233 research outputs found

    Semi-Supervised Learning for Diagnosing Faults in Electromechanical Systems

    Get PDF
    Safe and reliable operation of the systems relies on the use of online condition monitoring and diagnostic systems that aim to take immediate actions upon the occurrence of a fault. Machine learning techniques are widely used for designing data-driven diagnostic models. The training procedure of a data-driven model usually requires a large amount of labeled data, which may not be always practical. This problem can be untangled by resorting to semi-supervised learning approaches, which enables the decision making procedure using only a few numbers of labeled samples coupled with a large number of unlabeled samples. Thus, it is crucial to conduct a critical study on the use of semi-supervised learning for the purpose of fault diagnosis. Another issue of concern is fault diagnosis in non-stationary environments, where data streams evolve over time, and as a result, model-based and most of the data-driven models are impractical. In this work, this has been addressed by means of an adaptive data-driven diagnostic model

    Diffeomorphic Transformations for Time Series Analysis: An Efficient Approach to Nonlinear Warping

    Full text link
    The proliferation and ubiquity of temporal data across many disciplines has sparked interest for similarity, classification and clustering methods specifically designed to handle time series data. A core issue when dealing with time series is determining their pairwise similarity, i.e., the degree to which a given time series resembles another. Traditional distance measures such as the Euclidean are not well-suited due to the time-dependent nature of the data. Elastic metrics such as dynamic time warping (DTW) offer a promising approach, but are limited by their computational complexity, non-differentiability and sensitivity to noise and outliers. This thesis proposes novel elastic alignment methods that use parametric \& diffeomorphic warping transformations as a means of overcoming the shortcomings of DTW-based metrics. The proposed method is differentiable \& invertible, well-suited for deep learning architectures, robust to noise and outliers, computationally efficient, and is expressive and flexible enough to capture complex patterns. Furthermore, a closed-form solution was developed for the gradient of these diffeomorphic transformations, which allows an efficient search in the parameter space, leading to better solutions at convergence. Leveraging the benefits of these closed-form diffeomorphic transformations, this thesis proposes a suite of advancements that include: (a) an enhanced temporal transformer network for time series alignment and averaging, (b) a deep-learning based time series classification model to simultaneously align and classify signals with high accuracy, (c) an incremental time series clustering algorithm that is warping-invariant, scalable and can operate under limited computational and time resources, and finally, (d) a normalizing flow model that enhances the flexibility of affine transformations in coupling and autoregressive layers.Comment: PhD Thesis, defended at the University of Navarra on July 17, 2023. 277 pages, 8 chapters, 1 appendi

    Design and Mining of Health Information Systems for Process and Patient Care Improvement

    Get PDF
    abstract: In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking HIS, which tracks the care each patient receives at multiple encounters and facilities. Archive HISs are typically specialized databases to store large-size data collected as part of the patient care. A typical example of an archive HIS is the Picture Archive and Communication System (PACS), which provides economical storage and convenient access to diagnostic images from multiple modalities. How to integrate such HISs and best utilize their data remains a challenging problem due to the disparity of HISs as well as high-dimensionality and heterogeneity of the data. My PhD dissertation research includes three inter-connected and integrated topics and focuses on designing integrated HISs and further developing statistical models and machine learning algorithms for process and patient care improvement. Topic 1: Design of super-HIS and tracking of quality of care (QoC). My research developed an information technology that integrates multiple HISs in radiology, and proposed QoC metrics defined upon the data that measure various dimensions of care. The DDD assisted the clinical practices and enabled an effective intervention for reducing lengthy radiologist turnaround times for patients. Topic 2: Monitoring and change detection of QoC data streams for process improvement. With the super-HIS in place, high-dimensional data streams of QoC metrics are generated. I developed a statistical model for monitoring high- dimensional data streams that integrated Singular Vector Decomposition (SVD) and process control. The algorithm was applied to QoC metrics data, and additionally extended to another application of monitoring traffic data in communication networks. Topic 3: Deep transfer learning of archive HIS data for computer-aided diagnosis (CAD). The novelty of the CAD system is the development of a deep transfer learning algorithm that combines the ideas of transfer learning and multi- modality image integration under the deep learning framework. Our system achieved high accuracy in breast cancer diagnosis compared with conventional machine learning algorithms.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201
    • …
    corecore