1,030 research outputs found

    A Family of matroid intersection algorithms for the computation of approximated symbolic network functions

    Get PDF
    In recent years, the technique of simplification during generation has turned out to be very promising for the efficient computation of approximate symbolic network functions for large transistor circuits. In this paper it is shown how symbolic network functions can be simplified during their generation with any well-known symbolic network analysis method. The underlying algorithm for the different techniques is always a matroid intersection algorithm. It is shown that the most efficient technique is the two-graph method. An implementation of the simplification during generation technique with the two-graph method illustrates its benefits for the symbolic analysis of large analog circuits

    Finiteness theorems for matroid complexes with prescribed topology

    Full text link
    It is known that there are finitely many simplicial complexes (up to isomorphism) with a given number of vertices. Translating to the language of hh-vectors, there are finitely many simplicial complexes of bounded dimension with h1=kh_1=k for any natural number kk. In this paper we study the question at the other end of the hh-vector: Are there only finitely many (d1)(d-1)-dimensional simplicial complexes with hd=kh_d=k for any given kk? The answer is no if we consider general complexes, but when focus on three cases coming from matroids: (i) independence complexes, (ii) broken circuit complexes, and (iii) order complexes of geometric lattices. We prove the answer is yes in cases (i) and (iii) and conjecture it is also true in case (ii).Comment: to appear in European Journal of Combinatoric

    On the circuit-spectrum of binary matroids

    Get PDF
    AbstractMurty, in 1971, characterized the connected binary matroids with all circuits having the same size. We characterize the connected binary matroids with circuits of two different sizes, where the largest size is odd. As a consequence of this result we obtain both Murty’s result and other results on binary matroids with circuits of only two sizes. We also show that it will be difficult to complete the general case of this problem

    Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity

    Full text link
    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in 3-dimensional Riemannian space, and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid. Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of [4-5], and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3, and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin \jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large \jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos corrected, presentation slightly extende
    corecore