5 research outputs found

    Socially-Aware Navigation Planner Using Models of Human-Human Interaction

    Get PDF
    A real-time socially-aware navigation planner helps a mobile robot to navigate alongside humans in a socially acceptable manner. This navigation planner is a modification of nav_core package of Robot Operating System (ROS), based upon earlier work and further modified to use only egocentric sensors. The planner can be utilized to provide safe as well as socially appropriate robot navigation. Primitive features including interpersonal distance between the robot and an interaction partner and features of the environment (such as hallways detected in real-time) are used to reason about the current state of an interaction. Gaussian Mixture Models (GMM) are trained over these features from human-human interaction demonstrations of various interaction scenarios. This model is both used to discriminate different human actions related to their navigation behavior and to help in the trajectory selection process to provide a social-appropriateness score for a potential trajectory. This thesis presents a model based framework for navigation planning, a simulation-based evaluation of the model-based navigation behavior

    Real-time person re-identification for interactive environments

    Get PDF
    The work presented in this thesis was motivated by a vision of the future in which intelligent environments in public spaces such as galleries and museums, deliver useful and personalised services to people via natural interaction, that is, without the need for people to provide explicit instructions via tangible interfaces. Delivering the right services to the right people requires a means of biometrically identifying individuals and then re-identifying them as they move freely through the environment. Delivering the service they desire requires sensing their context, for example, sensing their location or proximity to resources. This thesis presents both a context-aware system and a person re-identification method. A tabletop display was designed and prototyped with an infrared person-sensing context function. In experimental evaluation it exhibited tracking performance comparable to other more complex systems. A real-time, viewpoint invariant, person re-identification method is proposed based on a novel set of Viewpoint Invariant Multi-modal (ViMM) feature descriptors collected from depth-sensing cameras. The method uses colour and a combination of anthropometric properties logged as a function of body orientation. A neural network classifier is used to perform re-identification

    Laser Tracking of Human Body Motion Using Adaptive Shape Modeling

    No full text
    In this paper we present a method for determining body orientation and pose information from laser scanner data using particle filtering with an adaptive modeling algorithm. A parametric human shape model is recursively updated to fit observed data after each resampling step of the particle filter. This updated model is then used in the likelihood estimation step for the following iteration. This method has been implemented and tested by using a network of laser range finders to observe human subjects in a variety of interactions. We present results illustrating that our method can closely track torso and arm movements even with noisy and incomplete sensor data, and we show examples of body language primitives that can be observed from this orientation and positioning information. I

    飛行ロボットにおける人間・ロボットインタラクションの実現に向けて : ユーザー同伴モデルとセンシングインターフェース

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 矢入 健久, 東京大学教授 堀 浩一, 東京大学教授 岩崎 晃, 東京大学教授 土屋 武司, 東京理科大学教授 溝口 博University of Tokyo(東京大学
    corecore