235 research outputs found

    On the power of randomized multicounter machines

    Get PDF
    AbstractOne-way two-counter machines represent a universal model of computation. Here we consider the polynomial-time classes of multicounter machines with a constant number of reversals and separate the computational power of nondeterminism, randomization and determinism. For instance, we show that polynomial-time one-way multicounter machines, with error probability tending to zero with growing input length, can recognize languages that cannot be accepted by polynomial-time nondeterministic two-way multicounter machines with a bounded number of reversals. A similar result holds for the comparison of determinism and one-sided-error randomization, and of determinism and Las Vegas randomization

    Efficient quantum protocols for XOR functions

    Full text link
    We show that for any Boolean function f on {0,1}^n, the bounded-error quantum communication complexity of XOR functions ff\circ \oplus satisfies that Qϵ(f)=O(2d(logf^1,ϵ+lognϵ)log(1/ϵ))Q_\epsilon(f\circ \oplus) = O(2^d (\log\|\hat f\|_{1,\epsilon} + \log \frac{n}{\epsilon}) \log(1/\epsilon)), where d is the F2-degree of f, and f^1,ϵ=ming:fgϵf^1\|\hat f\|_{1,\epsilon} = \min_{g:\|f-g\|_\infty \leq \epsilon} \|\hat f\|_1. This implies that the previous lower bound Qϵ(f)=Ω(logf^1,ϵ)Q_\epsilon(f\circ \oplus) = \Omega(\log\|\hat f\|_{1,\epsilon}) by Lee and Shraibman \cite{LS09} is tight for f with low F2-degree. The result also confirms the quantum version of the Log-rank Conjecture for low-degree XOR functions. In addition, we show that the exact quantum communication complexity satisfies QE(f)=O(2dlogf^0)Q_E(f) = O(2^d \log \|\hat f\|_0), where f^0\|\hat f\|_0 is the number of nonzero Fourier coefficients of f. This matches the previous lower bound QE(f(x,y))=Ω(logrank(Mf))Q_E(f(x,y)) = \Omega(\log rank(M_f)) by Buhrman and de Wolf \cite{BdW01} for low-degree XOR functions.Comment: 11 pages, no figur

    Quantum computing and communication complexity

    Get PDF
    Quantum computing combines the framework of quantum mechanics with that of computer science. In this paper we give a short introduction to quantum computing and survey the results in the area of quantum communication complexity.

    Sensitivity Conjecture and Log-rank Conjecture for functions with small alternating numbers

    Get PDF
    The Sensitivity Conjecture and the Log-rank Conjecture are among the most important and challenging problems in concrete complexity. Incidentally, the Sensitivity Conjecture is known to hold for monotone functions, and so is the Log-rank Conjecture for f(xy)f(x \wedge y) and f(xy)f(x\oplus y) with monotone functions ff, where \wedge and \oplus are bit-wise AND and XOR, respectively. In this paper, we extend these results to functions ff which alternate values for a relatively small number of times on any monotone path from 0n0^n to 1n1^n. These deepen our understandings of the two conjectures, and contribute to the recent line of research on functions with small alternating numbers

    Fourier sparsity, spectral norm, and the Log-rank conjecture

    Full text link
    We study Boolean functions with sparse Fourier coefficients or small spectral norm, and show their applications to the Log-rank Conjecture for XOR functions f(x\oplus y) --- a fairly large class of functions including well studied ones such as Equality and Hamming Distance. The rank of the communication matrix M_f for such functions is exactly the Fourier sparsity of f. Let d be the F2-degree of f and D^CC(f) stand for the deterministic communication complexity for f(x\oplus y). We show that 1. D^CC(f) = O(2^{d^2/2} log^{d-2} ||\hat f||_1). In particular, the Log-rank conjecture holds for XOR functions with constant F2-degree. 2. D^CC(f) = O(d ||\hat f||_1) = O(\sqrt{rank(M_f)}\logrank(M_f)). We obtain our results through a degree-reduction protocol based on a variant of polynomial rank, and actually conjecture that its communication cost is already \log^{O(1)}rank(M_f). The above bounds also hold for the parity decision tree complexity of f, a measure that is no less than the communication complexity (up to a factor of 2). Along the way we also show several structural results about Boolean functions with small F2-degree or small spectral norm, which could be of independent interest. For functions f with constant F2-degree: 1) f can be written as the summation of quasi-polynomially many indicator functions of subspaces with \pm-signs, improving the previous doubly exponential upper bound by Green and Sanders; 2) being sparse in Fourier domain is polynomially equivalent to having a small parity decision tree complexity; 3) f depends only on polylog||\hat f||_1 linear functions of input variables. For functions f with small spectral norm: 1) there is an affine subspace with co-dimension O(||\hat f||_1) on which f is a constant; 2) there is a parity decision tree with depth O(||\hat f||_1 log ||\hat f||_0).Comment: v2: Corollary 31 of v1 removed because of a bug in the proof. (Other results not affected.

    On the communication complexity of distributed algebraic computation

    Get PDF
    Cover title.Includes bibliographical references.Supported by the ONR. N00014-84-K-0519 (NR 649-003) Supported by the ARO. DAAL03-86-K-0171Zhi-Quan Luo, John N. Tsitsiklis

    On the communication complexity of solving a polynominal equation

    Get PDF
    Cover title.Includes bibliographical references.Research supported by the ONR. N00014-84-K-0519 Research supported by the ARO. DAAL03-86-K-0171Zhi-Quan Luo, John N. Tsitsiklis

    Communication complexity and linearly ordered sets

    Get PDF
    The communication complexity of lattice operations in linearly ordered sets is studied. If the lattices are not geometric there is a gap between the known upper and lower bounds. New techniques for the construction of "interval protocols'' are introduced and numerical experiments show that their complexity is less than the complexity of known protocols for the infimum function
    corecore