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ABSTRACT

In healthcare facilities, health information systems (HISs) are used to serve different

purposes. The radiology department adopts multiple HISs in managing their operations

and patient care. In general, the HISs that touch radiology fall into two categories:

tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking

HIS, which tracks the care each patient receives at multiple encounters and facilities.

Archive HISs are typically specialized databases to store large-size data collected

as part of the patient care. A typical example of an archive HIS is the Picture

Archive and Communication System (PACS), which provides economical storage and

convenient access to diagnostic images from multiple modalities. How to integrate

such HISs and best utilize their data remains a challenging problem due to the

disparity of HISs as well as high-dimensionality and heterogeneity of the data. My

PhD dissertation research includes three inter-connected and integrated topics and

focuses on designing integrated HISs and further developing statistical models and

machine learning algorithms for process and patient care improvement.

Topic 1: Design of super-HIS and tracking of quality of care (QoC).

My research developed an information technology that integrates multiple HISs in

radiology, and proposed QoC metrics defined upon the data that measure various

dimensions of care. The DDD assisted the clinical practices and enabled an effective

intervention for reducing lengthy radiologist turnaround times for patients.

Topic 2: Monitoring and change detection of QoC data streams for

process improvement. With the super-HIS in place, high-dimensional data streams

of QoC metrics are generated. I developed a statistical model for monitoring high-

dimensional data streams that integrated Singular Vector Decomposition (SVD) and
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process control. The algorithm was applied to QoC metrics data, and additionally

extended to another application of monitoring traffic data in communication networks.

Topic 3: Deep transfer learning of archive HIS data for computer-aided

diagnosis (CAD). The novelty of the CAD system is the development of a deep

transfer learning algorithm that combines the ideas of transfer learning and multi-

modality image integration under the deep learning framework. Our system achieved

high accuracy in breast cancer diagnosis compared with conventional machine learning

algorithms.
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Chapter 1

INTRODUCTION

1.1 Background

The radiology department is one of the busiest departments in a healthcare facility,

as it serves the need of many other departments for providing imaging service and

radiologic reports. In radiology, a number of Healthcare Information Systems (HISs)

are used to serve different purposes, such as recording patient information and care

process and storing scanned images for disease diagnosis and evaluation. Generally

speaking, the HISs that touch Radiology fall into one of two categories: tracking

HISs and archive HISs. Electronic Health Records (EHR) is a typically tracking HIS,

which tracks the care each patient receives at multiple encounters and facilities, such

as progress notes, medications, immunizations, vital signs, laboratory and radiologic

reports. Radiology Information Systems (RIS) is another tracking HIS specifically

designed for radiology, which tracks patients, exams, result distribution, and procedure

billing. Different from tracking HISs, archive HISs are typically specialized databases

to store large-size data collected as part of the patient care. A typical example of

an archive HIS is the Picture Archive and Communication System (PACS), which

provides economical storage and convenient access to images from multiple modalities.

PACS stores both image data as well as image related meta-data information.

The availability of multiple HISs in radiology provides an unprecedented opportu-

nity for improving patient care. On the other hand, how to integrate these systems and

best utilize the data remains a challenging problem. In my dissertation, I investigate
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three topics related the design/integration and data-mining of HISs for process and

patient care improvement. The first two topics are related to tracking HISs and the

third topic is related to archive HISs especially radiologic images stored in PACS.

1.2 Summary of Research Topics and State of the Art

Topic 1: Integration of Multiple Health Information Systems for Quality Im-

provement of Radiologic Care. As previously introduced, several HISs

are commonly used in radiology, including EHR, RIS, and PACS. Each HIS

records partial and complementary information about the radiologic care process.

Depending on the institution, the HISs that touch radiology can be distinct,

disparate, and with different database formats and meta information semantics.

Due to these practical challenges, we note no reported research on integrating

multiple HISs to allow for an end-to-end tracking of the care patients receive in

the radiology department. Therefore, the current Quality of Care (QoC) research

is limited as it can only utilize data from a siloed HIS for partial workflow analysis.

A comprehensive assessment of the QoC in radiology requires multiple HISs be

integrated such that various key QoC metrics over the end-to-end workflow can

be extracted. Driven by this, we developed a novel technology called Department

Data Depot (DDD) that integrates multiple HISs in radiology. We proposed nine

QoC metrics defined upon the data from DDD that measure various dimensions

of care quality such as timeliness, efficiency, patient satisfaction, and workload

distribution. To demonstrate the clinical utility of DDD, we developed and

deployed a web application system, the Radiology Quality Dashboard (RQD), at

Mayo Clinic in Arizona (MCA). Four use cases illustrate how the RQD is used

2



to assist the clinical practice. Also, a case study on how the DDD enabled an

effective intervention for reducing lengthy radiologist turnaround times (TATs)

for observation patients (ObP) is presented.

Topic 2: Integration of Sparse Singular Vector Decomposition and Statisti-

cal Process Control for Monitoring and Change Detection of High-

Dimensional Data Streams. The establishment of DDD makes it possible

to collect data on QoC metrics in real time. The data is high-dimensional if

considering stratification of each QoC metric in terms of scanners, protocol types,

patient types, and body parts. Collectively monitoring stratified QoC metrics

instead of aggregated ones enables root cause identification of anomalies detected

by the monitoring scheme. In another research project of mine, I developed a

method for monitoring high-dimensional data streams that integrated Singu-

lar Vector Decomposition (SVD) and Multivariate Statistical Process Control

(MSPC), called SSVD-MSPC. Monitoring of high-dimensional data streams

has been a popular research topic in MSPC in recent years. However, existing

methods have the limitation of mostly requiring a parametric distribution for

the data, while non-parametric methods are lacking. Real-world data such as

QoC metrics are rarely parametric. Also, the existing methods are not effi-

cient enough to suit the need for real-time analytics of data streams that could

be spatially high-dimensional and temporally high-throughput. The proposed

SSVD-MSPC method addressed the aforementioned limitations of the existing

methods and additionally provides three key capabilities, including monitoring,

fault identification, and fault characterization. Extensive case studies are con-

ducted for small, medium and large scaled data streams that experience faults

of different magnitudes and various temporal shapes. SSVD-MSPC achieves
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universally good performance across the different settings in comparison with

existing methods. To demonstrate the performance of proposed SSVD-MSPC

algorithm, we modeled the radiologic care process as a discrete events systems

for monitoring 51 QoC metrics in Radiology Department at Mayo Clinic, and

designed three different types of common situations that would be considered

as abnormal. The SSVD-MSPC successfully detected two out of three faults

efficiently. For the third type of situation, the SSVD-MSPC helped us to find

an optimal technician schedule plans based on our findings.

Topic 3: Multi-Modality Deep Transfer Learning for Computer-Aided Diagno-

sis. The aforementioned projects, Topic 1 and 2, focus on solving problems

related to tracking HISs. The archive HIS is another type of widely deployed

information systems. This topic focus on archive HISs in radiology department,

PACS is a typical archive HIS which stores scanned medical images from multiple

modalities such as computed tomography (CT), magnetic resonance imaging

(MRI), X-ray and mammography. Different from the data in tracking HISs,

information stored in archive HISs have unique characteristics: 1) the size of

data is huge. Considering contrast-enhanced digital mammography (CEDM)

as an example, each scan produces 4 high-resolution images with different scan

parameters. Each of the images is around 30 MB which is about 1, 000 times

larger than the data recorded in tracking HISs for the same procedure. If we

consider all 4 images, the size difference is over 4, 000 times. 2) The raw data

from an archive HIS are not straightforward to interpret, even by medical pro-

fessionals. Lots of information is hidden underneath the visualization of images,

and therefore techniques of computer vision and pattern recognition are need to

help the interpretation. In this project, we collaborated with Mayo Clinic in

4



Arizona and focused on breast cancer image classification using CEDM images

in PACS. Compared to conventional machine learning approaches, deep learning

techniques showed promising performance on open-domain classification tasks.

However, the uniqueness of our task makes it difficult to directly apply existing

approaches: 1) since CEDM is a new imaging technique, the sample size used to

train a classification model is not up the standard required by deep learning.

2) CEDM produces four images from two views and two energy frequencies for

each patient. How to optimally integrate these images affects the classification

performance. To address these challenges, we proposed a deep learning frame-

work which adopts the ideas of transfer learning and multi-modality integration.

The experimental results indicate good performance on CEDM data collected

in Mayo Clinic. Also we provided recommendation on tumor segmentation in

order to reduce the labor-intensive manual segmentation process.

1.3 Summary of Original Contributions

The objective of my dissertation research is to develop new methods that overcome

the aforementioned limitations of the existing methods and demonstrate the utility of

the methods in real applications with data and information collected from multiple

types of HISs. In my methodological development, I focus on two major categories of

data: radiologic process records from tracking HISs, and medical images from archive

HISs.

The summary original contributions of my dissertation research are summarized

as follows:

• Design of a super-HIS, DDD, by integration of multiple HISs, which allows
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for an end-to-end tracking of the care patients receive in radiology department

from check-in to radiologic report generation. DDD provides the information

infrastructure that makes it possible to accomplish multiple goals related to

process improvement, such as quality of care monitoring, workflow analysis and

productivity assessment, scheduling, equipment utilization and load balancing.

• Development of a non-parametric, computationally efficient method, SSVD-

MSPC, for monitoring and change detection of high-dimensional high-throughput

data stream. This method can be used in various application domains. My

dissertation demonstrates the effective application of SSVD-MSPC in two appli-

cations: one is to monitor the quality of care metrics in radiology; the other is

to monitor the quality of service in MCCN.

• Development of a multi-modality deep transfer learning framework for computer-

aided diagnosis. The transfer learning technique allows for adopting knowledge

gained from large existing dataset from other domains and fine-tuning model

parameters using smaller but specific datasets in our focused domain. The

multi-modality approach enables consideration of the intra-relations among all

images from the same patient. My dissertation focuses on a demonstration of

breast cancer classification using CEDM images.

The dissertation research will be presented in three chapters. Chapter 2 presents

the development of topic 1: Integration of Multiple Health Information Systems for

Quality Improvement of Radiologic Care. Chapter 3 presents the development of topic

2: Integration of Sparse Singular Vector Decomposition and Statistical Process Control

for Monitoring and Change Detection of High-Dimensional Data Streams. Chapter

4 presents the development of topic 3: Multi-Modality Deep Transfer Learning for

Computer-Aided Diagnosis.
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Chapter 2

INTEGRATION OF MULTIPLE HEALTH INFORMATION SYSTEMS FOR

QUALITY IMPROVEMENT OF RADIOLOGIC CARE

2.1 Introduction

Health care spending in the U.S. has been estimated to account for 17% of gross

domestic product, nearly twice as much as that in other developed countries (Hartman

et al., 2015). In spite of this enormous expenditure, the U.S. ranked the last in health

care quality among developed countries according to a 2008 Commonwealth Fund

report (Roehr, 2008). Quality of Care (QoC), according to a 2001 report by the

Institute of Medicine (Kohn et al., 2001), includes six dimensions: timeliness, efficiency,

effectiveness, patient safety, patient/family centeredness, and equity of care.

QoC improvement initiatives generally prioritize areas that incur the most expen-

diture. One such area is radiologic care as it involves the use and maintenance of

expensive imaging equipment. There is ample evidence showing that Magnetic Reso-

nance Imaging (MRI) and Computed Tomography (CT) have contributed significantly

to the rising cost of health care (Hu et al., 2011). As a result, the Centers for Medicare

and Medicaid Services have proposed that imaging devices costing greater than one

million dollars should be amortized for replacement based on a 90% service utilization,

in the hope of lowering per-patient reimbursement cost (Centers for Medicare &

Medicaid Services , CMS).

To improve the QoC in radiology, an important first step is to define metrics to

measure the QoC. Metrics are numerical indicators used to measure the performance
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in areas considered important for an organization’s mission (Abujudeh et al., 2010).

Metrics for the QoC in radiology have been discussed in a number of papers. Typical

examples include report turnaround time (Abujudeh et al., 2010), patient access

and wait times (Sarwar et al., 2015), equipment utilization rates and downtimes

(Sarwar et al., 2015), exam volumes (Ondategui-Parra et al., 2005), and staff workload

(Ondategui-Parra et al., 2005).

With the rapid development and adoption of information technology in health

care, electronic Health Information Systems (HISs) have been widely used in health

institutions. This has provided an unprecedented opportunity for acquiring quantita-

tive data on the care process, from which metrics for QoC can be extracted efficiently

and automatically. In radiology, several HISs are commonly used, including the

Electronic Health Records (EHR), Radiology Information System (RIS), and Picture

Archive and Communication System (PACS). Each of these HISs records partial and

complementary information about the entire radiologic care process. Specifically, the

EHR contains patient information and detailed medical history. Other than patient

information that overlaps with the EHR, the RIS includes radiology-specific measures

such as technologist imaging verification time. The PACS focuses on storing the

digital images from the exams and related metadata information using the Digital

Communications in Medicine (DICOM) standard (Association et al., 1997). To the

best of our knowledge, no research has been done to integrate the multiple HISs

together to allow end-to-end tracking of the care each patient receives in radiology

department, i.e., from check-in to finalization of the radiologic report. As a result, the

current QoC research is limited as it is not capable of capturing the entire radiologic

care workflow given only segmented data available from a single HIS. A comprehensive
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assessment of radiology QoC requires the multiple HISs be integrated such that various

key QoC metrics can be extracted from the resulting “super-HIS”.

At Mayo Clinic, we have a home grown radiology quality assurance system called

Dose Index Tracker (DIT©) (Wang et al., 2011). The DIT system collects information

directly from the DICOM headers of scanned images. Such information includes but

is not limited to scanner information (ID, vendor, etc.), exam related information

(procedure, timestamps of each scanned image, radiation dose, etc.), and basic patient

information. The DIT was designed to track patient-specific radiation dose across all

radiology exams performed at Mayo Clinic, and to provide intelligent data analysis,

reporting, and alerting in a clinical quality assurance context.

We present our development of a technology called Department Data Depot (DDD)

that integrates four HISs, including an EHR, a RIS, a PACS, and the home grown DIT

system. In the development of DDD, we adopt the concept of loose-coupling techniques

in database integration and propose a three-layer integration framework, including a

data mashup lower-layer, an aggregation service middle-layer, and a result presentation

upper-layer. The loose-coupling architecture is a mature and well-known technique

which is designed to reduce the risk that a change made within one or more database will

create unanticipated changes within other related databases. Limiting interconnections

can help isolate problems when things go wrong and simplify testing, maintenance

and troubleshooting procedures. As a tradeoff, such integration may slightly increase

the response time of the system and necessitate extra maintenance of the mid-layer

due to the nature of design. In the data mashup layer, a module is introduced to

maintain the relations and constraints among the integrated HIS databases. When

any of the source databases or the relations and constraints themselves change, we

can easily alter the mid-layer of our integration to leave the upper levels untouched.
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In addition to the design and implementation of this framework, a significant amount

of effort has been spent on addressing specific issues from incompatibility of the

multiple HISs, such as inconsistent data fields, data measurement errors, missing

values, and human errors. These issues could substantially affect the usability of

the integrated system and therefore have been deliberately addressed in our research.

Furthermore, we propose nine QoC metrics defined upon the integrated system: (1)

exam duration, (2) technologist post-processing time, (3) technologist turnaournd

time (TAT), (4) radiologist TAT, and (5) total TAT, which reflect the timeliness and

efficiency of radiologic care; (6) patient waiting time and (7) patient TAT, which reflect

the efficiency and patient satisfaction; (8) patient volume and (9) exam volume, which

reflect the workload distribution. All these metrics measure QoC from different and

complementary perspectives. Finally, we present the deployment of DDD in radiology

department of Mayo Clinic in Arizona (MCA) through two case studies. DDD is

deployed in MCA through a web portal, called Radiology Quality Dashboard (RQD).

In the first case study, we demonstrate, through four examples, how users can use

RQD information in the clinical practice. In the second case study, we show how DDD

enabled identification of the root cause of lengthy radiologist TAT for observation

patient (ObP) – a specific patient subtype, and further enabled the development of

an effective intervention for radiologic quality improvement.

Different from data integration and quality control applications in other fields, such

systems in healthcare have restricted access policies to protect patient information

according to HIPPA (Health Insurance Portability and Accountability Act). Indeed,

our research team had to go through HIPPA training before we implemented the

project, and the end users of the project are from Mayo Clinic in Arizona and have

the right to access the information. When our DDD system acquires raw data records
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for other HISs, those outer source systems give us the privilege to query and store

patient information. When we use our database to calculate quality metrics and

generate reports, however, an anonymization procedure is applied in the mash up

layer by removing all patient related information except the patient type, such as

“inpatient”, “outpatient” and “ED patient”. Also, the metrics of interest in this research

are aggregated measures; they are not specific to an individual patient. As a result,

the patients’ demographics and disease information are not used in the analysis.

The contributions of this paper are multifold:

• Our work is the first of its kind and provides a technology for multi-HIS integra-

tion for radiology practice. By integrating these HISs together, DDD enables

end-to-end tracking of the radiologic care each patient receives, with detailed

time stamps and contents of each care activity as well as rich information on

patients, providers, and equipment. While this paper focuses on quality im-

provement, the data and information in DDD can support a variety of other

goals including, but not limited to, scheduling, load balancing, and process

optimization. In this sense, we envision that DDD has a potential for profoundly

impacting radiology practice.

• Based on intensive interaction and dialogue with radiologists, technologists,

and administrators in radiology department cross-referenced with the available

data in DDD, we propose nine QoC metrics that are important for monitoring,

tracking, and evaluating the quality of radiologic care. These metrics have not

previously been available.

• DDD was deployed in MCA in September 2015. Since then, it has been used ex-

tensively by clinicians, administrators, and researchers to monitor QoC, identify

problem areas, and perform interventions to improve the quality of radiologic
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care. In this sense, the research in this paper sets an example that close col-

laboration between industrial engineers and clinicians has great potential for

transforming health care practices.

2.2 Literature Review

The recent, widespread adoption of HISs in health institutions has made it possible

to collect detailed, quantitative data on the care process. Availability of the data

further enables QoC to be measured and improved. In this section, we will review

major types of HISs, focusing on how they have been used in relation to QoC, especially

in radiology.

The terms of EHR or Electronic Medical Records (EMR) are often used inter-

changeably with the HIS. In some care settings, the EHR is the only HIS in play. In

this paper, we use EHR to refer to the enterprise-level HIS of patient medical history.

The EHR includes all key administrative clinical data relevant to a patient’s care

pulled from multiple encounters and facilities, such as demographics, progress notes,

medications, immunizations, vital signs, laboratory and radiologic reports. The EHR

was one of the earliest HISs and was in use when health care practices began transi-

tioning from the paper era to the digital era. Early research on the EHR in relation to

quality focused on design and implementation issues of the EHR to make it a proper

information enabler. For example, (Walker et al., 2008) proposed a coordinated set of

steps for safe design, implementation and improvement of the EHR. (Middleton et al.,

2013) made ten recommendations on the EHR with respect to improving the safety

and quality of care. (Wang et al., 2003) performed a cost-benefit analysis of the EHR

in ambulatory primary care settings and concluded that the EHR investment had a
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positive financial return. (Miller et al., 2005) conducted similar case studies on 14 solo

or small-group primary care facilities and suggested that the EHR would be “finan-

cially attractive” for some facilities and “financially acceptable” for most others. More

recently, as the EHR was becoming a mature and widely adopted system, research has

focused on how the data and information recorded by the EHR can be used for quality

and performance improvement of health care (Amoah et al., 2015). For example,

(Poissant et al., 2005) studied the documentation time of physicians and nurses, and

concluded that with the help of the EHR, nurses save about 24% of the overall time

spent on documenting during a shift. (McVeigh et al., 2008) proposed several metrics

to be extracted from the EHR that measure the timeliness, an important dimension

of QoC, of several sub-processes of optometry practices, such as check-in, pretesting,

doctor examination, and optical sub-processes. Despite the wealth of existing studies,

little research has been conducted on quality improvement of radiologic care using

the EHR. This is because the EHR is an enterprise-level system such that the data it

collects lacks sufficient granularity to help extract radiology-specific QoC metrics such

as pre-radiologic-exam patient waiting time, exam duration, and radiologic report

turnaround time.

The RIS and PACS are two specialized HISs for radiology. Radiology departments

use a RIS to track patients, exams, result distribution, and procedure billing. A PACS

provides economical storage and convenient access to images from multiple modalities.

The PACS stores both image data as well as image related data-flow information.

In this section, only information from data-flow are discussed. (Wang et al., 2011)

developed a DIT©to extract, store, and monitor critical radiation dose indicators

stored in DICOM file headers found in PACS. (Hu et al., 2011) developed five metrics

for efficiency benchmarking, including exam duration, inter-series time, inter-patient
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time, appointment interval time, and table utilization using DICOM information

stored in PACS. A radiology department’s RIS and PACS are generally designed to

interface and can often be easily linked to provide more comprehensive information

than using a single system alone. Research has been done to use RIS and PACS

together for improving the quality and safety of radiologic care. For example, (Nitrosi

et al., 2013) developed a procedure to use Health Level 7 (HL7) standard messaging in

RIS and PACS to reduce clinical risks due to patient reconciliation errors. In several

independent studies, researchers developed various tracking systems with data from

RIS and PACS to monitor the overall performance and exam status within radiology

department in order to improve patient satisfaction and outcome assessment (Nagy

et al., 2009). (Seltzer et al., 2000) integrated RIS, hospital information systems, and

manually input data to extract several management metrics such as report turnaround

time, access to appointments, and productivity.

As seen, most existing research was based on a single or department-level HIS.

However, radiologic care is a complex process such that data describing the entire

care process resides in multiple HISs. For example, patient check-in time, type, and

demographics are available in EHR. Service time stamps such as the times when

imaging was started and finished, and when the image was verified by the technologist

are stored in RIS. The time when the radiologic report is finalized by the radiologist

is recorded in PACS. Image files together with meta data such as modality, body

part, and with/without contrast are also stored in PACS. As a result, although a few

QoC metrics may be extracted from a single HIS alone, these metrics only provide

partial, limited information about the QoC. A comprehensive assessment of the QoC

in radiology requires the multiple HISs be integrated into a “super-HIS” from which

various key QoC metrics can be extracted. Without the integration, many important
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QoC metrics that require linked records from multiple HISs would be missed. For

example, an important QoC metric is patient pre-exam waiting time, i.e., the time

duration between check-in and imaging start. The two time stamps needed to compute

the waiting time reside in EHR and RIS, respectively. Another important QoC metric,

patient turnaround time, is measured by the difference between two time stamps,

i.e., imaging start and radiologist completion of reading the image and finalizing

the report, which are in RIS and PACS, respectively. Furthermore, to measure the

distribution of the aforementioned time metrics as well as other QoC metrics such

as patient volume and exam volume with respect to different patient types, imaging

modalities, facilities/sites, scanners, and body parts/sub-specialties, information needs

to be pulled from EHR or PACS to group-partition these metrics.

2.3 Development of Multi-HIS DDD and Radiologic QoC Metrics

In this section, we present our development of DDD that integrates multiple HISs.

We also define and describe how we extract a collection of key QoC metrics from the

DDD.We will present our research development in the context of radiology department

at MCA, but the developed technologies are generalizable to other health institutions.

2.3.1 Mapping out Radiologic Care Process and Interrogation of the Multi-HIS

Before developing the DDD and extracting the key QoC metrics, we needed to

identify the major steps involved in the care process performed within radiology

department for patients. Through observations and intensive dialogue with the

radiologists, technologists, and administrators in radiology department of MCA, we
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Figure 1: Radiologic Care Process and Multiple Relevant HISs

mapped out the radiologic care process as depicted in the left hand side of Figure 1.

Furthermore, we dove into each HIS used in radiology to identify what information

about the mapped care process was stored in the HIS. There are three important

observations: (1) No single HIS provides end-to-end measurement for the entire care

process. (2) Each of the four HISs in the right hand side of Figure 1 contains useful

while unique information required to describe the entire care process (please see Figure

4 for details). This suggests that all four HISs must be included in developing the

DDD. (3) There exists a common data field across all four HISs, i.e., the accession

number, which is a unique identifier for each exam of each patient (one patient can

have multiple exams). The accession number can be used as a key to link the four

HISs together to track the entire care process on a per-patient per-exam basis. These

findings lay the ground work for the development of DDD.
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2.3.2 DDD Architecture

DDD integrates four major HISs deployed at MCA: an EHR – Cerner ®, a RIS –

Radiology Data Warehouse (RDW), a PACS monitoring system – PACSHealth that

extracts exam status changes in GE Centricity PACS, and a custom-built radiation dose

tracking system – DIT ©. Database integration is an important technique that helps

the data users interrogate heterogeneous records, information and relationships among

multiple data sources and provides a unified data view. One traditional techniques are

called data warehousing (Inmon (2005)), which extracts data from multiple sources,

transforms the data into a proper and unified format, and then loads the data into

another standalone target for further query and analysis. A major limitation of this

technique is the tight relationship to the original data sources, which makes it difficult

to adopt any upstream structural changes and increases maintenance/update costs

(Moseley (2009), Wu et al. (2007)). More recently, loose-coupling techniques have

been proposed for database integration, which provide a unified real-time data query

interface over a target data source (Kaye (2003)). Such techniques are developed

and used as an important part of Service Oriented Architecture (SOA) (Erl (2008)).

Loose-coupling techniques rely on mappings between the data structures of the original

data sources and the target data source. If required, transformation techniques are

used to wrap the interfaces of original sources for a higher-level query. Depending

on the mapping schemas, the techniques can be categorized into two basic types:

Global As View (GAV), which maps records in the target data source to original data

sources; Local As View (LAV), which maps records in the original data sources to the

target data source. Our development of DDD adopts the concepts of loose-coupling

techniques by creating higher-level data schema with LAV mapping. The original data
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Figure 2: Three-Layer Integration Framework of DDD

records are unchanged and connected dynamically to construct a local record for data

analysis. A significant challenge we encountered was how to resolve semantic conflicts

among the different data sources, as heterogeneous definitions and/or meanings always

exist when multiple data sources are to be linked together. To tackle this challenge,

semantic and ontology-based integrations are developed by involving expert knowledge

that explicitly defines schema terms.

Specifically, we propose a three-layer integration framework for DDD, including a

data mashup layer, an aggregation service layer, and a result presentation layer, as

shown in Figure 2. Next, we introduce each layer with more details.
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2.3.2.1 Data Mashup Layer

The data mashup layer couples the data fields in each individual HIS into the

DDD, on the fly. The coupling uses “accession number” as a unique identifier for each

exam of each patient and a common field shared by all the individual HISs. Each

record in DDD corresponds to one exam. Each exam is associated with a collection

of attributes to describe it, which correspond to the joint data fields from the four

individual HISs. Here, only relevant ones associated with QoC metrics are coupled in

DDD (see Table 1).

In review of Table 1, we note that these HIS databases have heterogeneous data

fields, which may be inconsistent and even conflict with each other. Taking facility

or site as an example: the “Facility” data field from RDW is an indicator for the

two sites of MCA (hospital vs. clinic); the “STATION_ID” from DIT can also help

identify the site of each exam, as it is the unique ID of each scanner. Although

representing the same concept, the data fields are named differently across different

HISs. A second issue is that several data fields are input by staff manually, which may

introduce human errors. To deal with such inconsistencies and errors in data mashup,

we developed three heuristic rules based on intensive dialogues with the radiology

staff.

Heuristic Rule I: technologist finish time ttech_finish:

ttech_finish is the timestamp when a technologist finishes the exam procedure on a

patient. At this time, all scanned images are ready to be sent to the radiologist to
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Table 1: Relevant Data Fields in Each HIS to QoC Metric and Included in DDD

EHR (Cerner)

Field Name Description
MRN Medical record number unique to patient.
ACCESSION_NBR Primary key to link individual HIS, e.g.,

“810713204-1”.
CHECKIN_DT_TM Timestamp when the patient checks in, e.g.,

“2016-05-24 10:34:33.000”.
ENCNTR_TYPE_DISPLAY Encounter type – an indicator of patient type,

e.g., outpatient, inpatient.
RESOURCE_BEG_DT_TM Timestamp when the exam is scheduled, e.g.,

“2016-08-01 10:15:00.000”.
STATE_MEANING Current status of the exam, e.g., “CHECKED

IN”, “CONFIRMED”.

RIS (RDW)

Field Name Description
AccessionNumber Primary key to link individual HIS, e.g.,

“810713204-1”.
Code Procedure code, e.g., “70030K”, “74364”.
Encntr Encounter type – an indicator of patient type,

e.g., outpatient, inpatient.
Facility Facility / site where the exam is taken, e.g.,

“hospital”, “clinic”.
Modl Imaging modality, e.g., “MRI”, “CT”.
ServiceTime Timestamp when the image scanning finishes,

e.g., “2016-07-18 10:12:32.000”.

PACS (GE-Centricity)

Field Name Description
AccessionNumber Primary key to link individual HIS, e.g.,

“810713204-1”.
FiftyTransition Timestamp when the technologist finishes veri-

fying the exam, e.g., “2016-07-18 10:12:32.000”.
MedicalRecordNumber Medical record number – a patient ID, e.g.,

“12345678”
Modality Imaging modality, e.g., “MRI”, “CT”.
NinetyTransition Timestamp when the radiologist finishes dictat-

ing the exam, e.g., “2016-07-18 10:12:32.000”.
ProcedureCode Procedure code, e.g., “70030K”, “74364”.
TwentyTransition Timestamp when the exam is ordered, e.g.,

“2016-07-18 10:12:32.000”.
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DIT (Mayo)

Field Name Description
AccessionNumber Primary key to link individual HIS, e.g.,

“810713204-1”.
FINISH_TIME Timestamp when the last image of an exam

arrives at PACS, e.g., “2016-07-04 18:23:00.000”.
PROTOCOL_NAME Exam protocol name, e.g.,

“8a_RENAL_DONOR”.
START_TIME Timestamp when the first image of an exam

arrives at PACS, e.g., “2016-07-18 10:12:32.000”.
STATION_ID Unique scanner ID, e.g., “JA_CT0PRA81818”.

dictate and the patient will be transferred to the recovery room. ttech_finish is needed

for deriving an important QoC metric, technologist TAT. ttech_finish does not exist in

any of the four HISs, but is indirectly measured by two data fields: “ServiceTime” in

RDW and “FiftyTransition” in PACS. The former is the time when the technologist

manually indicates that scanning has finished. In contrast, the “FiftyTransition”

marks the time when the images are marked as “Verified” in PACS indicating that all

image processing is complete. Typically, “ServiceTime” is earlier than “FiftyTransition”

because it does not include the time the technologist spends on post-processing the

scanned images. However, since the “ServiceTime” is manually entered into the system,

depending on each technologist’s working habit, this timestamp may be earlier or

later than the exact ttech_finish. To eliminate the bias of the input and obtain a more

accurate ttech_finish, we use the following rule:

ttech_finish = later(“FiftyTransition” , “ServiceTime”) (2.1)

The rationale behind this is that if “FiftyTransition” is later than “ServiceTime”,

it means that the technologist inputs the “ServiceTime” right after the scanning is

finished but does not consider the post-processing time. Therefore, in such situation,
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“FiftyTransition” is a better measure for ttech_finish. On the other hand, if “FiftyTran-

sition” is earlier than “ServiceTime”, there are likely extenuating circumstances or

additional patient interactions that increase the hands-on component of the exam. In

this case, “ServiceTime” is a more appropriate time stamp for ttech_finish.

Heuristic Rule II: check-in time tcheck_in:

for patients in Emergency Department (ED): tcheck_in is needed for deriving an

important QoC metric, patient waiting time. It is measured by “CHECKIN_DT_TM”

in Cerner. However, the “CHECKIN_DT_TM” is missing for patients in ED due to

the unique care process of ED. A patient’s radiology “check-in” (or alert of arrival) from

the ED happens when an imaging exam is ordered by the physician, which is stored

in the field of “TwentyTransition” in PACS. Therefore, we use “TwentyTransition” as

tcheck_in for ED patients, which produces the following rule:

tcheck_in =

 “TwentyTransition” if the patient is in ED

“CHECKIN_DT_TM” otherwise
(2.2)

Heuristic Rule III: patient type classification:

It is important to be able to compute a QoC metric for different patient types such as

inpatient, outpatient, and ED patients. This would help reveal QoC problems in serving

each type of patient and properly allocate resources to overcome the problems. Patient

type is stored in “ENCNTR_TYPE_DISPLAY” in Cerner and “Encntr” in PACS.

Unfortunately, it is observed the two data fields have a large number of missing values

(i.e., NULL values). To mitigate the problem, we use “ENCNTR_TYPE_DISPLAY”
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as the primary source to obtain the patient type, because its missing data problem is

less severe than “Encntr”. When the “ENCNTR_TYPE_DISPLAY” is missing for a

patient, we check “Encntr”. If “Encntr” is also missing, we label the patient as “NA”.

patient type =

ED patient if “ENCNTR_TYPE_DISPLAY” = ‘Emergency’ OR

“ENCNTR_TYPE_DISPLAY” = NULL but “Encntr”=‘EM’

inpatient if “ENCNTR_TYPE_DISPLAY” = ‘Inpatient’, ‘Observation’ OR

“ENCNTR_TYPE_DISPLAY” = NULL but “Encntr”=‘IP’

outpatient if “ENCNTR_TYPE_DISPLAY” = ‘MCA Hospital C’,

‘MCA Patient’, ‘OP in a bed’,‘Pre-Admit Outpatient’,

‘Recurring AIC’, ‘Recurring PM&R’, ‘Recurring Rad Onc’ OR

“ENCNTR_TYPE_DISPLAY” = NULL but “Encntr”=‘OP’, ‘P’

NA otherwise

(2.3)

2.3.2.2 Aggregation Service Layer

This layer hosts the algorithms to derive the nine QoC metrics (please see Section

3.3 for details). Execution of an algorithm is triggered by the user’s service request on

the corresponding QoC metric, together with a time interval and strata that the user

wants to utilize in the computation of the QoC. The QoC metric can be stratified by

patient type, facility site, and scanner. Once an algorithm is triggered, it will query

DDD, perform filtering and arithmetic operations, and return the user-requested QoC

measurement that is presented on the result presentation layer (see below).
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Figure 3: Result representation layer – a web portal, RQD

2.3.2.3 Result Presentation Layer

We built RQD, a web portal as the result presentation layer. RQD adopts HTML

5 techniques and provides users easy access to the aggregation service layer from

desktop computers, laptops, smart phones, and tablets. A snapshot of RQD is shown

in Figure 3. In particular, on the left side of RQD, a user can select the QoC metric

of interest, start and end dates and strata for which the QoC is to be computed. This

information is sent to the aggregation service layer and results are presented on the

right side of the RQD as graphs and/or tables.

2.3.3 Definition of Radiologic QoC Metrics

Based on the radiologic care process mapped out in Section 2.3.1, we define

nine QoC metrics. Specifically, we propose five metrics measuring the timeliness
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Figure 4: Timestamps used in the formula for calculating the QoC metrics and the
HISs each timestamp comes from

and efficiency of radiologic care: exam duration, technologist post-processing time,

technologist TAT, radiologist TAT, and total TAT. We propose two metrics on

efficiency and patient satisfaction: patient waiting time and patient TAT. In addition,

we propose two metrics on measuring the demands and workload: patient volume

and exam volume. Table 2 provides the definition and formula of each QoC metric.

Figure 4 further shows the relative positions of the timestamps used in the formula

(last column of Table 2) and from which HISs each timestamp can be obtained.

2.4 Application of DDD and QoC Metrics in Quality Improvement of Radiologic

Care

In this section, we present the applications of DDD technology in radiology depart-

ment at MCA. The first application demonstrates how RQD enabled by DDD was

used to retrieve important information in order to help identify areas of improvement

for radiologic care quality. The second application demonstrates how DDD enabled
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the identification of the root cause of lengthy radiologist TAT for a specific patient

subtype, observation patients (ObP), and further enabled the development of an

effective intervention for radiologic quality improvement.

2.4.1 RQD and its clinical use cases

With the DDD technology and nine QoC metrics, a number of radiologic care

quality related questions can be answered. Here, we present four examples on how

RQD could potentially help improve care. At the time of preparing this paper, we

chose to select five full weeks’ data (August 1, 2016 – September 4, 2016) and used

CT as the example for illustration purposes. The same applies to other modalities

such as MR.

2.4.1.1 Example I

This study was motivated by a concern raised by the ED that the turnaround time

of CT after regular radiologist working hours was longer than expected. As shown in

Table 2, the turnaround time is defined as the duration between check-in time and

radiologist finish time. CT is an imaging modality extensively used by the ED. CT

exams are typically interpreted by attending radiologists during regularly working

hours (radiology hours) and by residents and fellows during extended working hours

(non-radiology hours). In response to a request from the ED, we used DDD together

with RQD to investigate this perceived problem.

As shown in Figure 5, several observations can be obtained. First, the weekly

average total TAT for both radiology and non-radiology hours ranges from 01:15 –
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Figure 5: Example I - Weekly average total TAT during radiology and non-radiology
hours (number in the bar indicates the exam volume)

01:45 (hours:minutes), which is reasonable (Wang et al., 2015). Second, the total

TAT during radiology hours is in general slightly longer than non-radiology hours

suggesting the perception of afterhours delays was unwarranted. Given the data, we

performed hypothesis testing to see if the observed difference between the radiology

and non-radiology hours is statistically significant. The p-values for the five weeks

shown in Figure 5 are 0.0135, 0.01229, 0.04456, 0.9193, and 0.2905, respectively. For

the first three weeks in the selected range, the hypothesis tests support our observation

that the total TAT during radiology hours is greater than that during non-radiology

hours. However, the p-values of last two weeks are not significant. This may be

interpreted as a result of residents and fellows joining the medical program in late

July. Staff radiologists may provide greater assistance during the initial startup weeks

as trainees become familiar with the radiology practice. And the increment of TAT

should have other reasons, for instance, less radiologists in the last two weeks. Through

this investigation, we concluded that the ED’s concern regarding excessive TAT during

non-radiology hours may not be valid overall. Yet, radiology department may need to
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Figure 6: Example II - Weekly patient volume by scanner

pay special attention to the period when new residents and fellows are first taking

responsibility for overnight call.

2.4.1.2 Example II

This study was motivated by the need for assessing the workload distributions

among different scanners in order to better allocate resources and optimize scheduling.

There are six CT scanners in MCA, with three located in the hospital and the others

located in the clinic. The patient volume and exam volume (see Table 2 for details)

are both reasonable indictors of scanner load.

Again, several observations can be obtained from Figure 6. First, it is clear that

the three scanners in the hospital have unbalanced loads with the second scanner

being heavily used while the first scanner being used substantially less. An ANOVA

test was conducted to check if the patient volumes from three hospital scanners are

all the same. The test results confirmed that there is statistical significance in the

load imbalance across the three scanners at the hospital (p-value < 0.001). Second,
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the three scanners in the clinic also have unbalanced loads to some extent, although

the issue is not as severe as the hospital. To confirm this, another ANOVA test was

performed, which yielded p-value < 0.001, indicating that the three scanners in the

clinic also have statistically significant load imbalances. Third, the overall load of

scanners in the hospital is heavier than that in the clinic. A one-side two-sample t-test

was conducted with the null hypothesis H0 : µhospital = µclinic and the alternative

hypothesis H1 : µhospital > µclinic, where µhospital and µclinic denote the average weekly

patient volume in the hospital and the clinic respectively. The t-test yielded p-value

= 0.03526, which indicated that we rejected the null hypothesis and the patient volume

at the hospital is statistically higher. This is likely due to longer hours of operation

in the hospital versus the clinic. However, some of the other imbalances such as the

difference between Hospital Scanner 02 and 03 are more difficult to explain. It is our

intention to explore this further with our clinical partners.

2.4.1.3 Example III

In patient care, patient waiting time reflects process efficiency and is also an

important factor that affects patient satisfaction. This study is to assess the patient

waiting time related to the radiology exams. To measure the patient waiting time,

as defined in Table 2, requires the algorithm to know the patient check-in time

(heuristically derived from EHR and PACS records with rule II, as shown in Figure 4)

and exam start time (DIT records, shown in Figure 4).

Figure 7 shows the histogram of patient waiting time. The average waiting time is

about one hour; 90% of the exams have patient waiting time less than two hours; five

patients waited for more than three hours (the reasons for these extreme cases are

30



Figure 7: Example III - Histogram of patient waiting time

yet to be explored). Patient waiting time is a complex issue. It was observed that

often times, patients check in earlier than their scheduled times, which leads to long

waiting time. Also, waiting time is related to nursing assessment and/or oral contrast

(for some CT exams) administration. This is an area that deserves more attention

from radiology administration and more in-depth explorations.

2.4.1.4 Example IV

The last two steps in radiologic care are related to the activities from technologists

and radiologists –two major service providers. Their TATs are important quality

indicators. This study is to assess the technologist TAT and radiologist TAT. Both

metrics share a timestamp –ttech_finish and multiple data sources are involved (as

shown in Figure 4 and Table 2).
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Figure 8: Example IV - Average technologist TAT (left) and average radiologist TAT
(right)

Figure 8 shows a common trend shared by the technologists and radiologists, i.e.,

their TATs for outpatients are the longest, followed by inpatients and then ED patients.

This trend is consistent with the urgency and typical complexity of care for these

three types of patients. The average technologist TAT for outpatients, inpatients, and

ED patients are 21, 16, and 9 minutes, respectively. The average radiologist TAT

for outpatients, inpatients, and ED patients are 32, 26, and 10 minutes, respectively.

While these numbers fall into a reasonable range, clinicians and administrators may

still seek for ways to further reduce the TAT and improve the quality of radiologic

care.

2.4.2 DDD-enabled intervention for improving radiologist TAT of observation pa-

tients (ObP)

ObP is a subtype of patients who have a condition for which the cause of symptoms

is not immediately clear, so they are kept in the hospital for 23 hours to be monitored

and/or to run more tests. From a workflow perspective, ObP is considered an inpatient
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because the patient’s exam needs to be interpreted with priority. However, from a

billing perspective, ObP is considered an outpatient.

In the fall of 2015 (before DDD was in place), radiology department received

complaints from ordering physicians that the exams of ObP were not being interpreted

in a timely fashion, i.e., these exams tended to have overly long radiologist TAT that

did not match with the urgency level of ObP. Radiology department conducted an

investigation but the root cause of this problem was not clear. In the second quarter

of 2016 after DDD was deployed, the investigation was resumed. The root cause of

the lengthy radiologist TAT for ObP was found to be that, prior to DDD, patient

type classification was based on a single HIS, RDW, in which ObP were classified as

outpatients. As a result, the exams of ObP did not appear on the radiologists’ worklist

for priority review. This caused delays in interpreting ObP exams by the radiologists.

By integrating multiple HISs, DDD enabled patient type classification with more

granularity, which led to ObP being separated out from outpatients as a standalone

patient subtype. Leveraging this capability provided by DDD, radiology department

started an intervention in the second quarter of 2016. A computer program was

modified to automatically identify ObP exams from DDD and push those exams to

the front of radiologists’ worklist to be interpreted with priority.

To measure the effectiveness of the intervention, we collected data before and after

the intervention. We focused on digital X-rays (Computed Radiology (CR) exams) of

ObP interpreted by residents on Saturdays, since ordering physicians had previously

complained about the lengthy TAT for these exams. Radiology department also wanted

to exclude the possibility that the problem was related to the residents themselves.

We queried DDD and obtained data from the first quarter of 2016, i.e., before the

intervention took place. This included 101 CR ObP exams interpreted by residents on
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Figure 9: Probability distributions of logarithm of radiologist TAT for CR exams of
ObP interpreted by residents on Saturdays

Saturdays. We also queried DDD to obtain data between 06/16-08/10/2016, i.e., after

the intervention, which included 58 exams. We computed radiologist TAT as defined

in Table 2 on each exam. Figure 9 shows the probability density plots on radiologist

TAT for pre- and post-intervention exams. It is observed that the pre-intervention

distribution of radiologist TAT has a heavy right tail, indicating that there is a

non-negligible portion of exams with lengthy TAT. This problem is not seen in the

post-intervention distribution. Furthermore, to verify the statistical significance of this

finding, we performed a non-parametric two-sample proportion test for the following

hypotheses:

H0 : ppre(T ) = ppost(T )H1 : ppre(T ) > ppost(T )

where ppre(T ) and ppost(T ) denote the proportions of exams with radiologist

TAT greater than T minutes pre- and post-intervention. The p-values for T =

30, 60, 90 minutes are 0.512, 0.005, and 0.033, respectively. This result implies that
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the intervention significantly eliminated ObP exams that took the residents longer

than one hour to complete. Furthermore, on average, the intervention cut radiologist

TAT by more than half, i.e., from 59.40 minutes pre-intervention to 20.67 minutes

post-intervention. These results demonstrate that the intervention accomplished its

intended purpose by reducing the radiologist TAT of ObP. Also, we eliminated the

concern that the problem was caused by residents’ work quality.

2.5 Discussion and Conclusion

In this project, we developed a novel technology that integrated four HISs commonly

used in radiology department into a super-HIS called DDD. We adopted loose-coupling

techniques in database integration and proposed a three-layer integration framework,

including a data mashup layer, an aggregation service layer, and a result presentation

layer. DDD enabled end-to-end tracking of the care each patient receives in radiology

department, with detailed time stamps and contents of each care activity as well as

rich information on patients, providers, and equipment. Furthermore, we proposed

nine QoC metrics defined upon DDD: exam duration, technologist post-processing

time, technologist TAT, radiologist TAT, and total TAT, which reflect the timeliness

and efficiency of radiologic care; patient waiting time and patient TAT, which reflect

efficiency and patient satisfaction; patient volume and exam volume, which reflect the

workload distribution. All of these metrics measure QoC in radiology from different

but complementary perspectives. DDD was deployed through a web portal, RQD,

in MCA in the second quarter of 2016. Since then, it has been used extensively by

clinicians, administrators, and researchers to monitor QoC, identify problem areas,

and perform interventions to improve the quality of radiologic care. Specifically,
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we demonstrated, through four examples, that how users can use RQD information

to understand the care workflow and performance. RQD may provide answers to

some clinical practice related questions and concerns, and help identify opportunities

for quality improvement. In addition, we showed a case study on a DDD-enabled

intervention that effectively reduced the radiologist TAT for ObP. Specifically, our

comparison between the pre- and post-intervention radiologist TAT showed that the

intervention significantly eliminated ObP exams that take the residents longer than

one hour to complete and cut the average TAT by more than half.

Several heuristic rules were adopted to handle the human errors that are inevitable

in databases which require manual information entry. Over the course of the project,

we have observed some issues related to discrepancies and inconsistencies of the data

from human errors. The experienced radiologists and imaging informatics scientists

from Mayo Clinic helped us understand the details of the radiology exam procedures

and provided several examples that contain obvious input errors such as, wrong exam

date in “ServiceTime”, and improper check-in time (e.g., two days before exam date).

Together, we developed heuristic rules to solve potential problems automatically for

the HIS databases deployed in Mayo Clinic. Since the rules are applied to the time

stamps collected from three commercial off-the-shelf HISs, the heuristic rules should

be generalizable and applicable to other hospital systems. This has not yet been

validated as the staff from other healthcare organizations may have different working

conditions. We want to emphasize that even if the rules cannot be directly applied to

other organizations, these rules could provide some guidelines for other practitioners

looking to mitigate human errors as we did at Mayo Clinic.

The integration of the DIT database may limit the usage of DDD and RQD system

since DIT is not a commercial system that is available for all facilities. DIT provides
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several types of accurate timestamps and exam information for calculation and analysis.

We believe DIT can be replicated in other healthcare organizations with some (not

substantial) effort as most such information can be acquired directly from the DICOM

header in scanned images. For those hospital, clinic and healthcare facilities where

DIT or a similar system has not yet been deployed, the practitioners could consider

implementing a program to parse the necessary information from images. We have

also received multiple inquiries about the DIT system since 2011 and currently, more

than 20 members of the European Community of Medical Physicists have joined a

fully collaborative effort facilitate broader use of DIT for addressing quality assurance

issues.

As with other domain specific integrations, the domain experts, radiologists

and imaging informatics scientists in Mayo Clinic, played an important role in the

research and helped us in several ways: they helped us understand the radiology exam

procedures and illustrate the timelines in all HIS as shown in Figure 4; they pointed

out the potential errors and verified our heuristic rules; and they provided feedback

to the defined metrics in terms of what they expect and how they want to compare

metrics among different modalities, patient types and sites.

There are several future research directions we would like to pursue. First, we are

continuously enriching our collection of QoC metrics. Second, advanced analytics can

be performed on the rich datasets generated by DDD for QoC monitoring, abnormality

detection, automatic alarming, and root cause identification, and to support other

decision making in radiology.
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Chapter 3

INTEGRATION OF SPARSE SINGULAR VECTOR DECOMPOSITION AND

STATISTICAL PROCESS CONTROL FOR MONITORING AND CHANGE

DETECTION OF HIGH-DIMENSIONAL DATA STREAMS

3.1 Introduction

Recent years have witnessed a significant increase in the use of wireless communi-

cation networks across private and public sectors. Mission-Critical Communication

Networks (MCCNs) are those whose malfunction or failure will result in serious impact

and even catastrophes (Baker and Hoglund, 2008). MCCNs are used widely in both

civil and military settings. For example, public-safety first responders such as police

officers, fire fighters, and paramedics use MCCNs to keep connected with each other

and with the control center when responding to emergencies such as accidents, natural

disasters, and terrorist attacks. Soldiers in a battle fields use MCCNs to communicate

with each other and with the command center to acquire situational awareness and

make tactical decisions. The nature of MCCNs puts an extremely high standard

on the Quality of Service (QoS) these networks must provide. QoS refers to the

performance of a communication network that is perceived by the users (International

Telecommunication Union, 1993). A network with poor QoS delivers traffic data with

delay, jitter, loss, or/and errors. QoS assurance for MCCNs is critically important

for public safety, economic vitality, and national security. However, the existing

approaches cannot directly be applied on data in MCCNs since their assumption of

normality in monitored data cannot hold.
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QoS assurance starts from monitoring and change/anomaly detection of network

traffic data. This has been primary studied by the research community of commu-

nication networks in Electrical and Computer Engineering (ECE). A typical form

of network traffic data is “packets”. A packet is a unit of data that is routed from

a sender to a receiver in a network. A packet is typically structured to include a

header and contents. The header includes meta-information about the packet such as

sender and receiver IP addresses and protocol. Contents are the actual data such as

text, audio, and video. The header of a packet is very small in size while contents

can be large. The existing research falls into three major categories: The existing

research falls into three major categories: deep packet inspection (DPI) (Yu et al.,

2006; Roesch et al., 1999; Smith et al., 2008; Cascarano et al., 2011), active monitoring

(AM) (Ciavattone et al., 2003; Cáceres et al., 1999; Paxson et al., 1998; Almes et al.,

1999a,b), and passive monitoring (PM) (Fraleigh et al., 2003; Ahmed et al., 2005;

Conway, 2002).

DPI examines packet contents, which has a major concern of privacy breach. AM

and PM do not have this issue. AM works by injecting probing packets into the

network and tracking these packets to detect QoS problems. A major drawback of

AM is that it may disturb normal network operations. PM analyzes real packet data.

The mainstay PM tools are relatively simple statistical methods, which do not suffice

for MCCNs because of two reasons: First, network-wide monitoring, change detection,

and fault diagnosis are needed because MCCNs are typically deployed to perform

coordinated team work, while the existing PM methods focus on individual nodes,

links, or sub-networks. Second, highly efficient algorithms are needed for real-time

analytics of packet data in MCCNs that are temporally high-throughput and spatially

densely-connected networks.
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Packets that flow through sender-receiver pairs in a network are multivariate high-

dimensional data streams (Stallings and T, 2013). Monitoring and change detection for

high-dimensional data streams has been an important topic in Multivariate Statistical

Process Control (MSPC) – a research area in Quality Engineering (QE). The existing

approaches integrate various variable selection (VS) or sparse learning techniques with

classic MSPC control charts to address high-dimensionality (Bersimis et al., 2007;

Zou and Qiu, 2009; Capizzi and Masarotto, 2011; Wang and Jiang, 2009; Jiang et al.,

2012). Also available are two-step approaches that first construct a statistic for each

individual data stream and then combine the statistics in a way to achieve global

monitoring (Tartakovsky and Veeravalli, 2008; Mei, 2010; Zou et al., 2015; Zhang,

2002). While these existing approaches are based on sophisticated statistics and thus

being potentially useful for complementing PM in monitoring packet data of MCCNs,

their direct application is impractical because of the following reasons: First, most

existing approaches assume Gaussian data; the two-step approaches are optimal when

the data streams are independent. However, packet data in MCCNs are non-Gaussian

and have an inherent correlation structure. Second, most existing approaches focus

on mean shift detection and assume the shift to be a step change. However, changes

in MCCNs are mean shifts coupled with variance and covariance changes. Also, the

temporal shape of a change in MCCNs can be more than just a step, but also include

trends and oscillating/trembling patterns, with each shape corresponding to a different

root cause. The ability for differentiating the temporal shapes of changes is important

for root cause identification and QoS improvement. Third, real-time monitoring of

MCCNs needs highly efficient analytics algorithms. This standard can be hardly met

by the existing approaches.

Noting the gap that neither the QoS research on communication networks nor
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MSPC research on high-dimensional data streams has been able to provide an effective

tool for MCCN packet data monitoring, we propose a new method called Sparse

Singular Value Decomposition (SSVD)-MSPC to fill in this gap. SSVD-MSPC has

the following novel features:

• By developing a monitoring statistic based on SVD, SSVD-MSPC provides

a non-parametric approach, which can accommodate the special packet data

distribution and correlation structure.

• By integrating SVD and sparse learning, SSVD-MSPC addresses the challenge

of accurate fault identification from high-dimensional stochastic packet streams.

• SSVD-MSPC provides three key capabilities toward QoS improvement of MCCNs,

including 1) monitoring, i.e., analyzing packet data and detecting changes from

the in-control distribution; 2) fault identification, i.e., locating the faulty sender,

receiver, or links that are responsible for the change; and 3) fault characterization,

i.e., estimating the temporal shape of the change/fault.

• SSVD-MSPC is computationally efficient and therefore suites the need for

network-wide real-time monitoring, fault identification and characterization of

temporally high-throughput and spatially densely-connected MCCNs.

3.2 Literature Review

This research intersects with two existing areas: QoS research on communica-

tion networks, which has been primarily studied in ECE; MSPC research on high-

dimensional data streams, which has been primarily studied in QE. Next, we will

review the works in each area and discuss their limitations that justify the need for

new methodological development.
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3.2.1 QoS Research on Communication Networks

QoS assurance starts from monitoring and change/anomaly detection of network

traffic data. This has been primary studied by the research community of commu-

nication networks in ECE. A typical form of network traffic data is “packets”. A

packet is a unit of data that is routed from a sender to a receiver in a network. A

packet is typically structured to include a header and contents. The header includes

meta-information about the packet such as sender and receiver IP addresses and

protocol. Contents are the actual data such as text, audio, and video. The header of a

packet is very small in size while contents can be large. The existing research falls into

three major categories: deep packet inspection (DPI) (Yu et al., 2006; Roesch et al.,

1999; Smith et al., 2008; Cascarano et al., 2011), active monitoring (AM) (Ciavattone

et al., 2003; Cáceres et al., 1999; Paxson et al., 1998; Almes et al., 1999a,b), and

passive monitoring (PM) (Fraleigh et al., 2003; Ahmed et al., 2005; Conway, 2002).

DPI examines the contents of packets passing through a so-called an inspection

point within a network, and searches for anything out of the norm. While DPI can

be used to detect QoS problems, its major utility is to ensure network security by

detecting instructions, viruses, spams, and non-compliance of contents with regulation.

Various DPI systems and techniques have been developed. For example, SNORT

(Roesch et al., 1999) is a well-known open-source system that can detect various types

of worms, attacks, and probes using protocol analysis, and content searching and

matching. (Smith et al., 2008) proposed a DPI technique that uses regular expression

with extended finite automata. Focusing on QoS, (Cascarano et al., 2011) proposed

and validated optimizations for DPI techniques to accelerate network monitoring and

traffic classification on high-speed networks. There are several drawbacks in using
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DPI for QoS: First, DPI often requires costly dedicated devices to track, unpack,

and analyze real-time packets. Second, DPI can be time-consuming especially with

large-sized packet contents (e.g., audio, video), which makes it unsuitable for real-time

QoS monitoring. Third, because DPI examines packet contents, there is a profound

concern on privacy. Fourth, due to the privacy concern, more and more network

protocols such as HTTPS, SFTP and SSL are designed to protect private contents

from being examined by DPI. To overcome these limitations, other methods have

been developed for QoS assurance, which fall in two categories, AM and PM.

AM works by injecting “probing packets” into the network and tracking these

packets to assess QoS. Various methods for AM have been developed. For example,

(Ciavattone et al., 2003) proposed a network-wide AM system that is operated on a

tier 1 IP backbone and can monitor several QoS metrics such as packet delay, loss,

traceroute, delay variation, and reordered or out-of-order packets. (Cáceres et al.,

1999) proposed an algorithm to estimate packet loss rates on individual links based

on losses observed by multicast receivers via maximum likelihood estimators. (Paxson

et al., 1998) proposed a measurement infrastructure for National Internet Measurement

Infrastructure (NIMI) for assessing the performance of an Internet path, including

one-way and round-trip loss and delay, available bandwidth, and routing stability.

Almes et. al. proposed QoS metrics for IP performance metrics (IPPM) in several

Request for Comments documents (Almes et al., 1999a,b). The major drawbacks

of AM are fairly obvious: Because it injects additional traffic into the network, it

disturbs the network’s normal operations. This makes it unfit for MCCNs for which

even minimum disturbance may cause catastrophe. Also, QoS of the probing packets

may not precisely reflect the behaviors of real packets in the network.

Unlike AM, PM tracks and analyzes real packet data in the network. Unlike DPI,
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PM does not inspect packet contents but uses statistical and visualization tools to

analyze network traffic behaviors such as packet passing rate, inter-arrival times, delay,

loss, and queue size. (Fraleigh et al., 2003) proposed a PM system to analyze packet

queuing and transmission behaviors. (Ahmed et al., 2005) implemented a policy-based

management system based on real-time traffic flow measurements to achieve dynamic

QoS adaptation for multimedia applications. (Conway, 2002) developed a PM method

for monitoring speech quality in live (i.e. in progress) VoIP calls. The existing PM

research is primarily conducted in the communication network research communities of

ECE. Relatively simple statistical methods have been used, which leave the following

areas for improvement: First, network-wide monitoring, change detection, and fault

diagnosis are much needed, while existing research primarily focuses on individual

nodes, links, or small local sub-networks. This capability is particularly important

for MCCNs because of an MCCN is typically deployed to perform coordinated team

work. Second, real-time analysis is important, which poses a high standard on the

processing speed of the analytic method. This is particularly challenging for MCCNs

that are temporally high-throughput and spatially densely-connected networks.

3.2.2 MSPC Research on High-Dimensional Data Streams

Packets that flow through sender-receiver pairs in a network are multivariate

high-dimensional data streams. Monitoring and change detection for high-dimensional

data streams has been an important topic in MSPC in recent years. One category of

approaches is to integrate VS techniques (a.k.a. sparse learning) with classic MSPC

(Bersimis et al., 2007) – referred to as VS-MSPC hereafter – under the assumption

that changes only occur in a small subset of all the data streams. For example,

44



(Zou and Qiu, 2009) proposed a method that integrates adaptive LASSO (Zou, 2006)

with EWMA control charts for mean shift detection. (Capizzi and Masarotto, 2011)

proposed a combination of Least Angle Regression (LAR) (Efron et al., 2004) with a

multivariate EWMA control chart for detection of shifts in both the means and the

total variability. (Wang and Jiang, 2009) developed a Shewhart-type multivariate

control chart that uses a forward variable selection method to select suspicious variables.

This approach was further extended to a multivariate EWMA procedure (Jiang et al.,

2012). Another category of approaches first constructs a statistic for each individual

data stream and then combines the statistics in a way to achieve global monitoring.

Call these approaches “combined individuals” hereafter. For example, (Tartakovsky

and Veeravalli, 2008) proposed a Tmax approach that constructs a CUSUM statistic

for each data stream and then monitors the maximum of the CUSUM statistics. Tmax

assumes that changes occur in exactly one out of all p data streams. Alternatively,

(Mei, 2010) proposed a Tsum approach that monitors the sum of the individual CUSUM

statistics and showed through simulations that Tmax is more effective than Tsum when

changes occurs in only a few data streams, but is outperformed by Tsum when changes

occurs in a moderate to large number of data streams. (Zou et al., 2015) developed a

control chart that balances the detection abilities of Tmax and Tsum using a powerful

goodness-of-fit test proposed in (Zhang, 2002).

As promising as the afore-reviewed approaches seem for monitoring of packet data

in MCCNs, they are not directly applicable because of the following reasons: 1) Most

existing approaches assume that the data streams are multivariate Gaussian. The

“combined individuals” approaches are optimal when the data streams are independent.

However, network-wide packet data are not Gaussian and are inherently correlated.

Relevant to QoS, each packet sent from a sender i to a receiver j can be represented
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by a binary variable, xij. xij = 0 or 1 means that the packet is lost or through. The

number of through packets during a time interval, yij, characterizes the QoS, and is

not Gaussian. Also, most MCCNs are multicast networks in which each node can

send packets to multiple or all other nodes simultaneously as receivers. This naturally

creates correlations between packet streams. 2) Most existing approaches focus on

mean shift detection and assume the shift to be a step change. However, changes

in MCCNs are mean shifts coupled with variance and covariance changes. More

in-depth discussion of this property will be provided in Section 3. Furthermore, the

temporal shape of a change can be more than just a step, but also include trends and

oscillating/trembling patterns. Each shape may correspond to a different root cause: a

step change can be caused by a device failure or congestion; a trend change can be due

to battery wear out or communication gradually out of range; an oscillating change

can be due to environmental interference. It is important for a packet monitoring and

change detection method to be able to differentiate the different shapes for effective

root cause diagnosis. This ability is lacking in the existing MSPC approaches for

high-dimensional data stream monitoring. 3) MCCNs generate high-throughput packet

data; the multicast communication creates high-dimensional data streams. Real-time

monitoring of such temporally-spatially challenging networks needs highly efficient

analytics algorithms. This standard can hardly be satisfied by the existing approaches.
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3.3 SSVD-MSPC for Monitoring, Fault Identification and Characterization of MC-

CNs

3.3.1 Statistical Structure and Properties of Packet Data in MCCNs

Consider an MCCN with N users/nodes. A packet can be successfully sent from

node i (called a sender) to node j (called a receiver) if and only if three conditions are

met: 1) the packet is successfully sent by the sender, 2) successfully travels through the

link between the sender and the receiver, and 3) is successfully received by the receiver.

Let pSi , pLi−j, and pRj be the success probabilities for the sender, link, and receiver,

respectively. Then, the number of through packets during a time interval ∆t, xij,

follows a Binomial distribution, i.e., xij ∼ Binomial(n, pij), where pij = pSi ×pLi−j×pRj

and n is the intended number of packets sent from i to j during ∆t. n can be obtained

by multiplying ∆t by the packet firing rate that is known from the network design.

For example, this rate is roughly 50 packet-per-second for voice transmission in mobile

networks (Cisco System, Inc., 2016). Under the normal operating condition (i.e., the

“in-control” condition in MSPC terminology), pSi , pLi−j, and pRj are high. The higher

the QoS standard of a network, the greater the pSi , pLi−j, and pRj .

Furthermore, let S and R denote the collections of senders and receivers in an

MCCN, respectively. S and R have the following properties: (a) Each node can send

and receive packets, which means that a sender can also be a receiver. (b) A sender can

send packets to more than one receiver at a time, which results in a multicast network

(Williamson, 2000). (c) A receiver can receive packets from more than one sender. Let

x be the packet data in all sender-receiver pairs of a network, x = {xij : i ∈ S, j ∈ R}.

x follows a multivariate Binomial distribution with element-wise means and variances

47



given in Equation 3.1 and a special covariance structure in Equation 3.2 as a results

of the aforementioned properties (b)-(c)):

E [xij] = npSi p
L
i−jp

R
j , var (xij) = npSi p

L
i−jp

R
j

(
1− pSi pLi−jpRj

)
(3.1)

cov (xij, xkh) =

0 if i 6= k and j 6= h

(xij and xkh do not share the same sender or receiver)

n
(
1− pSi

)
pSi p

R
j p

R
h p

L
i−jp

L
k−h if i = k and j 6= h

(xij and xkh share the same sender but not receiver)

n
(
1− pRj

)
pRj p

S
i p

S
kp

L
i−jp

L
k−h if i 6= k and j = h

(xij and xkh share the same receiver but not sender)

(3.2)

Derivations to get Equation 3.2 are skipped.

Three types of faults can occur in a network: sender, receiver, and link faults.

Their respective definitions and impacts on the distribution of x are summarized in

Table 3. The root causes could be malfunction of physical communication devices,

which can cause sender or receiver faults; congestion of communication channels, which

can cause link faults; environmental interferences such as severe weather conditions

and geographic blocks, which can cause sender, receiver, or link faults depending on if

the interferences affect a sender, receiver, or a link, respectively. Note that Table 3

only shows the impact of faults on the means, variances, and covariances (i.e., the

first and second moments) of the multivariate Binomial distribution of x, while the

faults can impact higher-order moments.

Furthermore, even within the same type of fault, there are subtypes corresponding

to different temporal shapes of the fault. For example, Figure 10 shows three different
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Table 3: Definitions and impacts of sender, receiver, and link faults (↓ and ↑ represent
decrease and increase from the in-control parameters, respectively)

Definition Impact on x distribution
Sender fault When sender i is faulty, pSi ↓. E [xij] ↓, var (xij) ↑,

cov (xij, xih) ↑
Receiver fault When receiver j is faulty, pRj ↓. E [xij] ↓, var (xij) ↑,

cov (xij, xkj) ↑
Link fault When link i− j is faulty, pi−j ↓. E [xij] ↓, var (xij) ↑,

cov (xij, xih) ↓, cov (xij, xkj) ↓

Figure 10: Step (left), trend (middle), and oscillating (right) changes of the fault in
MCCNs (t∗ indicates the change point).

shapes that can occur for a sender fault: a step change can be caused by a device

failure or congestion; a trend change can be due to battery wear out or communication

gradually out of range; an oscillating change can be due to environmental interference.

3.3.2 Development of SSVD-MSPC

For QoS assurance in MCCNs, it is important to develop a method to accomplish

three tasks: 1) monitoring, which is to analyze packet data x and fire an alarm when

the distribution of x changes from its in-control distribution; 2) fault identification,

49



which is to find the faulty sender, receiver, or link responsible for the change in 1); 3)

fault characterization, which is to estimate the temporal shape of the change/fault in

2).

To accomplish the monitoring task, we can build a control chart on x. The

true distribution of x is multivariate Binomial. Although we may approximate x by

multivariate Gaussian, the challenge is that changes in the distribution due to faults

are mean shifts coupled by variance and covariance changes (see Table 3). To our

best knowledge, there is no control chart designed for detecting such complicatedly

coupled changes in a multivariate Gaussian distribution. This leaves us a few options:

One is to develop such a control chart under the Gaussian approximation to Binomial;

another is to develop a control chart for multivariate Binomial data; the third option is

to develop a non-parametric method. We choose the third option due to its analytical

simplicity, computational efficiency, and the ease for facilitating fault identification

and characterization after the monitoring stage.

Specifically, let X be a q × m matrix that contains the packet data within a

monitoring time window. m is the window size. q is the number of sender-receiver

pairs in the network. Let xij(t) be an element of X that corresponds to the sender-

receiver pair (i, j) at time t, t = 1, . . . ,m. Let F denote the set of sender-receiver pairs

affected by a fault. For a pair (i, j) /∈ F , E[xij(t)] = np0, where p0 = pS0 ×pL0 ×pR0 . pS0 ,

pL0 , and pR0 are in-control success probabilities for senders, links, and receivers, which

are known from the network design. For a pair (i, j) ∈ F , E[xij(t)] = n(p0 − δ(t)),

where δ(t) ≥ 0 for t = 1, . . . ,m and there exists at least one t for which δ(t) > 0.

(δ(1), . . . , δ(m))T can be of different shapes with examples given in Figure 10. Next,

focus on E[X]− np01q×m, which measures the deviation of the expected packet data

from that under the in-control condition. 1q×m is a matrix of all ones. We show in
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Proposition 1 that the SVD of E[X]− np01q×m has only one non-zero singular value,

i.e., the first singular value. Also, the first left- and right-singular vectors capture the

faulty sender-receiver pairs and the temporal shape of the fault, respectively. A brief

introduction to SVD and proof of Proposition 3.1 are provided in Appendix I and II.

Proposition 3.1: Let sk, uk, vk be the k-th singular value, left- and right-

singular vectors for the SVD of E[X] − np01q×m. Let |F| denote the cardinality

of F . Then, (a) s1 > 0 and s1 =
√∑m

t=1 [nδ(t)]2 × |F|; sk = 0 for k > 1; (b)

u1 = u1,ij : i ∈ S, j ∈ R where u1,ij = 1√
|F|

if (i, j) ∈ F and u1,ij = 0 otherwise; (c)

v1 = −1√∑m
t=1 [δ(t)]

2
(δ(1), . . . , δ(m))T .

Proposition 3.1 suggests that we may use s1 as a monitoring statistic, use u1 to

locate faculty sender-receiver pairs, which further allow us to identify which sender,

receiver, or links are at fault, and use v1 to characterize the temporal shape of the

fault. A practical challenge, however, is that the packet data we have is X not E[X].

To account for the stochastic nature of X, we propose the following modifications

on the results in Proposition 3.1 to accomplish the three tasks of monitoring, fault

identification, and fault characterization. By an abuse of notation, we re-use s1, u1,

and v1 to denote the first singular value, left- and right-singular vectors of X−np01q×m.

3.3.2.1 Monitoring

Due to the stochastic nature of X, s1 is not zero even under the in-control condition.

Therefore, we cannot use zero as the upper control limit (UCL) for s1 to alarm for

out-of-control conditions. Note that there is no lower control limit (LCL) since s1 ≥ 0

by definition of SVD. Also, s1 does not follow any known parametric distribution,

because the SVD is performed on data from a multivariate Binomial distribution. We
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propose a non-parametric approach. Specifically, we develop a simulation platform that

takes network design information as input, including a sender-receiver correspondence

matrix, C, and the in-control success probabilities for the senders, links, and receivers,

pS0 , pL0 , and pR0 , and generate packet data X under the in-control condition. Then,

SVD will be performed on X − np01q×m to obtain s1. Because the simulation is

performed offline, we can run it long enough to collect a large number of samples for

s1, which will further allow us to obtain the empirical in-control distribution of s1 and

use the (1− α)-th percentile of the distribution as the UCL. α is a pre-selected Type

I error probability. Denote the UCL by UCLs1(α). Next, we discuss the details of the

simulation platform.

From the sender-receiver correspondence matrix, C, we can know the set of receivers

for each sender i. Let Ri denote the receiver set and |Ri| be the number of receivers.

For each intended packet that is to be sent from sender i to its receivers, the first

step is to determine if the packet is successfully sent out. This is done by generating

a Bernoulli sample with probability pS0 . If the sample is zero, label the packet as

“failed”. Otherwise, make |Ri| copies of the packet and assign one copy to each link

i− j, j ∈ Ri. This follows from the design of multicast networks. The second step is

to determine if the packet (copy) assigned to link i− j successfully travels through

the link and is successfully received by receiver j. To achieve this, sample from a

Bernoulli distribution with probability pL0 . If the sample is zero, label the packet as

“failed”. Otherwise, sample from a Bernoulli distribution with probability pR0 . If the

sample is zero, label the packet as “failed”. Otherwise, label it as “through”. Applying

this two-step procedure to n intended packets, we can obtain the number of through

packets for each sender-receiver pair of the network, which composes one column of

X. Other columns of X can be generated in the same way.
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For online monitoring of real-time generated packet data in an MCCN, X, we

can compute the first singular value s1 of X − np01q×m using the “dgesdd” routine

from Linear Algebra PACKage (LAPACK) (Anderson et al., 1999). “dgesdd” is a

very efficient algorithm for computing singular values of a matrix without having to

carry out the complete SVD (Blackford, 1999). Then, the s1 is compared with the

UCLs1(α) obtained from offline simulation. If s1 > UCLs1(α), it is an indication for

an out-of-control condition or a potential fault happening in the network. This will

trigger the subsequent fault identification and characterization.

3.3.2.2 Fault Identification

Proposition 3.1 implies that we may use the non-zero elements of u1 to locate

faulty sender-receiver pairs. However, because the SVD is performed on X− np01q×m

not E[X]−np01q×m, no element of u1 will be exactly zero. To overcome this problem,

we propose an SSVD to obtain a sparse estimator for u1. Recall that the regular SVD

(see Appendix I for an introduction) estimates u1 by solving the following optimization

problem:

(ŝ1, û1, û1) = arg min
s1,u1,v1

‖ (X− np01q×m)− s1u1v
T
1 ‖

2

F ,

s.t. ‖u1‖2 = 1, ‖v1‖2 = 1, s1 ≥ 0

where ‖ · ‖2F is the squared-Frobenius norm of a matrix and ‖ · ‖2 is the l2-norm of

a vector. To impose sparsity on the estimation for u1, SSVD solves the following

l1-penalized optimization:

(ũs1, ṽ1) = arg min
us
1,v1

‖ (X− np01q×m)− us1v
T
1 ‖

2

F + λ‖us1‖1 (3.3)
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where us1 = s1u1, ‖ · ‖1 is the l1-norm, and λ is a tuning parameter. Adding the

l1-penalty to us1 not u1 makes the optimization easier to solve because it relaxes the

unity constraint on u1. Equation 3.3 also relaxes the unity constraint on v1 because

our purpose here is not to perform an SVD but use the non-zero elements in û1 to

locate faulty sender-receiver pairs.

The optimization problem in Equation 3.3 can be solved by alternating between

two sub-problems until convergence. That is, given us1, Equation 3.3 becomes

v∗1 = arg min
v1

‖ (X− np01q×m)− us1v
T
1 ‖

2

F (3.4)

which can be solved analytically, i.e., v∗1 = (X− np01q×m)Tus1. Given us1, Equation

3.3 becomes

us1
∗ = arg min

us
1

‖ (X− np01q×m)− us1v
T
1 ‖

2

F + λ‖us1‖1

= arg min
us
1

‖X− np01q×m‖2F +

q∑
i=1

{
(us1i)

2 − 2us1i((X− np01q×m)v1)i + λ|us1i|
}

where us1i is the i-the element of u1. This suggests that we can minimize each us1i

separately by solving q optimization problems in the form of Equation 3.5:

us1i
∗ = arg min

us1i

(us1i)
2 − 2us1i((X− np01q×m)v1)i + λ|us1i| (3.5)

i = 1, . . . , q. Furthermore, Proposition 3.2 shows that Equation 3.5 has a close-form

solution, the proof of which uses the KKT condition and is skipped due to space limit.

Proposition 3.2: The minimizer of the optimization problem in Equation 3.5 is

us1i
∗ = sign

{
((X− np01q×m)v1)i

}{
|((X− np01q×m)v1)i| − 0.5λ

}
+
. That is,

us1i
∗ =


((X− np01q×m)v1)i − 0.5λ, if ((X− np01q×m)v1)i ≥ 0.5λ

((X− np01q×m)v1)i + 0.5λ, if ((X− np01q×m)v1)i < −0.5λ

0, otherwise

(3.6)
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Next, we discuss the selection of the tuning parameter λ. This problem is known as

“model selection” in statistics. Common model selection criteria include BIC, AIC, and

cross validation. In this paper, because our SSVD formulation is similar to LASSO,

we follow the suggestion in (Zou et al., 2007) and adopt BIC. The BIC for our model

in 3.3 is:

BICλ =
‖ (X− np01q×m)− ũs1ṽ

T
1 ‖

2

F

qmσ2
OLS

+ d̂fλ
log(qm)

qm
(3.7)

where d̂fλ is the degree of freedom of ũs1, i.e., the number of non-zero elements in

ũs1. σ2
OLS is the ordinary least squares (OLS) estimator for the error variance σ2

as in the regression model Y = (ũs1)
T (Iq ⊗ ṽT1

)
+ ε, ε ∼ N(0, σ2Iqm), where Y is

the concatenation of all row vectors from matrix (X− np01q×m) and ⊗ denotes the

Kronecker product. Finally, we summarize the algorithm for solving SSVD in Figure

11. Note that although the algorithm also produces an estimate for v1, it is not useful

for fault identification. Therefore, we may only output ũs1 in which the non-zero

elements correspond to faulty sender-receiver pairs in the network. The algorithm is

very efficient because it iterates between two sub-optimization problems that both

can be solved analytically. Also, the algorithm is guaranteed to converge because the

sub-optimization problems are both convex.

3.3.2.3 Fault Characterization

Once the faulty sender-receiver pairs are identified by the SSVD algorithm, we

can further find out if those pairs share the same sender (a sender fault) or the same

receiver (a receiver fault), or are a group of individual links. Fault characterization

aims to estimate the temporal shape of the fault. To achieve this, we transform ũs1

estimated by the SSVD algorithm into a 0/1 indicator vector u
0/1
1 by keeping the
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Figure 11: The SSVD Algorithm for fault identification

zero elements and changing the nonzero elements to one. Then, we insert u0/1
1 into

Equation 3.4 and solve for v1 , i.e., v̌1 = (X− np01q×m)u
0/1
1 . It is straightforward to

prove that v̌1 is the average temporal profile of the sender-receiver pairs corresponding

to elements ones in u
0/1
1 , i.e., the faulty pairs identified by SSVD. Furthermore, we can

visually inspect the average temporal profile or use more rigorous hypothesis testing

to characterize the shape of the profile (e.g., step, trend, oscillating functions of time).

Finally in this section, we summarize the SSVD-MSPC method for monitoring,

fault identification, and fault characterization of packet data of MCCNs in Figure 12.

3.4 Case Studies on MCCN

Our industrial collaborator is a company that performs testing of MCCNs before

they are deployed in the field. Because of the sensitive nature, we cannot use the real

data generated from the testing, but can simulate data based on knowledge about

the design and configuration of the MCCNs. There are three sizes of MCCNs: small,

medium, and large. A medium-sized MCCN typically includes 10− 20 nodes and is
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Figure 12: SSVD-MSPC for monitoring, fault identification, and fault characterization
of packet data in MCCNs

the most common. We consider a 15-node medium-sized MCCN in our experiments.

Because each node can be a sender and receiver, a 15-node MCCN includes 210

sender-receiver pairs for which the packet data needs to be monitored. We also

consider a small 5-node MCCN that includes 20 sender-receiver pairs and a large

50-node MCCN that includes 2450 sender-receiver pairs. Each node is a mobile device

that can transmit voice. The transmission rate is 50 packets per second, i.e., n = 50.

Furthermore, according to the network design, the in-control success probabilities for

senders, links, and receivers are pS0 = pL0 = pR0 = 0.97. Based on the aforementioned

parameters, we can obtain the control limit UCLs1(α) offline by following the steps

on the left side of Figure 12. Specifically, α = 0.002 is used in our experiments, which

corresponds to an in-control average run length (ARL0) of 500. Consequently, we
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getUCLs1(0.002) = 11.17, 24.56, and 66.69 for the MCCNs of 5, 15, and 50 nodes,

respectively, under a monitoring window of m = 10 seconds.

3.4.1 Performance of SSVD-MSPC in monitoring MCCNs

We compare the performance of SSVD-MSPC with the method in (Zou and Qiu,

2009), which integrated adaptive LASSO with MSPC, referred to as LASSO-MSPC

hereafter. LASSO-MSPC is a best-known method in modern MSPC literature for

monitoring high-dimensional data streams. Both SSVD-MSPC and LASSO-MSPC

are implemented using the R programming language. More specifically, the “lars”

package in R is used to find the transition points needed to compute the test statistic

in LASSO-MSPC; the “base” package is used to compute the test statistic (i.e., the

first singular value) in SSVD-MSPC.

Because LASSO-MSPC was developed to detect step changes, we focus on step

changes in this experiment. Specifically, packet data is generated with an out-of-

control success probability of 0.97−∆p for whichever sender, receiver, or link at fault.

We set ∆p = 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04 in order to assess the performance of

SSVD-MSPC over a wide range of change/fault magnitudes. We focus on sender and

link faults, because receiver faults impact packet data distribution in the same way as

sender faults (see Table 3) and our experiments also showed similar performance in

detecting receiver faults to sender faults by both SSVD-MSPC and LASSO-MSPC.

For sender faults, we randomly select one sender in the MCCN to be faulty. Since a

sender can send packets to all other nodes in the network, a sender fault will introduce

changes to 4, 14, and 49 sender-receiver pairs in the 5, 15, and 50-node MCCNs,

respectively. For link faults, we randomly select a subset of sender-receiver pairs
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Table 4: Average CPU time (seconds) of fault/change detection

(a) sender fault

Fault/change
magnitude ∆p

Small MCCN Medium MCCN Large MCCN
SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

0.1 < 0.001 0.004 < 0.001 0.216 0.001 -
0.09 < 0.001 0.004 < 0.001 0.218 0.001 -
0.08 < 0.001 0.004 < 0.001 0.210 0.001 -
0.07 < 0.001 0.004 < 0.001 0.215 0.001 -
0.06 < 0.001 0.004 < 0.001 0.216 0.001 -
0.05 < 0.001 0.004 < 0.001 0.215 0.001 -
0.04 < 0.001 0.004 < 0.001 0.212 0.001 -

(b) link fault

Fault/change
magnitude ∆p

Small MCCN Medium MCCN Large MCCN
SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

0.1 < 0.001 0.004 < 0.001 0.258 0.001 -
0.09 < 0.001 0.004 < 0.001 0.239 0.001 -
0.08 < 0.001 0.004 < 0.001 0.221 0.001 -
0.07 < 0.001 0.004 < 0.001 0.220 0.001 -
0.06 < 0.001 0.004 < 0.001 0.208 0.001 -
0.05 < 0.001 0.004 < 0.001 0.222 0.001 -
0.04 < 0.001 0.004 < 0.001 0.227 0.001 -

within each network to be faulty. To allow for comparison between sender and link

faults, we choose the subset size of link faults to 4, 14, and 49 for the three MCCNs,

respectively.

For each type of fault (sender or link) with a specific change magnitude ∆p, we

run SSVD-MSPC and LASSO-MSPC on the simulated packet data and record the

run length and CPU time it takes each method to detect the change. We repeat

this experiment for 200 times, which allows us to compute the average and standard

deviation of run length and CPU time. The computer configuration is as follow: 4-core
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Intel Core i7 2.2GHz CPU with Mac OS X platform. The results are summarized

in Tables 4 and 5. Table 4 shows that SSVD-MSPC is highly scalable, i.e., the

computational time only increases minimally from a small network of 5 nodes and 20

sender-receiver pairs to a large network of 50 nodes and 2450 sender-receiver pairs.

Since standard deviation of the CPU time is very small and therefore it is not shown

for clarify of presentation. Even for the large network, SSVD-MSPC is able to detect

faults very quickly (∼ 0.001 seconds). In contrast, LASSO-MSPC is significantly

slower and non-scalable. In particular, LASSO-MSPC is unable to detect faults in

the large MCCN within a reasonable timeframe: about 740 seconds (12 minutes) are

needed to produce the test statistic for each monitoring window. This performance is

expected because the computational complexity of LASSO-MSPC is O(qm+ q3) as

reported in the original paper, where q is the number of sender-receiver pairs in an

MCCN, while the complexity of SSVD-MSPC is only O(q2).

Furthermore, Table 5 shows that SSVD-MSPC and LASSO-MSPC have similar

ARL1 performance in detecting sender/link faults for the small MCCN. For detecting

sender faults in the medium MCCN, the performance of LASSO-MSPC is substantially

worse. This is because a sender fault changes both the mean and covariance structure

of packet data but LASSO-MSPC was design for detecting mean changes. For

detecting link faults in the medium MCCN, the performance of LASSO-MSPC is

comparable to SSVD-MSPC. This is because the sender-receiver pairs affected by the

link fault do not share senders or receivers so that the covariance change of package

data is not large enough to hurt LASSO-MSPC badly. Nevertheless, we can observe

performance worsening of LASSO-MSPC as the fault magnitude becomes smaller. For

fault detection in the large MCCN, LASSO-MSPC is incapable of returning results

within a reasonable timeframe as previously discussed. Overall, SSVD-MSPC has

60



Table 5: Run length performance of fault/change detection: ARL1(standard deviation)

(a) sender fault

Change
magnitude
∆p

Small MCCN Medium MCCN Large MCCN
SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

0.1 1.00(0.00) 1.00(0.00) 1.00(0.00) 2.02(0.20) 1.00(0.00) -
0.09 1.00(0.00) 1.00(0.00) 1.00(0.00) 4.20(0.44) 1.00(0.00) -
0.08 1.00(0.00) 1.00(0.00) 1.00(0.00) 8.48(1.06) 1.00(0.00) -
0.07 1.00(0.00) 1.02(0.02) 1.00(0.00) 27.60(3.21) 1.00(0.00) -
0.06 1.04(0.03) 1.00(0.00) 1.02(0.02) 105.48(14.67) 1.04(0.03) -
0.05 1.08(0.05) 1.06(0.03) 1.04(0.02) 130.46(18.61) 1.24(0.08) -
0.04 1.20(0.09) 1.20(0.08) 1.22(0.09) 131.36(18.49) 1.62(0.15) -

(b) link fault

Change
magnitude
∆p

Small MCCN Medium MCCN Large MCCN
SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

0.1 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.09 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.08 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.07 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.12(0.05) 1.00(0.00) -
0.06 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.18(0.07) 1.00(0.00) -
0.05 1.00(0.00) 1.02(0.02) 1.08(0.05) 1.60(0.15) 1.22(0.08) -
0.04 1.24(0.07) 1.14(0.05) 1.42(0.10) 2.84(0.30) 3.44(0.33) -

excellent ARL1 performance across both sender and link faults and across different

fault magnitudes.

3.4.2 Performance of SSVD-MSPC in fault identification

Following the monitoring phase is fault identification, i.e., once a change is detected

and alarmed, packet data in the current monitoring window will be analyzed to identify

the faulty sender-receiver pairs that are responsible for the change, which will further
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help trace to the faulty sender, receiver, or links. In this experiment, we assess

the fault identification accuracy of SSVD-MSPC in comparison with LASSO-MSPC.

We compute two accuracy metrics: sensitivity measures the proportion of faulty

sender-receiver pairs correctly identified as such; specificity measures the proportion of

non-faulty sender-receiver pairs correctly identified as such. Table 6 and 7 summarize

the results. SSVD-MSPC achieves superior specificity across sender and link faults and

across different fault magnitudes. The sensitivity of SSVD-MSPC is also universally

high except for the link fault with the smallest magnitude (i.e., ∆p = 0.04). In

contrast, LASSO-SPC has difficulty balancing between sensitivity and specificity. For

example, it achieves high sensitivity for the small MCCN at the price of low specificity,

and achieves high specificity for the medium MCCN at the price of low sensitivity.

This observation holds for both sender and link faults.

3.4.3 Performance of SSVD-MSPC in monitoring, fault identification and charac-

terization for different temporal shapes of the fault

Following fault identification is fault characterization which estimates the temporal

shape of the fault. Previous sections focused on the temporal shape that is a step

change. In this section, extended experiments are conducted to include three typically

occurring shapes in MCCNs, i.e., step, trend, and oscillating changes. Taking a sender

fault as an example, a step change is a time-unvarying decrease of the in-control

success probability of the sender, i.e., from pS0 to pS0 −∆p. Without loss of generality,

we consider a linear trend change that decreases pS0 to pS0 −atpS0 . An oscillating change

decreases pS0 to pS0 − r(t)pS0 , where r(t) is a random variable. The magnitude of a
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Table 6: Sender fault identification accuracy: mean (standard deviation)

Sensitivity

Fault/change
magnitude
∆p

Small MCCN Medium MCCN Large MCCN
SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

0.1 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.07(0.02) 1.00(0.00) -
0.09 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.04(0.01) 1.00(0.00) -
0.08 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.06(0.01) 1.00(0.00) -
0.07 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.05(0.01) 1.00(0.00) -
0.06 1.00(0.00) 1.00(0.01) 1.00(0.00) 0.03(0.01) 1.00(0.00) -
0.05 0.95(0.02) 0.99(0.02) 0.97(0.01) 0.03(0.01) 0.99(0.00) -
0.04 0.82(0.04) 0.97(0.03) 0.90(0.02) 0.02(0.01) 0.97(0.01) -

Specificity

Fault/change
magnitude
∆p

Small MCCN Medium MCCN Large MCCN
SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

0.1 1.00(0.00) 0.56(0.02) 1.00(0.00) 0.99(0.00) 1.00(0.00) -
0.09 1.00(0.00) 0.56(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.08 1.00(0.00) 0.57(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.07 1.00(0.00) 0.54(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.06 1.00(0.00) 0.58(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.05 1.00(0.00) 0.59(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.04 1.00(0.00) 0.57(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -

step change is just ∆p, while the magnitude of a trend or oscillating change is not

as obvious. For the convenience of result presentation, we define the magnitude of

a trend/oscillating change as the average change magnitude within the monitoring

window. Two magnitudes are focused on in our experiment: 0.1 and 0.05 represent

large and small changes, respectively. Also, we focus on sender faults in the medium

MCCN, and report the performance of SSVD-MSPC in monitoring (ARL1), fault

identification (sensitivity and specificity), and fault characterization (cosine similarity

between the true and estimated temporal shapes) in Tables 8, 9, 10 and Figure 13.
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Table 7: Link fault identification accuracy: mean (standard deviation)

Sensitivity

Fault/change
magnitude
∆p

Small MCCN Medium MCCN Large MCCN
SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

0.1 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.37(0.03) 1.00(0.00) -
0.09 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.36(0.03) 1.00(0.00) -
0.08 1.00(0.01) 1.00(0.00) 1.00(0.00) 0.26(0.02) 1.00(0.00) -
0.07 0.98(0.01) 1.00(0.00) 0.99(0.00) 0.24(0.02) 0.99(0.00) -
0.06 0.90(0.03) 1.00(0.00) 0.94(0.01) 0.19(0.02) 0.96(0.01) -
0.05 0.72(0.03) 1.00(0.01) 0.83(0.02) 0.17(0.01) 0.87(0.01) -
0.04 0.55(0.03) 0.93(0.03) 0.62(0.02) 0.16(0.01) 0.69(0.02) -

Specificity

Fault/change
magnitude
∆p

Small MCCN Medium MCCN Large MCCN
SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

SSVD-
MSPC

LASSO-
MSPC

0.1 1.00(0.00) 0.76(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.09 1.00(0.00) 0.75(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.08 1.00(0.00) 0.74(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.07 1.00(0.00) 0.75(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.06 1.00(0.00) 0.76(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.05 1.00(0.00) 0.72(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -
0.04 1.00(0.00) 0.77(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) -

LASSO-MSPC is not performed in this experiment because it was not designed for

detecting and characterizing trend and oscillating faults. The results show excellent

performance of SSVD-MSPC in monitoring, fault identification and characterization

across different fault magnitudes and different temporal shapes of the faults.
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Figure 13: Comparison between true (black) and estimate (yellow) temporal shapes
of the faults

Table 8: Run length performance of SSVD-MSPC: ARL1 (standard deviation), for
three temporal shapes of faults

Fault/change magnitude Step change Trend change Oscillating change
0.1 1.00(0.00) 1.00(0.00) 1.00(0.00)
0.05 1.04(0.02) 1.02(0.02) 1.00(0.00)
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Table 9: Fault identification accuracy for three temporal shapes of faults

Sensitivity

Fault/change magnitude Step change Trend change Oscillating change
0.1 1.00(0.00) 1.00(0.00) 1.00(0.00)
0.05 0.97(0.01) 0.99(0.00) 1.00(0.02)

Specificity

Fault/change magnitude Step change Trend change Oscillating change
0.1 1.00(0.00) 1.00(0.00) 1.00(0.00)
0.05 1.00(0.00) 1.00(0.00) 1.00(0.00)

Table 10: Cosine similarity between estimated and true temporal shapes

Fault/change magnitude Step change Trend change Oscillating change
0.1 1.00 1.00 1.00
0.05 1.00 1.00 1.00

3.5 Case Studies on QoC Metrics in Radiology

Applied on multiple data streams from MCCNs, the proposed SSVD-MSPC

algorithm shows its advantages for monitoring, fault identification, and fault char-

acterization. According to our comparisons among different multi-variate process

control algorithms, the SSVD-MSPC has the widest capability and is the most efficient

method. As mentioned in previous chapter, the DDD and RQD system produce

multiple QoC metrics which help to measure the efficiency, timeliness behavior of the

whole radiology department in Mayo Clinic. However, when looking at the reports,

we noticed that, although the reports would provide a good visualization, it is difficult

to directly find any potential issues from the metrics we have. The causes of such

situation include:

1. Each metric may follow a unique distribution. For instance, the mean values
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of patient waiting time and radiologist turnaround time are different. If we

further break a metric by scanner, exam type or patient type, the diversity of

distributions makes the manual monitoring extremely difficult.

2. The metrics have hierarchical structures. For instance, the overall turnaround

time metrics also includes radiology turnaround time, patient waiting time,

etc. The errors introduced by sub-metric may not cause any alert but would

accumulate an error on a higher-level metric. It is essential to identify the

temporal and spatial location of each alert. Such uniqueness on data streams is

also out of the capacity of traditional MSPC methods.

The SSVD-MSPC algorithm is a non-parametric approach and could be applied on

data streams with multiple distributions, and also, the SSVD-MSPC achieves high

efficiency and ability in fault identification and in differentiation temporal shapes of

the fault. Thus, the SSVD-MSPC fits the application of monitoring QoC metrics

streams from DDD system in the radiology department.

Radiology at Mayo Clinic has years of experience in operating multiple types

of exams with multiple scanners. To demonstrate the performance of SSVD-MSPC

algorithm, we collected 166, 498 CT exam records from 2011 to 2017 with DDD

systems. These exam records contains 118 types of CT procedures and were collected

from 8 CT scanners on 2 sites. After removing records with missing metrics, duplicates,

scanner maintenance records, and other types of records that are not suitable for

monitoring, the total amount of pre-processed records reduces to 51, 913. The majority

parts of the removed records are those with missing metrics and duplicates. However,

we don’t have any information on if the records are in-control or out-of-control. We

consulted our collaborators at Mayo Clinic and they mentioned there was not any
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Figure 14: Radiologic Care Process Model

situation that had raised an alert during the past few years. Thus, we could assume

that all the records we have are in-control.

3.5.1 Modeling the Radiologic Procedures

As illustrated briefly in Figure 1, the radiologic care process have multiple steps

what would affect the metrics. We discussed the actual process that is used at Mayo

Clinic, and further created the following model for the radiologic care procedure (see

Figure 14).

A typical radiologic care process has multiple roles, for instance, a patient, a

nurse, a technician, and a radiologist. When a patient comes to hospital, he / she

will be checked in and waits in the waiting room until a nurse brings the patient

into preparation room. In the preparation room, the patient will change clothes and

the nurse will briefly go through the whole procedure with the patient, besides, the
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nurse will inject or ask the patient to take all necessary contrasts. At the same time,

a technician will prepare the scanner for the coming exam. When scanner is ready,

the patient will be taken to the scanning room and the technician will complete the

scanning procedure followed by pre-process the images, and then clean the scanning

room. After the exam take place, the patient will be checked out. The processed

medical images will be stored in PACS. A radiologist will acquire the images for the

patient and finish the interpretation.

The radiologic care process model (RCPM) is designed as a discrete event system

to simplify the actual radiologic process. As shown in Figure 14, the RCPM starts

with a patient generator which would determine how frequent a patient will come into

the whole system and decide which type of exam the patient would take. From our

analysis with DDD system, we have noticed that a patient come typically 30 minutes

earlier than the scheduled time. We manually add a virtual step by a set of servers to

compensate such patient behaviors. The patient will then enter the queue prior to

the preparation rooms. When there is an available technician, the patient will enter

the scanning room sub-system. In the scanning room sub-system, there are a number

of parallel servers which are used to indicate scanners, and there also a number of

technicians as “resources” which can be allocated to different scanning servers. The

numbers of scanners and technicians can be different. After the scanning room, the

patient will be checked out in reality, however, we reuse the entity as the scanned

images for the corresponding patient and keep it in our model to finish the whole

RCPM. We create another queue, named “diagnosis queue”, as the PACS system, all

scanned images sets are blocked and wait in the queue until a radiologist is available.

After a radiologist serves the set of scanned images, the image set will leave the system.
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3.5.2 Simulation of the RCPM

As we described previously, it is difficult for us to directly apply our algorithm on

DDD data records since the statuses of in-control and out-of-control are unknown.

We adopted the discrete events simulation approach in order to generate both data

records of in-control and out-of-control with designed typical faults. To complete the

simulation, multiple distributions are required:

1. We assume that inter-arrival time of patients follows an exponential distribution.

2. The simulation system assigns an exam type to each patient. The distributions

of each exam types are also required.

3. We assume that the service times are all follows exponential distributions.

All mentioned distributions are estimated with all available DDD data records we have.

However, due to the limitation of current HISs, there are also some of the service time

distributions which are not available in DDD system. For instance, the preparation

time of each exam, and the interpretation time of radiologist. We consulted our

collaborator and use their estimations to complete those missing parameters in our

simulation system. To simplify the simulation, we only generate the most common 10

types of CT exams. Table 11 summarizes the parameters and distributions we use for

simulation.

We simulated 100 days of IC records, and for each day, the simulated time is

32400 seconds as nine-hour typical shift of radiologist. The records are summarized

together, and 51 QoC metrics are derived from these IC records: 1) patient wait time,

exam duration, technician turnaround time, diagnosis wait time (the time interval

between image-ready and interpretation), radiologist turnaround time. These metrics
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Table 11: Summary of Parameters in RCPM Simulation

Parameter Location Values
Inter-arrival Time Patient Generator exp(737)

Exam Type Patient Generator
0.184 for “CHEST W-CST+d3D”
0.178 for “CHEST WO-CST+d3D”
· · ·

Pre-schedule Time
Phantom

exp(1800)Pre-schedule
Waiting Area

Number of Phantom
Relatively large number (30)Pre-schedule Pre-schedule

Server Waiting Area

Preparation Time Preparation Room exp(3600) for “W-CST”
exp(1200) for “WO-CST”

Number of Preparation Room 2Preparation Server

Scanning Time Scanning Room
exp(326) for “CHEST W-CST+d3D”
exp(214) for “CHEST WO-CST+d3D”
· · ·

Post-scan Time Scanning Room
exp(621) for “CHEST W-CST+d3D”
exp(525) for “CHEST WO-CST+d3D”
· · ·

Number of Scanning Room 6Scanner Server
Number of Scanning Room 4Technician

Interpretation Time Radiologists exp(2593) for “W-CST”
exp(1758) for “WO-CST”

Number of Radiologists 3Radiologist
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are calculated daily for each of the top-10 exam types. 2) The daily patient volume.

As we mentioned, these metrics are dependent among other metrics and we can find

hierarchical structure between exam duration and technician turnaround time metrics.

If some of the exam types do not exist on a day, the metrics would not be derivable

and are replaced with global mean value of the metrics.

3.5.3 Performance of SSVD-MSPC on Radiology QoC Metric Data Streams

To demonstrate the performance of SSVD-MSPC algorithm, we apply the proposed

method on data stream window in time range of a week, that is, the input of the

algorithm would be a 51 metrics × 7 days matrix. We also assume that metrics a

temporal independent without any embedded seasonality. Such assumption is valid

since the research on ARIMA model and temporal seasonality are quite mature that we

can always pre-process the given data streams to eliminate the seasonality and depen-

dence. The IC control limit is estimated with similar approach on MCCN experiments,

α = 0.02 is used, which yields an in-control ARL of 50, and UCLs1(0.02) = 19.77.

3.5.3.1 Out-of-Control Fault 1: Insufficient Radiologists

Insufficient radiologist is a situation that there are not enough radiologists who are

on their shift. Such situation may happen when several radiologists are on vocation

or shift schedule is not optimal. For such out-of-control data, we manually reduced

the number of radiologists from 3 to 1. Apparently, it would increase the “diagnosis

wait time” and eventually decrease the daily patient volume. Table 12 shows the

performance results from 1000 runs of SSVD-MSPC on “insufficient radiologists” fault.
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Table 12: Performance on “Insufficient Radiologists” Fault

ARL1 Overall Accuracy Sensitivity Specificity
1(0) 0.817(0.001) 0.948(0.002) 0.781(0.001)

As indicated, SSVD-MSPC algorithm archived perfect ARL1, and the sensitivity

of faulty metrics identification is 0.948 with 0.002 of standard deviation, and the

specificity is 0.781 with 0.001 of standard deviation. The false-negative identifications

happen when volumes of specific type of exams are extremely low. For instance, if

“CHEST W-CST+d3D” exam does not exist on a certain day, the metrics of such

exam will be replaced with global mean value which are in-control.

3.5.3.2 Out-of-Control Fault 2: Radiology Trainee

Radiology trainee will come to Mayo Clinic for training each year for core training

and sub-specialty training. The trainees are less experienced and expected spend longer

time to finish radiologic procedures, such as interpretation. According to (DeSimone

et al., 2017), the fluoroscopy time for radiology trainee is about 1.3 times long than it

for faculty radiologists. We assume that for interpretation, the ratio of time follows the

similar trend. In the simulation system, we changed the mean value of interpretation

time tinterpretation to 1.3× tinterpretation. We expected a lower daily volume of patients,

but longer interval of “diagnosis wait time” as well as “radiologist turnaround time”.

Table 13 shows the performance results from 1000 runs of SSVD-MSPC on “trainee

radiologists” fault.

As indicated, SSVD-MSPC algorithm archived 3.515 of ARL1, and the sensitivity
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Table 13: Performance on “Trainee Radiologists” Fault

ARL1 Overall Accuracy Sensitivity Specificity
3.515(0.098) 0.865(0.002) 0.987(0.001) 0.692(0.004)

Table 14: Performance on “Insufficient Technicians” Fault

ARL1 Overall Accuracy Sensitivity Specificity
49.534(1.503) 0.456(0.004) 0.727(0.005) 0.068(0.004)

of faulty metrics identification is 0.987 with 0.001 of standard deviation, and the

specificity is 0.692 with 0.004 of standard deviation.

3.5.3.3 Out-of-Control Fault 3: Insufficient Technicians

Similar to the first type of OoC fault, insufficient technician may also occur. For

such out-of-control data, we manually reduced the number of technicians from 4 to 2.

Affected metrics includes “patient wait time”, “diagnosis wait time”, as well as “patient

wait time”. Table 14 shows the performance results from 1000 runs of SSVD-MSPC

on “insufficient technicians” fault.

As indicated, the performance of SSVD-MSPC algorithm is low, with 49.5 of ARL1

and the overall accuracy of fault metric identification dropped to 0.456 with 0.727 of

sensitivity and 0.068 of specificity. The ARL1 is quite closed to ARL0, meaning that

the whole system under “insufficient technician” simulation produced very closed to

IC system. After further analysis on the available technician in system, we noticed

that, although we deployed 6 scanning room, 2 technicians would be also sufficient

for the systems since the technician turnaround time is shorter compared to pre-scan
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time interval, that is, when a patient finished preparation, there would be an available

technician for scanning. Under current setting, the SSVD-MSPC cannot distinguish a

system with 2 technicians (designed OoC system) from a system with 4 technicians

(designed IC system). However, with the performance results, the algorithm led us to

further analysis the cause and found out an optimal number of technicians.

3.6 Conclusion

We proposed SSVD-MSPC for monitoring, fault identification, and fault character-

ization of high-dimensional packet data in MCCNs. These capabilities are critically

important for QoS assurance of MCCNs whose malfunction or failure will result in

serious social, economic, and/or security impacts. We showed that SSVD-MSPC is

highly efficient and scalable in monitoring high-dimensional high-throughput packet

data and has excellent ARL performance for detecting faults of different magnitudes

in small, medium, and large networks. SSVD-MSPC also achieved high accuracy in

fault identification and in differentiation of different temporal shapes of the fault.

We also applied the proposed SSVD-MSPC algorithm for monitoring and fault

identification on radiology QoC metric data streams collected from simulation system.

The SSVD-MSPC is an efficient method on monitoring QoC metrics and achieved

good accuracy. However, we also noticed that with current simulation systems and

designed faults, the specificities are relatively low. The reasons include: 1) the complex

and hierarchical structure of data streams makes it more difficult to identify temporal

locations; 2) the fault shift magnitudes on QoC data streams are vary, such difference

in changes limits the capacity of LASSO procedure in SSVD-MSPC.

Future work may include applying SSVD-MSPC to other domains that generate
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high-dimensional data streams with complicated data distributions and correlation

structures and that efficient online monitoring and fault detection is much needed.

Considering the limitation of SSVD-MSPC algorithm shown on radiology QoC data, a

better procedure for fault identification should be considered for different magnitudes

of changes.
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Chapter 4

MULTI-MODALITY DEEP TRANSFER LEARNING FOR COMPUTER-AIDED

DIAGNOSIS

4.1 Introduction

Computer systems become one of the most important tools in healthcare, they can

be used to store and visualize patients’ information and records, to archive scanned

images, to facilitate the ordering and scheduling, to analysis existing data, and to

provide assistance of medical image interpretation and diagnosis (Wang et al., 2017;

Doi, 2007; van Ginneken et al., 2011; Joo et al., 2004; Giger et al., 2013). Growing

rapidly, computer-aided diagnosis is under the spotlight in both clinical and academic

research, especially is applied to differentiate the malignancy and benignancy for

lesions and tumors (Armato and Sensakovic, 2004; Sun et al., 2013; Schwedt et al.,

2015; Hu et al., 2015).

The conventional machine learning (ML) technique has been introduced to le-

sion/tumor detection area for decades. A typical design of conventional classification

framework requires three major steps: feature extraction, feature selection and classi-

fication (Cheng et al., 2016). Each step need to be addressed separately with proper

technique to provide optimal results. The extracted features of medical images include

but not limited to first order statistics (average, standard deviation, etc.), morpho-

logical metrics (roundness, size, volume, etc.), and texture features extracted with

image processing algorithms (gray level co-occurrence matrix (GLCM)(Haralick et al.,

1973), local binary pattern (LBP)(Ojala et al., 1994), etc.). More features can help
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algorithms represent medical images more accurate but the “curse of dimensionality”

can also lead the algorithm to failure. Feature selection techniques, also known as

dimension reduction methods, such as principle component analysis (PCA)(Pearson,

1901) and least absolute shrinkage and selection operator (LASSO)(Tibshirani, 1996)

, are designed to trade off accuracy with smaller number of features so that ML

algorithms (random forest, K-mean classifier, support vector machines (SVM), etc.)

can be applied on selected features efficiently and get good performance. However,

on the other hand, these three steps are not independent in the whole framework.

Each technique used in ML framework has its own advantages but the overall best

technique does not exist. Different combinations of techniques have to be resolved

in order to find an optimal approach with best performance for the specific problem.

Such procedure is complicated and exhausting.

The deep learning (DL) techniques are not new but become one of the fastest

growing field again since the computing power grows. The fundamental units in

DL networks are called perceptron, which was first introduced in 1957 (Rosenblatt,

1957) for binary classification problem. Mathematically, a perceptron can represent a

function that maps the input x to and a binary output f(x):

f(x) =

1 if w · x + b > 0

0 otherwise
(4.1)

As shown in Equation 4.1, the final output of function f(x) is based on the sign of

a linear combination of element in vector x plus a bias number b. The binary output

function is a composite function as shown in Equation 4.2.

f(x) = h(g(x)), where g(x) = w · x + b and h(z) =

1 if z > 0

0 otherwise
(4.2)
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The function of g(x) is a regression function that mapping the input x to a real

number z, the output z is also called a representation of x, and the function of h(z),

also known as the activation function, is the binary classifier based on the sign of

input value. Besides the binary activation function, there are several widely used

alternatives, such as sigmoid, hyperbolic tangent, and rectified linear unit (ReLU). A

typical example of DL networks is multi-layer perceptron (MLP) which stacks layers

of perceptrons to mimic the behavior of neurons such as transmitting nerve impulses.

In a single layer of MLP, there are several independent perceptrons that generate

multiple outputs, such outputs are considered as the input vector of the followed layer.

The formulation of a MLP can be modeled as follow:

Layer 1 (input layer):

o1,1 = h1,1(g1,1(x)), o1,2 = h1,2(g1,2(x)), · · · , o1,l1 = h1,l1(g1,l1(x))

Layer 2 (hidden layer):

o2,1 = h2,1(g2,1(o1)), o2,2 = h2,2(g2,2(o1)), · · · , o2,l2 = h2,l2(g2,l2(o1))

Layer k (hidden layer):

ok,1 = hk,1(gk,1(ok−1)), ok,2 = hk,2(gk,2(ok−1)), · · · , ok,lk = hk,lk(gk,lk(ok−1))

Layer m (output layer):

om,1 = hm,1(gm,1(om−1)), om,2 = hm,2(gm,2(om−1)), · · · , om,lm = hm,lm(gm,lm(om−1))

Figure 15 demonstrates the typical structure of an MLP model, each circle indicates

a perceptron which is consist of a regression function and an activation function as we

mentioned. The final output vector o is a new representation of the input vector x.

All perceptrons in the same layer accept the same input, but the weight vectors of
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Figure 15: Typical Structure of MLP

each perceptron are independent. The function of MLP model is formed by composing

many simpler regression functions.

The DL networks show their state-of-art power to archive better performance

in image-related tasks such as image segmentations (Chen et al., 2016; Shin et al.,

2013), and object recognitions (Szegedy et al., 2016; He et al., 2016). The medical

imaging area adopted the DL techniques such as stacked auto-encoders (SAEs) and

convolutional neuron networks (CNNs) for computer-aided diagnosis, mitosis detection,

and organs detection. More details about DL frameworks in medical imaging area

will be discussed in Section 4.2.

Breast cancer, due to its high incidence and high morbidity, contributes about 25%

of death caused by cancers. In US, about 12% of women is and will be suffering from

invasive breast cancer. The American Cancer Society recommends screening tests to

women at average risk (those who doesn’t have a personal history of breast cancer,

a strong family history of breast cancer, or a genetic mutation known to increase
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risk of breast cancer, and has not had chest radiation therapy before the age of 30)

(American Cancer Society, 2017). Full-field digital mammography (FFDM) is the

most commonly used technique applied to breast cancer screening and diagnosis due

to its low cost, high image quality and fast scan speed. However, FFDM suffers low

sensitivity on plenty of cases, such as patients who have first-degree relative with a

history of breast cancer (Kerlikowske et al., 2000), have a known BRCA1 / BRCA2

gene mutation (Warner et al., 2004), or are very young (Peer et al., 1996). Such poor

performance is difficult to improve since the difficulty to differentiate the suspicious

breast lesions from dense and heterogeneous fibro-glandular tissues (FGT). Dynamic

contrast-enhanced breast magnetic resonance imaging (DCE-MRI) is yet another

solution for screening invasive breast cancer with much better performance (Berg

et al., 2012). However, compare to FFDM, the cost of DCE-MRI is much higher, and

the scan time is also longer. These disadvantages limit the usage of DCE-MRI as

the first choice of breast cancer screening. Contrast-enhanced digital mammography

(CEDM) is a new imaging technique to maximize the advantages of both FFDM and

DCE-MRI – having contrast-enhanced images to gain better diagnosis results and

reducing the cost and scan time. A standard iodinated intravenous (IV) contrast

agent is injected into breast and two series of scans with different X-ray energy levels

are conducted during the CEDM imaging modality (Jong et al., 2003). In general,

CEDM generates images including LE images to provide similar information as FFDM

images, and DES images as the substitute for DCE-MRI images. Diagnosis based on

medical images heavily affects the effectiveness and patient safety of QoC in radiology

department.

In this research, we are trying to analysis both types of CEDM images from 139

patients to differentiate the benignancy and malignancy, and assistant the radiologist
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to diagnosis without doing biopsy. For each patient, four types of images are considered

– both LE and DES images from two scan angles (a top-down “cranial-caudal” (CC)

view and an angled “mediolateral-oblique” (MLO) view). The images generated

from CEDM imaging modality clearly have built-in coupling relationships between

two series with different energy levels. Multi-modality learning is designed to fit

classification models on a dataset in which multiple instances are considered as one

single observation. For instance, images of the same patient should be considered as

multiple instances of the same observation, and the same diagnosis result needs to be

guaranteed on all these images. It is clearly that multi-modality learning technique is

more appropriate than a learning technique which treats each image individually and

independently.

We propose a novel deep-learning architecture with CNN to solve the multi-

modality problems for breast cancer classification. Beyond taking advantages of deep

learning architectures for state-of-the-art performance, there are multifold challenges

we are facing:

• It is difficult to train a full deep CNN model from scratch since our data size

is limited. As a well-addressed research topic, the ImageNet visual recognition

challenge (Russakovsky et al., 2015) provides over 1.4 million labeled images of

real-world objects belonging to 1000 categories. Compare to that, our dataset

of mammography contains only 139 patients. The possibility of “borrowing”

the knowledge from large dataset result is an essential issue for applying CNN

architecture.

• Each patient has 4 different images from two modalities of two angles respectively.

How we can leverage the shared information among images but also keep

uniqueness is another challenge.

82



• Regions of interest (ROIs) have been used on computer-aided diagnosis for

years, and the accuracy of ROIs affects the final diagnosis results. However,

defining ROIs requires experienced technologists and professional radiologists.

If it is possible to limit the involvement of human resources and automate the

end-to-end pipeline from scanned images to computer diagnosis is still unknown.

4.2 Literature Review

The deep learning techniques were introduced to medical image analysis in recent

years and have shown promising results on different applications, such as image

segmentation (Shin et al., 2013; Liao et al., 2013) and image classification (Xu et al.,

2014; Suk et al., 2014). Focusing on image classification, researchers utilized different

models from scratch to solve the computer-aided diagnosis problems. One of the

strategy is using deep learning models as feature extractors, and then applying specific

machine learning algorithm on the newly learned representation in feature space for

classification. (Suk et al., 2014) used Deep Boltzmann Machine (DBM) to find a

latent hierarchical feature representation from MRI and positron emission tomography

(PET) patches and then applied SVM models for the diagnosis of Alzheimer’s disease

(AD) and mild cognitive impairment (MCI). (Liu et al., 2014) designed a deep learning

architecture contains stacked auto-encoders (SAEs) to learn a representation of MRI

images and aid the diagnosis of AD and MCI with multi-class SVM. (Cheng et al.,

2016) analyzed the ultrasound images to detect breast lesions and CT scans for

pulmonary nodules by applying SAE.

Began from ImageNet Competition in 2012 (Russakovsky et al., 2015), a new line

of research which applied convolutional neural networks (CNNs) on image classification
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appeared and quickly became the mainstream for solving computer vision tasks, such

as general classification. The performance of CNN classifiers was significantly improved

by deploying deeper architectures (Simonyan and Zisserman, 2014; Szegedy et al.,

2015) since 2014. In deep CNN models, multiple convolution kernels are stacked as

computing layers and contained millions of parameters that need to be estimated

during the training process. Such complex models require a large amount of training

data so that the parameters would not be ill-estimated. Take ImageNet competition

for example, the models of general classification task of 1000 categories are trained

with 1.4 million of open domain natural images. However, in the field of medical

images, acquiring image data are costly and sometime impossible since the rareness of

certain diseases.

Another widely used strategy for medical image classification adopts transfer

learning techniques. Transfer learning is a technique which applying stored knowledge

learned from one task to another similar one. For instance, human can learn how to

distinguish one type of objects (cats) from other types of objects (dogs, fishes, etc.).

When a radiologist trying to differentiate benign tumors and malignant tumors, the

experience (knowledge) of distinguishing objects would help. Deep transfer learning

architecture is commonly designed with pre-trained deep neural networks on a large

dataset and a specific smaller dataset of interest for fine-tuning (continued training).

Apparently, in the context of image classification, the ImageNet models are excellent

deep networks to start with. Several researches worked on transferring knowledge

from ImageNet classifiers to the computer-aided diagnosis tasks with different types of

medical images. (Zeng and Ji, 2015) combines a pre-trained VGG model (Simonyan

and Zisserman, 2014) and then added 3 convolutional layers and 2 fully connected

layers to solve a multi-task classification problem with in situ hybridization (ISH)
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images of mouse brains. Similar approach with VGG model and 4 following layers

model was applied to ISH drosophila images in (Zhang et al., 2016).

Mammography images are wildly used to screen breast cancer. To the best of

our knowledge, computer-aided mammography screening in the deep learning context

is still new to the society. Dhungel et al. combined R-CNN (Regions with CNN

features) technique and random forests classifier to detect and classify breast masses

in standard FFDM images (Dhungel et al., 2015a,b). Based on manually segmented

ROIs on standard FFDM images and several steps of preprocessing, Arevalo et

al. proposed a CNN classifier with 4 layers of convolution feature maps for mass

lesion classification (Arevalo et al., 2016). Lévy and Jain utilized pre-trained CNN

models with fine-tuning on mammography data and shown that the knowledge can be

effectively transferred on mass classification tasks (Lévy and Jain, 2016). The datasets

for these researches include images taken from MLO and/or CC views, however, the

multi-instance information and relationship were not accounted in the final model.

In our research, the CEDM contains 4 mammography images from both MLO and

CC views with LE and DES. The design of CEDM procedure raises the requirement

for computer-aided diagnosis system to analyze multi-modality images simultaneously.

Similar tasks of multi-modality classification with medical images have been discussed

in several publications. Suk et al. combined both MRI and PET images and applied

them together on SAE (Suk and Shen, 2013) and DBM (Suk et al., 2014) models to

identify AD / MCI cases. (Zeng and Ji, 2015) used multiple sagittal sections from

mouse brain ISH images and adopted a share-weight tuned VGG model to get the

concatenated multi-modality representation for the proposed multi-task classifier. (Xu

et al., 2014) proposed a deep learning framework for patch-level classification of high
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resolution histopathology images and shown that the multi-modality algorithm is

effective and efficient as a weakly supervised classifier.

As seen, several researches have been done and using different deep learning

architectures to learn specific representations of medical images to directly used as

end-to-end computer-aided diagnosis classifier. Some of these afore-reviewed works

applied transfer learning techniques solving classification tasks on other diseases

/ tumors. However, for mammography images, these researches are not directly

applicable because of the following reasons: 1) The multi-modality tasks haven’t been

well addressed in mammography. The image pairs of the same scan view share location

information of the breast mass and the image pairs of the same energy level may

contain relatively “close” representation, but such information were ignored. 2) The

existing works are applied on standard FFDM images which is not an optimal tool for

breast cancer screening. The multi-modality CEDM images have unique information

but we have not find many related works. 3) Most of the aforementioned researches

used manually defined ROIs and the process of drawing ROIs is both time and labor

consuming. We are looking for finding a way that could use less human involvement

but be comparably efficient.

4.3 Proposed Method

As mentioned before, most of the existing deep learning networks are designed to

solve the open-domain image classification on natural images. However, the medical

images have their uniqueness. Compare to natural images, the medical images also

have shapes, brightness, as well as recognizable objects. However, the objects in

medical images are captured with special designed devices with invisible lights or
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special waves, such as X-ray, gamma ray, and ultrasounds. Beyond images with visible

lights, the medical images also contain unique information such as density (X-ray),

activity levels (functional MRI) and protein levels, such information is embedded in

color or brightness for human sights. To account such features in medical images,

we proposed a transfer-learning architecture to utilize the medical images features

without losing knowledge learned from natural images. More specific, we started with

deep CNN networks, called InceptionV3 models, trained with ImageNet dataset, and

trimmed several uppermost layers to get top-less pre-trained models. Then, we added

our own convolution layers on top of the pre-trained models and constructed a two-

class classifier. The whole model is trained with CEDM images to learn parameters in

the classifier and tune parameters in the pre-trained models.

4.3.1 Pre-trained Model for Natural Images

The InceptionV3 model is redesigned from previous version (Inception Model, also

known as GoogLeNet (Szegedy et al., 2015)) by substituting the 5× 5 convolutional

kernel with two stacked 3 × 3 convolutional kernels to reduce the computational

complexity and the number of parameters. The new Inception module is illustrated

in Figure 16.

In each Inception module, the convolutions shown with dashed boarder are designed

as low-dimensional embeddings. However, these embeddings are dense, compressed

form. Such representation is difficult to model (Szegedy et al., 2015). Thus, the 1× 1

convolutions (shown with dash-dot boarder) are added to the module to keep the

representation sparse and be used as rectified linear activation functions. Additionally,

a pooling component is also included as a parallel path since the operation is currently
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Figure 16: Structure of Inception Module in InceptionV3 Model

essential for success. The complete Inception model stacks 10 modules and put a

simple classifier with a global average pooling layer followed by a full connected dense

layer with a 1000D output vector.

In our proposed model, we truncate the top full connected layer from the complete

Inception model since we are trying to solve different classification task. Thus, the

output of Inception model is a 2048D vector with embedded information of the original

input images.
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4.3.2 Calibrated Multi-Modality Deep Learning Architecture for CEDM Images

A key challenge in applying CNNs to medical images is that it is difficult to collect

enough data observations especially those with labels. One reason causes the lack of

training data is the cost of devices and acquiring images. The breast MRI machine

including coils is approximate $685, 000 and the cost of CEDM is approximately

$370, 000 (Patel et al., 2017). Another reason is the rareness of diseases. For instance,

the breast angiosarcomas account about 0.04% of all breast cancers, or approximately

one in every 2500 patients (Kaklamanos et al., 2011). To overcome the limitation

caused by data shortage and develop a promising architecture for medical images,

transfer learning techniques is our recommendation to preserve the knowledge that

have been learned from natural images and will be calibrated with new knowledge in

CEDM images. The transfer learning techniques have yields good performances on

several classification tasks with natural images (Zeiler and Fergus, 2014)(Oquab et al.,

2014).

Different from standard FFDM, the CEDM images are taken with two levels of

radioactive energy – low energy similar to FFDM and high energy. Each CEDM

procedure generates 4 images from 2 angles with 2 different energy levels for each

patient. Figure 17 shows a sample set of CEDM images for patient “cedm51m18”.

As illustrated, the DES images on the left-hand side enhanced the contrast between

normal tissues (gray background) and potential tumor masses (brighter areas). The

images clearly indicate the location and shape of the mass. In contrast, the images on

the right-hand side capture more texture details of vessels, fibro-glandular and skins,

however, the tumor mass are hidden in textures and difficult to differentiate from
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Figure 17: Sample Images of CEDM with Dual Angles and Dual Energy Levels

other tissues. Clearly, different energy levels produce two types of medical images

which have unique perceived features.

A simple way to learn image representation is applying a pre-trained Inception

model as a feature extractor. The tuning procedure during the learning process will

update parameters of the pre-trained model and calibrate the model to fit images

of CEDM. However, such simple model has limitation of differentiate representation

features between two different CEDM modalities. In order to learn a powerful repre-

sentation model for CEDM images, we proposed to deploy two separated InceptionV3

models, one for DES image pair and the other for LE image pair. The dual model
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Figure 18: Proposed Calibrated Multi-Modality Model for CEDM Images

framework is expected to handle the perceived features of each modal of images

independently.

As illustrated in Figure 18, our proposed multi-modality model consists with two

major part. The first part contains two separate pre-trained InceptionV3 models

designed for DES and LE images respectively. The input of pre-trained model part is

original CEDM images or patches and the output is 2048D representation vectors.

Take DES image path for example, since DES modality contains two images taken

from different angles, the DES representation model will get two vectors. These two

vectors are concatenated as a single 4096D vector and then sent to DES abstraction

layers with a dropout layer and a full-connected dense layer with 512 output nodes.

That is, a pair of DES images will be represented as a 512D vector after the first part

of model. The same procedure is also applied to LE image path. The second part of
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model has 3 layers: full-connected layer reduced the dimensionality from 1024D (the

concatenated vector of two outputs from abstraction layers) to 256D; a dropout layer;

and another full-connected layer to finally classify inputs into two classes – malignant

and benign. The proposed model has 48, 063, 830 parameters, and each InceptionV3

model has 21, 802, 784 parameters.

4.4 Experiments and Results

The radiology department of Mayo Clinic Arizona provides CEDM images in total

from 139 female patients. Each image of the dataset has a corresponding manually

drawn ROI indicating the region of breast tumor. After removing cases with insufficient

images, wrong images, or wrong corresponding ROIs, we then selected all 48 benign

patients and randomly selected 48 malignant patients to get a balanced dataset. This

balanced dataset contains 96 cases and is randomly split into 3 sets: 60 patients as

training samples, 16 patients as validation samples and 20 patients as testing samples.

All subsets are also balanced. Since the sample size of our dataset is relatively small

for deep learning task, we applied data augmentation techniques during the training

and validation procedures. Details of dataset are listed in Table 15.

The manually-drawn ROIs (MD-ROIs) are in irregular shapes and have different

size. Figure 19 indicates the histograms of the MD-ROI sizes in unit of pixels in

original images (in total 278 tumors, 139 in CC view and 139 in MLO view). We can

observe that the sizes of malignant tumor have a heavy tail on the right when MD-ROI

size over 100, 000 pixels. The reason is that malignant tumors are more invasive and

tend to be larger. The variant nature of ROIs makes it difficult to directly use the raw

region for classification tasks. To utilize location information of the ROIs, we introduce
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Table 15: Details of Datasets

Dataset Number of Samples Augmentation Parameters

Training 60× 5

Shift ratio: (−0.05, 0.05)
Rotation: (−3, 3)
Zoom Ratio: (−0.05, 0.05)
Horizontal flip
Vertical flip

Validation 16× 5

Shift ratio: (−0.05, 0.05)
Rotation: (−3, 3)
Zoom Ratio: (−0.05, 0.05)
Horizontal flip
Vertical flip

Testing 20 Original image

lazy-drawn ROIs (LD-ROIs) which do not require accuracy shape and size information

of the region. In practice, the LD-ROIs used in our experiments are defined as patches

with specific sizes that cropped around the center of manually-drawn ones. Besides,

the usage of LD-ROIs also reduce the process time of professionals which makes them

dual-purpose. Figure 20 shows the histogram of MD-ROI area percentage, which is

the ratio between MD-ROI area inside of its corresponding LD-ROI and the patch

size (256× 256). As mentioned, the malignant tumors are larger than benign tumors,

we can also notice that the percentage of tumor area in patch for malignant tumors

are also bigger than benign cases. The majority percentage of MD-ROI in unisize

patch of benign cases is 0% ∼ 30%, while it of malignant cases is 10% ∼ 30% and

80% ∼ 100%.

All following experiments are performed on NVIDIA GeForce GTX 1080 GPU

with 8GB graphic memory, the CPU is Intel Core i7 5930K. Each experiment consists

of 10 runs, and each run has 100 epochs. During each epoch of training, the training
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Figure 19: Histograms of MD-ROI Size for Benign (red) and Malignant (blue) Tumors

and validation sets are augmented to have 5 augmentations for each patient, and

the order of patients is randomized. The testing procedure applied original images

without augmentation.

In this section, we evaluate the performance of the proposed method and compare

the effectiveness with several other architectures to analysis the efforts of 1) tuning

the representation parameters as well as the classifier; 2) applying dual representation

models instead of single representation models; 3) different patch sizes of lazy-drawn

ROIs; and 4) shifted center location for lazy-drawn ROIs.
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Figure 20: MD-ROI Histograms for Benign and Malignant Tumors

4.4.1 Tuning Parameters

In transfer learning architecture, we want to preserve as much as possible of the

learned knowledge from the source task and at the same time learn as much as possible

of the new knowledge from the target task. One strategy to build the transfer learning

model is keeping the parameters of pre-trained but only estimating parameters in

layers of classifier, we call it semi-tuning strategy. Another strategy is more aggressive

by tuning all parameters in the designed model, named full-tuning strategy.

To compare the pros and cons of these two training strategies, we applied a

simple model with only one InceptionV3 model for all images with both energy levels.

More specific, the semi-tuning strategy on the simple model we used would update
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Table 16: Comparison between Training Strategies on Simple Models

Tuning
Strategy

Training
Time

Training
Accuracy

Validation
Accuracy

Testing
Accuracy

Testing
Sensitivity

Testing
Specificity

Semi-
Tuning

36s 0.9800 0.5000 0.5000 1.0000 0.0000

Full-
Tuning

52s 1.0000 0.7625 0.7000 0.6000 0.8000

4, 326, 658 parameters of the last 3 dense layers during training, but the full-tuning

strategy would change 26, 095, 010 parameters, which a about 5-time more parameters

than semi-tuning model. It is obvious that training a deep transfer learning model

using semi-tuning strategy require much less calculations than full-tuning model. The

training speed is one of the advantages of semi-tuning strategy.

We independently trained 10 runs with each strategy, and in each run, 100 epochs

were included. These models were trained with the same initialization (ImageNet

pre-trained weights for InceptionV3 model and standard initial weights for other layers

in classifiers), dropout rates, and learning rate policies, and they only differ in the

random order of input images. We applied models on 256× 256 crops of images and

used a random split with serial number “M1GU0G”. Table 16 lists the performance of

models with different training strategies.

The final models were selected from top-10 training accuracy models with highest

validation accuracy respectively. From our observation, top-10 models have very close

performance in terms of training accuracy (∼ 0.01 difference), however, the validation

accuracy may vary. We believe such situation was caused by two reasons: 1) lack

of training samples compromised the robustness; 2) random orders varied the final

performance.

As we expected, the average training time of semi-tuning models is around
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36s/epoch and of full-tuning models is around 52s/epoch. The semi-tuning model

requires only about 70% of training time compared to full-tuning models. However,

performance is an unavoidable shortage to semi-tuning models. Although the training

accuracy reached 0.9800, the validation accuracy and testing accuracy are both only

0.5000. More specific, the testing sensitivity of malignant class is 1 while specificity is

0, which indicating that the classifier tends to assign all samples to malignant class.

Such unbalanced performance is not acceptable on any tasks. The full-tuning strategy,

by contrast, trained a model with perfect training accuracy and 0.7625 as validation

accuracy. The testing accuracy is lower than validation, get a 0.7000. All these three

accuracies metrics outperformed the semi-tuning models. Sensitivity and specificity of

malignant class are relatively more balanced at 0.6 and 0.8, respectively. Compared

these two training strategies, the full-tuning models should be selected to allow the

CEDM images to adjust the weights / parameters in the pre-trained InceptionV3

model for better adaptation of medical images.

4.4.2 Single Representation Model and Dual Representation Model

In previous sub-section, we applied our dataset on a deep learning model with

single InceptionV3 model for all 4 images of patients, that is, we used the same

representation for all inputs. However, as in Figure 17, we showed that the DES

images have different visual features with LE images. The CEDM technique is designed

to use contrast-enhanced iodinated IV agent to provide better differentiation between

tumor mass and normal tissues compared to FFDM. In our proposed architecture,

we used dual-representation models to capture the uniqueness of images of each

energy-level. The two representation models are tuned with certain type of images
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Table 17: Performance Comparison between Single and Dual Representation Models

Rep.
Strategy

Training
Time

Training
Accuracy

Validation
Accuracy

Testing
Accuracy

Testing
Sensitivity

Testing
Specificity

Single-
Rep.

52s 1.0000 0.7625 0.7000 0.6000 0.8000

Dual-
Rep.

117s 0.9933 0.7500 0.8000 0.8000 0.8000

respectively. Specifically, the DES representation model is tuned with only DES images

of each sample while the LE representation model is tuned with LE images. In Table

17, we compared the performance of two models: model with single-representation

and model with dual-representation.

As shown, the dual-representation model has slightly lower performance in term of

training and validation accuracy. Since we have limited augmented dataset for training,

the performance difference, if projected in number of samples, the differences are only

2 samples (out of 300) and 1 sample (out of 80) worse respectively. Comparing the

metrics on the 20-sample testing set, the specificity, sensitivity and overall accuracy

are all 0.8000 and two of these are better than single-representation model. According

to this comparison, we conclude that the dual-representation model has its advantage

to capture unique representation for both DES and LE images, and the slight gap on

training and validation set can be compromised for a better performance.
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4.4.3 Model Robustness

4.4.3.1 Patch Sizes of LD-ROIs

Another problem we want to address is what is the optimal patch size for LD-ROIs.

We analyze and report the performance of multiple patch size choices, including

64×64, 128×128, 256×256, 512×512 and the original size. In real world, the sizes of

tumors may vary. Figure 5 shows tumors from two different patients, manually-drawn

ROIs for each tumor are included to help readers recognize the location and shape.

We also put 4 rectangles in each of the image showing the crops we use as LD-ROIs.

As illustrated, the red semi-transparent polynomial indicates the manually-drawn

ROI tagged by radiologists, 4 green rectangles show the lazy-drawn ROIs sizing from

64 × 64 to 512 × 512, respectively. In the left LE image, the manually-drawn ROI

is relatively small. The 64 × 64 and 128 × 128 LD-ROIs can cover mostly of the

manually-drawn ROI, but the 256× 256 and 512× 512 patches also include partial

of the normal tissues. Also notice that the original 512× 512 exceeds the border of

image, thus the lazy-drawn ROI for this case was shifted left to make sure the whole

ROI is inside of the image. By contrast, if the manually-drawn ROI is relatively large,

as shown in the right part of Figure 21, all 4 LD-ROIs focus on the mass itself and

only a small part of normal tissues are included in 512× 512.

Table 18 compares the performance of full-tuned dual-representation models on

different sizes of lazy-drawn ROIs.

As listed, all models get high training accuracy over 0.99. The 256× 256 LD-ROIs

model has the highest validation accuracy as 0.7500 while the 128 × 128 LD-ROIs
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Figure 21: Comparison between Lazy-Drawn ROIs and Manual-Drawn ROIs

Table 18: Performance Comparison among Different Sizes of Lazy-Drawn ROIs

LD-ROI
Size

Training
Time

Training
Accuracy

Validation
Accuracy

Testing
Accuracy

Testing
Sensitivity

Testing
Specificity

64× 64 29s 0.9950 0.7063 0.7000 0.7000 0.7000
128× 128 33s 0.9967 0.6813 0.6500 0.8000 0.5000
256× 256 117s 0.9933 0.7500 0.8000 0.8000 0.8000
512× 512 228s 0.9983 0.6938 0.7500 0.9000 0.6000
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model has only 0.6813 of validation accuracy. In terms of the performance on testing

set, the 256× 256 model also has the best metrics with overall accuracy, sensitivity

and specificity of all 0.8000. Based on the reported performance metrics, we conclude

that the 256× 256 LD-ROI size is optimal on our proposed dual-representation deep

transfer learning architecture. For smaller tumors, small LD-ROI size may cover whole

tumor area without including large proportion of normal tissues, however, if the tumor

is relatively large, small LD-ROI size focuses only around the centroid of tumor mass

and loss the shape and border information of tumors. On contrast, if the LD-ROI size

is large, it would help capture all mass of large tumors, but for small tumor cases,

there would be a large proportion of normal tissues. Both situation would lower the

performance of final model. A mid-size LD-ROI is a compromised selection which

won’t mess tumor tissue with much normal tissue, which capture more information of

tumors.

4.4.3.2 Shifted LD-ROIs

We further push our model to a dataset with shifted LD-ROIs to evaluate the

robustness. The shifted LD-ROI is generated with the following mechanism: 1) load

manually-drawn ROI information and get the center point c of ROI; 2) shift c to c′

by increasing or decreasing 20 pixels on one of the axis; and 3) crop a LD-ROI by

256× 256 square window. To maintain the coupling relationship between images of

both energy levels, the shifts for the same angle of the same patient remain the same.

Table 19 compares the performance of our model on LD-ROI and shifted LD-ROI.

As observed, on shifted dataset, the training and validation accuracies are slight better

than original LD-ROI dataset. The overall testing accuracy remains the same at 0.8000
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Table 19: Performance Comparison on Original LD-ROIs and Shifted LD-ROIs

ROI Center Position Training
Accuracy

Validation
Accuracy

Testing
Accuracy

Testing
Sensitivity

Testing
Specificity

Original 0.9933 0.7500 0.8000 0.8000 0.8000
Shifted by 20 pixel 0.9950 0.7938 0.8000 0.7000 0.9000

indicating robustness even with a 20-pixel shift (∼ 7.8% of the ROI size). However,

we also addressed imbalance performance on two classes. The shift increased accuracy

on benign class while compromising malignant class on the testing set. Figure 22

compares the histograms of tumor area in patch between original ROIs and shifted

ROI. The histogram for original LD-ROIs is illustrated in red, while shifted LD-ROI

is in blue, and the overlap of two histograms are in magenta. As we can see, the

major part of the histograms are overlapped, and slight difference can be found when

tumor size falls into (70%, 100%] range. When tumors are relatively small (< 50%),

the shift of 20 pixel won’t affect the percentage since most part of the patches are

normal tissues; when tumors are extremely large (over 90%), the whole area of patch

covers only partial of the whole tumor, thus the shift also won’t change the percentage.

When tumor sizes fall into (50%, 90%], a 20-pixel shift may changes the percentage

of MD-ROI. As illustrated, we observer that in (70%, 80%], shifted LD-ROI has one

more case than original LD-ROI; and in (90%, 100%], shifted LD-ROI has one less

case than original LD-ROI. Also should we notice that, since the histogram divided

continues percentage into discrete bins, some changes may not reflected in the graph.

Based on this comparison, we could conclude that the original LD-ROIs and shifted

LD-ROIs follow the same distribution in term of the percentage of tumor. The

Kolmogorov-Smirnov test returns D stat equals to 0.0035211, with p = 1. We rule out

the distribution difference as one reason that cause the performance difference.
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Figure 22: Comparison between Tumor Percentages for Original LD-ROIs and Shifted
LD-ROIs

4.5 Conclusion

In this paper, we proposed a dual-representation transfer learning model with CNN

for computer-aided diagnosis on breast tumors with CEDM images. We showed that

full-tuning strategy is a necessary way to improve the performance on deep transfer

learning architectures. The dual-representation approach we designed successfully

increased the capabilities of the model for multi-modality medical images. Moreover,

we concluded that a mid-size lazy-drawn ROI size (256× 256) is the optimal selection

which got the best performance on CEDM data. We also observed limited robustness
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of our model that with shifted LD-ROI, the sensitivity and specificity are not balanced

but the accuracy remains.

Since the deep learning techniques are still new to the medical images research,

especially to mammography topics, we believe there are several future directions we

should follow up: 1) in our current work, we considered only InceptionV3 model,

other well-designed models can be applied; 2) fixed LD-ROI helped reduce the time of

labeling, a dynamic optimal value of ROI size is much needed for different applications;

3) with very limited data, data completion and augmentation techniques should be

considered to improve the performance.
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BRIEF INTRODUCTION TO SINGULAR VALUE DECOMPOSITION

114



SVD is a matrix factorization method. Let Z be a i× j matrix. The SVD of Z is:

Z = USVT =
r∑

k=1

skukv
T
k (A.1)

where r is the rank of Z, U = (u1, · · · ,ur) is a matrix consisting of orthonormal
left singular vectors, V = (v1, · · · ,vr) is a matrix consisting of orthonormal right
singular vectors, S is a diagonal matrix with positive singular values s1 ≥ · · · ≥ sr
on its diagonal. U, V, and S can be obtained by eigendecomposition. A.1 indicates
that SVD decomposes Z into a summation of r rank-one matrices, Zk = skukv

T
k ,

k = 1, · · · , r. It has been shown that Z1 is the closest rank-one approximation to Z
in terms of minimizing the square Frobenius norm. This means that s1, u1, v1 can be
obtained by solving the following optimization problem:

(ŝ1, û1, v̂1) = arg min
s1,u1,v1

‖Z− s1u1v
T
1 ‖

2

F

s.t.‖u1‖2 = 1, ‖v1‖2 = 1, s1 ≥ 0
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It is easy to show that E[X]− np01q×m is a rank-one matrix. Therefore,

E[X]− np01q×m =
r∑

k=1

skukv
T
k (B.1)

In other words, sk = 0 for k > 1. Furthermore, let {E[X]− np01q×m}ij,t be the
element of matrix E[X]− np01q×m at the row corresponding to the sender-receiver
pair (i, j) and the t-th column. We know from the definition of E[X]− np01q×m that

{E[X]− np01q×m}ij,t =

{
0 for (i, j) /∈ F

−nδ(t) for (i, j) ∈ F (B.2)

Using Equation B.1, we can further write Equation B.2 into

s1u1,ijv1,t =

{
0 for (i, j) /∈ F

−nδ(t) for (i, j) ∈ F (B.3)

where u1,ij is the element of u1 corresponding to the sender-receiver pair (i, j) and
v1,t is the the t-th element of v1.

Let (i′, j′) be a sender-receiver pair that is affected by the fault and (̂i, ĵ) be one
that is not, i.e., (i′, j′) ∈ F and (̂i, ĵ) /∈ F . Then, according to Equation B.3,

s1u1,̂iĵv1,t = 0 and s1u1,i′j′v1,t 6= 0 (B.4)

since s1 6= 0 by the definition of SVD. Then, Equation B.4 becomes

u1,̂iĵv1,t = 0 and u1,i′j′v1,t 6= 0 (B.5)

The sufficient and necessary condition for the above simultaneous equations to hold is
v1,t 6= 0, u1,̂iĵ = 0, and u1,i′j′ 6= 0. Next, we derive the formula for u1,i′j′ , v1,t, and s1.

Let (i′′, j′′) be another sender-receiver pair that is affected by the fault, i.e., (i′′, j′′) ∈
F . According Equation B.3, s1u1,i′j′v1,t = s1u1,i′′j′′v1,t = −nδ(t), i.e., u1,i′j′v1,t =
u1,i′′j′′v1,t. Furthermore, because u1 is orthonormal, we have

∑
(i,j)∈mathF u

2
1,ij =

|F| × u21,ij = 1. Solving this equation gives u1,ij = 1√
|F|

for ∀(i, j) ∈ F .
To derive the formula for v1,t and s1, focus on a sender-receiver pair (i, j) ∈ F .

Then, s1u1,ijv1,t = s1
1√
|F|
v1,t = −nδ(t), i.e.,

v1,t =
−nδ(t)

√
|F|

s1
(B.6)

Using the property that v1 is orthonormal, we have
∑

t v
2
1,t = 1. Combining this with

Equation B.6, we get s1 =
√∑m

t=1 [nδ(t)]2 ×
√
|F|. Inserting this into Equation B.6,

we get v1,t = −δ(t)∑m
t=1 δ

2(t)
.
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