at 

$w,c = 2.0' 

Because the value of o.go6L 
the previous two f l i g h t  conditions, the heading-angle response times a re  much 
longer with the heading-angle response time at 
50 seconds f o r  qw t o  reach 2.0'. It i s  believed t h a t  K1 = 90 provides sat- 
i s fac tory  heading response times f o r  the range of 
evidenced by considerable bank-angle l imi t ing  at 4 5 O  (maximum 
la rger  qw,c values. 

mV 

taking about 

values u t i l i z e d  as 
W,C 

JI 
$w) f o r  the two 

CONCLUDING REMARKS 

An investigation has been made t o  determine the  capabi l i ty  of a 
proportional-type l a t e r a l  control system of providing aerodynamic heading-angle 
control of a vehicle having a m a x i m u m  l i f t -drag  r a t i o  of 2 during reentry in to  
the  ea r th ' s  atmosphere. Results indicate  t h a t  the control system i s  capable of 
providing sa t i s fac tory  heading-angle control over the  f l i g h t  region considered. 
A s ides l ip  damper w a s  found more sui table  than a yaw damper since i t s  use 
resul ted i n  smaller s ides l ip  angles during the  ro l l ing  maneuver. The s ides l ip  
damper gain w a s  required t o  vary over the  f l i g h t  region i f  m i n i m  s ides l ip  a t  
each f l i g h t  condition w a s  t o  be obtained. However, r e su l t s  obtained tend t o  
indicate  tha t  the  s ides l ip  damper could be held constant over the complete 
f l i g h t  region at  a value of 3.0 and s t i l l  provide sa t i s fac tory  damping i n  side- 
s l i p .  The r o l l  damper gain w a s  required t o  vary over the  f l i g h t  region as the  
resu l t  of the  la rge  range of dynamic pressures. 
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The heading-error gain was found t o  be dependent upon the command heading 
angle pa r t i cu la r ly  a t  the 100,000-foot f l i g h t  condition i f  as rapid a heading- 
angle response as possible w a s  t o  be obtained. However, r e s u l t s  also show t h a t  
the heading-error gain could be held at a constant value of 90 over the complete 
f l i g h t  region and s t i l l  provide sa t i s fac tory  vehicle responses though the  
heading-angle response time at the  smaller values of  command heading angle 
tended t o  be somewhat slower than i f  l a rge r  heading-error gains were used. The 
heading-error gain of 90 represents the l a rges t  gain value t h a t  could be to l e r -  
a ted over the  complete f l i g h t  region i f  control-system s t a b i l i t y  i s  t o  be main- 
tained. 

Finally,  i f  the  s ides l ip  danrper gain and the  heading-error gain a re  held 
constant over the complete f l i g h t  region (as r e s u l t s  indicate  they could be), 
the only gain of the control system t h a t  need be varied during reentry i s  the  
r o l l  damper gain. This i s  evidently desirable  as it grea t ly  s implif ies  the  
mechanization of gain control during reentry.  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., February 28, 1964. 
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DERIVATION OF HEADDTG-RATE EQUATION 

From reference 5 ,  the ra te  of change of the vehicle wind heading a n d e  i s  

( R ~  cos + &W s i n  cos 8, $w = 

where 8, and #w are  N e r  angles as measured i n  wind axes. The terms 
and Q are re lated t o  the force terms i n  the 
(from ref. 5 )  : 

where Fw,y and Fw,z a re  aeroaynamic forces 
Substituting the equations of Fw,y 
t ions of Rw and Qw yields  

and F w,z 

wind-axis system as follows 

along Yw and q, respectively. 
from reference 5 in to  the equa- 

R, = -(-F,,X 1 s in  p + F ~ , Y  COS p) mY 

where F,,x, Fs,y, and Fs,z are  aerodynamic forces acting along Xs, Ys, and 
Zs, respectively. The aerodynamic forces along the s t a b i l i t y  axes are 

F ~ , x  = -D cod p 

Fs,y = -D s i n  p + Y 

Fs,z = -L 

where L and D are, respectively, lift and drag. The term Y is side force 
defined by the equation 



Substituting the equations of Fs, X, Fs, Y' and Fs,Z i n to  the equations of RW 
and % yields 

Y cos p 
mV 

R, = 

& w = -  L 
mV 

Finally, substi tuting R, and Qw in to  the equation of $, yields 

L (Y cos p cos & + L s i n  gW) 
'W ' mv cos 0, 

Since 8, = 7 = 0 

GW = -$Y cos p cos j& + L s i n  gW) 

For a coordinated turn maneuver ( p  = y = 0) 

L s in  & 9, = 
mV 

In  order t o  determine & i n  terms of body bank angle $, the equation of 
tan gW (from re f .  5 )  is  used with the assunption tha t  p = 0 and 8 = a = 25O.  

These assumptions yield the equation 

tan  & = 
0.906 s i n  pl 

0.179 4 0 . 8 ~  cos $d 

A good approximation fo r  s i n  & w a s  found t o  be 

sin pl, = 0.906 sin @ 

The substi tution of s i n  ($, = 0.906 s i n  # i n to  the equation of $, gives 

I 



which may be written i n  the form 
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TABU I.- AERODYNAMIC MOMEVT COEFFICLFNTS AND PARAMETERS 

a = 250) y = 00 c 1 

Mach number . . . . . . . . .  
Velocity. V. f t / sec  . . . . .  
Dynamic pressure. .. 

lb/sq f t  . . . . . . . . .  
L i f t  coefficient. CL . . . .  
o . ~ O ~ L / I U V  . . . . . . . . .  
elp. per radian . . . . . . .  
Czp. per radian . . . . . . .  
Czb,. per radian . . . . . .  
Car. per radian . . . . . . .  
Cnp. per radian . . . . . . .  
Zng . per radian . . . . . .  

.yp. per radian . . . . . .  
r 

1 . per radian . . . . . .  %a 

. .  

h = 100. 000 ft 

3.03 
3. 040 

153 
0.422 
0.0248 
-0.305 

-0.03~ 

-0.31 

0 9 033 
-0.03~ 

0.00106 

-0.361 

0.149 

h = 150. 000 ft 

12.43 
~ .. ...... 

13, 633 

327 
0.369 
0.0103 

-0.03~ 

-0.27 

. 0.0160 
-0.0031 

-0.305 

0.174 

0.033 

-0.344 

h = 210. 000 f i  

14.50 
14. 854 

47.0 
0.369 

0.00136 

-0.0321 
0.174 

-0.27 

0 033 
-0.0143 

-0.0031 

-0.305 

-0.344 
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Bank-angle command loop 
------- ------- 

I 
/ I  

Figure 1.- Block diagram of heading-angle control system. 



(a )  h = 100,000 fee t .  

Figure 2.- Effect of r o l l  damper gain on r o l l  response. Yaw damper; 6, = 45O; K3 = 23.0; K5 = 2.50. 



Time, t ,  sec 

(b) h = l50,OOO feet. 

Mgure 2.- Continued. 
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Time, t , sec 

(c) h = 210,000 feet. 

Figure 2.- Concluded. 
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Figure 3 . -  Effect of y a w  damper on vehicle l a t e r a l  responses at l50,OQO fee t .  
fiC = 45’; K3 = 23.0; K!+ = 2.0. 

23 



- 2 0 1 1  

a, g 20 
a, 
73 
i 0 

- 2 0 0 L  

! 
I 

u 

5 

K 5  = 0.5 
K 5  = 3.0 

I I  

_ -  I I 

T 
4 5 6 

Time, t ,  sec 
I 

Y 

I 

Figure 4.- Effect of sideslip damper on vehicle lateral responses 
!d c -  - 450; 4 = 23.0. 

at 150,OOO feet .  
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Figure 4.- Concluded. 
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Time,t , sec 

1 1 1  I I  
K 4  = 3.0 K 5  = 3.0 
K q  = 3.0 K 5  10.0 

K 4  = 5.0 K 5  = 10.0 

6 7 8 

Figure 5.- Effect of sideslip damper on vehicle l a t e r a l  responses at 100,000 fee t .  
@ - 45Oj 4 = 23.0. c -  
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Figure 6.- Effect of sideslip damper on vehicle lateral  responses at 210,000 f ee t .  gC = 45'; K3 = 23.0. 
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Figure 6.- Concluded. 
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(a) +w,c = 0.25'. 

Figure 7.- Effects of command headiw ansle and headinz-error aain on vehicle l a t e r a l  - 
responses at 100,000 f e e t  with s ides l ip  damper. K2-= 50.0; IC3 = 23.0; K4 = 5-00; 
K5 = 10.0. 
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(b) '#w,c = 0.50'. 

Figure 7.- Continued. 
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Time,t, sec 

( c )  J'w,c = 1.00; 2.00. 

Figure 7.- Concluded. 



I 

-I 5 

W 

Q -IO 

-20 

40 
V 
W 

W 
?? 
W P -20 

-40 
0 I 3 4 5 6 

Time,t, sec 

(a) $w,c = 0.25'. 
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Figure 8.- Effects of comand heading angle and heading-error gain on vehicle l a t e r a l  responses 
at l50,OOO f e e t  with s ides l ip  damper. K2 = 50.0; K3 = 23.0; Q = 2.50; % = 3.0. 
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(b) $'w,c = 0.50'. 

Figure 8.- Continued. 
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( c )  qw,c = 1.000. 

Figure 8.- Continued. 
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(d) $w,c = 2.00°. 

Figure 8.- Concluded. 
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Time,t, sec 

Figure 9.- Effect of c o m d  heading angle on vehicle l a t e r a l  response at 210,000 f ee t  fo r  
K1 = 90.0 and with s ides l ip  damper. IC2 = 50.0; K3 = 23.0; Kl+ = 6.00; K 5  = 3.00. 
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