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a b s t r a c t

Murty, in 1971, characterized the connected binary matroids with
all circuits having the same size. We characterize the connected
binary matroids with circuits of two different sizes, where the
largest size is odd. As a consequence of this result we obtain both
Murty’s result and other results on binary matroids with circuits of
only two sizes. We also show that it will be difficult to complete
the general case of this problem.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the problem of determining the binary matroids with circuits of two different sizes.
Murty [11] solved the motivating instance of this problem below, where the matroids considered
contain circuits of a single size. The circuit-spectrum of a matroidM is spec(M) = {|C | : C ∈ C(M)}. A
k-subdivision of a matroid is obtained by replacing each element by a series class of size k.

Theorem 1.1. Let M be a connected binary matroid. For c ∈ Z+, spec(M) = {c} if and only if M is
isomorphic to one of the following matroids:

(i) a c-subdivision of U0,1,
(ii) a k-subdivision of U1,n, where c = 2k and n ≥ 3,
(iii) an l-subdivision of PG(r, 2)∗, where c = 2r l and r ≥ 2,
(iv) an l-subdivision of AG(r + 1, 2)∗, where c = 2r l and r ≥ 2.

It is difficult to characterize the matroids having a particular circuit-spectrum set even when the
set is small and the matroids belong to an interesting class. For example, characterizing the non-
binary matroids M with |spec(M)| = 1 would involve solving questions from design theory (see
results of Edmonds et al. [4,5,13]). Authors including Cordovil et al. [3,10] constructed all matroidsM
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Fig. 1. Some of the lines of the binary spike S4 .

Fig. 2. B(r, 2).

with spec(M) ⊆ {1, 2, 3, 4, 5}, and constructed all 3-connected binary matroids M with spec(M) ⊆

{3, 4, 5, 6, 7}.
We next give some terminology before stating the main results of the paper. This terminology

mostly follows [12]. If M is a matroid, then the sets of circuits, hyperplanes, and series classes of M
are denoted by C(M), H(M), and S(M), respectively. The series-connection of matroids M and N is
denoted by S(M,N) [12, Section 7.1]. The binary projective geometry and binary affine geometry of
rank r +1 are denoted by PG(r, 2) and AG(r, 2), respectively. For an integer exceeding two, the binary
spike of rank n, denoted by Sn, is the vector matroid of the matrix consisting of all binary columns of
length n with exactly one, n − 1, or n ones. The tip (cotip) of Sn (S∗

n ) corresponds to the column of all
ones. The Fano-matroid is S3. The four 3-point lines of the binary spike S4 are shown in Fig. 1.

The matroid B(r, 2) is constructed as follows. Add a point e of projective space to AG(r, 2), where
e is outside the r + 1-dimensional subspace determined by AG(r, 2). Add a point of projective space
to each line joining e to a point of AG(r, 2). The resulting matroid is B(r, 2) (see Fig. 2). Equivalently,
B(r, 2) may be constructed by adding a single new point e of PG(r + 1, 2) to AG(r + 1, 2). The dual
matroid B(r, 2)∗ is constructed as follows. Let C0, C1, C2, . . . , Cr be aminimal set of circuits that spans
the cycle space of AG(r + 1, 2)∗ with C2 = E(M) − C1 for some integer r exceeding one. If e is a new
element of projective space, then B(r, 2)∗ is the matroid whose ground set is E(AG(r + 1, 2)) ∪ e and
whose cycle space is spanned by C0 ∪ e, C1, C2, . . . , Cn. The element e mentioned above is called the
tip (cotip) of B(r, 2) (B(r, 2∗)).

The first main result both generalizes Theorem 1.1 and has applications that provide information
on the matroids with circuit-spectrum size two. A deletable series class in a connected matroid is one
whose deletion from the matroid results in a connected matroid.

Theorem 1.2. Let c, d ∈ Z+. Let T be a deletable series class in a connected binary matroid with corank
exceeding one. If each circuit of M that avoids T has c elements and each circuit of M that contains T has
d elements, then every series class of M different from T has l elements and the cosimplification of M is
isomorphic to one of the following matroids.
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(i) U1,n, for some n ≥ 3, where c = 2l and d = l + |T |.
(ii) S∗

n , for some n ≥ 4, where T is a subdivision of the cotip, c = 4l, and d = nl + |T |.
(iii) PG(r, 2)∗, for some r ≥ 2, where c = 2r l and d = (2r

− 1)l + |T |.
(iv) AG(r + 1, 2)∗, for some r ≥ 2, where c = 2r l and d = (2r

− 1)l + |T |.
(v) B(r, 2)∗, for some r ≥ 3, where T is a subdivision of the cotip, c = 2r l, and d = 2r l + |T |.

We next obtain Murty’s result as a consequence of this result.

Proof of Theorem 1.1. IfM is a circuit, then the result follows. IfM has corank exceeding one, then it
follows from [12, Section 10.2, Exercise 2] that M has a deletable series class. The result follows from
Theorem 1.2 by taking c = d because cases (ii) and (v) cannot occur (in these two cases c < d). �

The second main result provides a complete characterization of the connected binary matroids
with a circuit-spectrum of size two in the special case that the largest circuit size is odd.

Theorem 1.3. Let c, d ∈ Z+ with c < d and d odd. Let M be a connected binary matroid. Then
spec(M) = {c, d} if and only if there are connected binary matroids M0,M1, . . . ,Mn for some n ∈ Z+

such that the following hold.
(i) E(Mi) ∩ E(Mj) = {e}, for distinct i and j in {0, 1, . . . , n}.
(ii) E(M0) is a circuit of M0.
(iii) For i ∈ {1, 2, . . . , n}, {e} is a series class of Mi, all other series classes of Mi have size li, and the

cosimplification of Mi is isomorphic to one of the following matroids.
(a) U1,ni , for some ni ≥ 3, where c = 2li.
(b) PG(ri, 2)∗, for some ri ≥ 2, where c = 2ri li.
(c) AG(ri, 2)∗, for some ri ≥ 3, where c = 2ri−1li.
(d) S∗

ni , for some ni ≥ 4, and e is the cotip, where c = 4li.
(e) B(ri, 2)∗, for some ri ≥ 3, and e is the cotip, where c = 2ri li.

(iv) d = |E(M0)| − 1 + d1 + d2 + · · · + dn > c, where di =
c
2 when (iii) (a) holds, di = (2ri − 1)li

when (iii) (b) holds, di = (2ri−1
− 1)li when (iii) (c) holds, di = nili when (iii) (d) holds, and di = c

when (iii) (e) holds.
(v) M = S(M0,M1, . . . ,Mn)/e.

We next note an attractive corollary of Theorem 1.3.

Corollary 1.4. Let M be a 3-connected binary matroid with largest circuit size odd. Then |spec(M)| ≤ 2
if and only if M is isomorphic to one of the following matroids.
(i) U0,1 or U2,3.
(ii) S∗

2n, for some n ≥ 2.
(iii) B(r, 2)∗, for some r ≥ 2.

In Section 2 of the paper we give a useful lemma that is of independent interest as well as
an application of this lemma. In Section 3 we give a construction that is used in the proof of the
main results. In Section 4 we prove Theorem 1.2, while in Section 5 we prove Theorem 1.3. Finally,
an example showing the difficulty in extending our results to a complete characterization of the
connected binary matroids with circuits of two different sizes is given in Section 6.

2. A useful result

We use the following result which may be known.

Lemma 2.1. Let M be a cosimple matroid with an assigned weight xe ∈ R to each e ∈ E(M). If∑
e∈D xe = 0, for every circuit D of M, then xe = 0 for every e ∈ E(M).

Proof. Let M be a minimal counterexample. Then there exists e ∈ E(M) such that xe ≠ 0. Choose
f ∈ E(M). We first show that for each series class S ofM \ f ,−

g∈S

xg = 0. (1)
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Let N be the cosimplification of M \ f . For each element g of N , we define yg to be equal to
∑

h∈S xh,
where S is the series class of M \ f containing g . Note that

∑
g∈D yg = 0 for every circuit D of N . The

result holds for N by the choice ofM . Therefore yg = 0 for every g ∈ E(N). Thus (1) follows.
If f ≠ e, then (1) implies that

∑
g∈S xg = 0 when S is the series class ofM \ f that contains e. Hence

|S| ≥ 2 because xe ≠ 0. Therefore L∗
= S ∪ f is a coline of M such that |L∗

| ≥ 3 and e ∈ L∗. There
exists f ′

∈ L∗ such that
∑

g∈L∗−f ′ xg ≠ 0 because xe ≠ 0. We arrive at a contradiction to (1) when
applied to f ′ instead of f because L∗

− f ′ is a series class ofM \ f ′. �

The following beautiful result of Basterfield and Kelly [1] and Greene [9] is a consequence of
Lemma 2.1. Note that their result ismore general in that they characterize the corresponding extremal
matroids.

Corollary 2.2. If M is a simple matroid, then |H(M)| ≥ |E(M)|.
Proof. Observe that M∗ is a cosimple matroid such that |H(M)| = |C(M∗)|. Consider the system
having a variable xe for each element e ∈ E(M) and an equation for each circuit C ofM∗:−

e∈C

xe = 0.

By Lemma 2.1, this system has only the trivial solution. Therefore the number of equations |C(M∗)| is
greater or equal to the number of variables |E(M)|. �

Many papers have been written that provide partial characterization of the matroids that satisfy
|H(M)| = |E(M)| + d for d ∈ Z+ (see, for example, [2,8]). Dentice [6,7] characterized these matroids
for d ∈ {1, 2}.

3. A construction

We say that a binary matroid N is even when |S| is even for every series class S. Such a matroid
has no coloops. Let N be an even binary matroid. For a set X disjoint from E(N), we say that M is an
X-extension of N provided E(M) = X ∪ E(N) and the cycle space of M is spanned by C(N) together
with X∪(∪S∈S(N) XS), where a set XS ⊆ S such that 2|XS | = |S| is chosen arbitrarily for every S ∈ S(N).
Observe that all X-extensions of N are isomorphic. Moreover, for each S ∈ S(N), both XS and S − XS
are series classes of M . We next describe the dual construction: start with N∗

\ (∪S∈S(N) XS); add a
parallel class X outside the space determined by N∗

\ (∪S∈S(N) XS); for each line that contains the
parallel class X and the parallel class S − XS add a parallel class XS . Note that there is just one binary
matroid obtained this way.

Lemma 3.1. Let N be an even binary matroid. If M is an X-extension of N, then |C | = |X | +
|E(M)|

2 , for
every circuit C ∈ C(M) − C(N).
Proof. If D = X ∪ (∪S∈S(N) XS), then there is a collection of disjoint cycles D′

1, D
′

2, . . ., D
′

k of N such that
C = D △ D′

1 △ D′

2 △ · · · △ D′

k because the cycle space of M is spanned by D and the cycle space of N .
Let D′

= D′

1 △ D′

2 △ · · · △ D′

k. Hence C − X = [∪S∈S(N):S⊈D′ XS] ∪ [∪S∈S(N):S⊆D′(S − XS)] and so

|C | = |X | +

−
S∈S(N):S⊈D′

|XS | +

−
S∈S(N):S⊆D′

|S − XS |.

As |XS | = |S − XS |, it follows that

|C | = |X | +

−
S∈S(N)

|XS | = |X | +

−
S∈S(N)

|S|
2

= |X | +
|E(M)|

2
. �

The straightforward proof of the next result is omitted.

Lemma 3.2. Let N be a binary evenmatroid having a circuit-spectrumof size one andM be an X-extension
of N. Then the following hold.
(i) If N is an l-subdivision of U0,1, then M is obtained from an l

2 -subdivision of U1,3 by replacing a series
class by X, where X is a series class.
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(ii) If N is an l-subdivision of U1,n, for some n ≥ 3, then M is obtained from an l
2 -subdivision of S∗

n by
replacing the series class corresponding to the cotip by X, where X is a series class.

(iii) If N is an l-subdivision of PG(r, 2)∗, for some r ≥ 2, then M is obtained from an l
2 -subdivision of

PG(r + 1, 2)∗ by replacing a series class by X, where X is a series class.
(iv) If N is an l-subdivision of AG(r + 1, 2)∗, for some r ≥ 2, then M is obtained from an l

2 -subdivision
of B(r + 1, 2)∗ by replacing the series class corresponding to the cotip by X, where X is a series class.

Observe that, when n = 3 in (ii) and r = 2 in (iii), we obtain the same matroid whose cosimplifi-
cation is F∗

7 (therefore we may suppose that n ≥ 4 in (ii)).

4. A proof of Theorem 1.2

Lemma 4.1. Let c, d ∈ Z+. Suppose that T is a series class of a connected binary matroid M with corank
exceeding one such that each circuit of M that avoids T has c elements and each circuit of M that contains
T has d elements. If C and D are circuits of M that avoid and meet T , respectively, and C ∩ D ≠ ∅, then
C △ D is a circuit of M. Moreover, |C ∩ D| =

c
2 .

Proof. There are pairwise disjoint circuits D1,D2, . . . ,Dn ofM such that C △ D = D1 ∪ D2 ∪ · · · ∪ Dn.
As T is a series class ofM and T ⊆ D − C , it follows that T is contained in exactly one Di, say D1. Then
|D1| = d and |D2| = |D3| = · · · = |Dn| = c. Thus

c + d > |C △ D| = |D1| + |D2| + · · · + |Dn| = d + (n − 1)c.

Therefore n = 1 and C △ D is a circuit ofM .
To prove the second part of this lemma, observe that

2|C ∩ D| = |C | + |D| − |C △ D| = c + d − d = c

and the result follows. �

We now prove the first main result of the paper.

Proof of Theorem 1.2. We argue by contradiction. Suppose this result is not true and choose a
counterexample (M, T ) such that |E(M)| is minimum. Consider the connected matroid N = M \ T .
It follows again from [12, Section 10.2, Exercise 2] that N is a circuit or N has a deletable series class
T ′. In the latter case the choice of (M, T ) implies that the result holds for the pair (N, T ′). Therefore
N is a circuit or N is a c

2 -subdivision of U1,n, for some n ≥ 3, or N is a c
2r -subdivision of PG(r, 2)∗ or

AG(r + 1, 2)∗, for some r ≥ 2. (Note that Murty’s result holds from this observation when c = d.) If
N is a circuit, then (i) follows for n = 3. Choose a circuit C ofM such that T ⊆ C .

First, assume thatN is a c
2 -subdivision ofU1,n, for some n ≥ 3. Let S1, S2, . . . , Sn be the series classes

of N . The cycle space of M is spanned by the cycle space of N together with a circuit C of M such that
T ⊆ C . For i ∈ {1, 2, . . . , n}, let Xi = Si ∩ C . We may reorder S1, S2, . . . , Sn so that

|X1| ≥ |X2| ≥ · · · ≥ |Xn|.

Observe that

d = |C | = |T | + |X1| + |X2| + · · · + |Xn|. (2)

Suppose that X2 = X3 = · · · = Xn = ∅. As M is connected, it follows that X1 ≠ ∅. By Lemma 4.1,
|X1| = |C ∩ (S1 ∪ S2)| =

c
2 and so X1 = S1. Therefore T ∪ S1, S1 ∪ S2, S2 ∪ S3, . . . , Sn−1 ∪ Sn span both

the cycle spaces ofM and H , where H is a subdivision of U1,n+1 having series classes T , S1, S2, . . . , Sn.
Thus M = H . Hence (i) follows.

Now we assume that it is not true that X2 = X3 = · · · = Xn = ∅. There is an m such that Xm ≠ ∅

and, when m ≠ n, Xm+1 = ∅. It follows from the assumption that m ≥ 2. Choose a 2-element subset
{i, j} of {1, 2, . . . , n} such that i ≤ m. By Lemma 4.1,

|Xi| + |Xj| = |Xi ∪ Xj| =
c
2

(3)

because Xi ∪ Xj = (Si ∪ Sj) ∩ C .
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Now, we show that m = n. If m < n, then, by (3) applied to {i, j} = {m,m + 1}, |Xm| =
c
2 and so

|Xi| ≥
c
2 , for every i ≤ m; a contradiction to (3) (recall that m ≥ 2). Hence m = n. By (3) applied to

each 2-element subset of {1, 2, . . . , n}, we conclude that |X1| = |X2| = · · · = |Xn| =
c
4 . We have (ii),

when n ≥ 4, and (iii), when n = 3. (That is, M is a T -extension of N .)
Now, suppose that N is a c

2r -subdivision of PG(r, 2)∗ or AG(r + 1, 2)∗, for some r ≥ 2. We consider
two subcases. First, assume that C ∩ D = ∅, for some D ∈ C(N). In this subcase we establish that (iv)
occurs. Now we prove that D is the unique circuit of N avoiding C . Assume that D′′

≠ D is a circuit of
N such that D′′

∩C = ∅. Hence |D∩D′′
| =

c
2 because N is isomorphic to c

2r -subdivision of PG(r, 2)∗ or
AG(r +1, 2)∗, for some r ≥ 2. Let D′ be a circuit ofM such that D′

∩ (D∩D′′) ≠ ∅ and D′
∩C ≠ ∅. Such

a circuit D′ exists because in either PG(r, 2)∗ or AG(r + 1, 2)∗ we can choose any two elements and
construct a circuit containing both, and C ∩ E(N) ≠ ∅. Then the structure of the circuits of PG(r, 2)∗
and AG(r+1, 2)∗ imply that |D′

∩D| = |D′
∩D′′

| =
c
2 and |D′

∩D∩D′′
| =

c
4 . Hence |D′

−(D∪D′′)| =
c
4 .

We arrive at a contradiction because, by Lemma 4.1, |D′
∩ C | =

c
2 . Thus D is the unique circuit of N

avoiding C . Next, we prove that E(N)−D ⊆ C . Consider any series class S ofN such that S∩D = ∅. It is
enough to show that S ⊆ C . LetD′ be a circuit ofN such that S ⊆ D′ andD′

∩D ≠ ∅. So |D∩D′
| =

c
2 . But

C∩D′
≠ ∅ becauseD ≠ D′ and so, by Lemma4.1, |C∩D′

| =
c
2 . As |D′

| = c and C∩D′,D∩D′ are disjoint
subsets of D′ with cardinality c

2 , it follows that {C ∩ D′,D ∩ D′
} partition D′ and so C ∩ D′

= D′
− D.

In particular, S ⊆ C . Thus E(N) − D ⊆ C . Hence C = [E(N) − D] ∪ T , and E(N) − D is not a circuit
of N . Therefore N is isomorphic to a c

2r -subdivision of PG(r, 2)∗ and so M is obtained from a matroid
isomorphic to a c

2r -subdivision of AG(r + 1, 2)∗ by replacing a series class by T . Thus case (iv) occurs.
Now, we consider the second case. Set XS = C ∩ S, for every S ∈ S(N). As C △ D is a circuit of M ,

for every D ∈ C(N), it follows that

0 = |C | − |C △ D| =

−
S∈S(N):S⊆D

[|XS | − |S − XS |].

By Lemma 2.1, |XS | = |S −XS |, for every S ∈ S(N). ThereforeM is a T -extension of N . Thus Lemma 3.2
implies that (iii) or (v) occurs. �

5. Odd circumference case

We determine the connected binary matroids having a spectrum of size two in this section in the
special case that the largest circuit size is odd. First we give two interesting lemmas.

Lemma 5.1. Let c, d ∈ Z+ with c < d and d odd. If M is a connected binary matroid with spec(M) =

{c, d}, then c is even.

Proof. The matroidM has corank exceeding one as it has at least two circuits. If X is a subset of E(M)
such that M|X is a coloopless connected matroid with corank two, then M|X is a subdivision of U1,3.
So M|X must contain an even circuit. Therefore c is even. �

Lemma 5.2. Let c, d ∈ Z+ with c < d and d odd. Suppose M is a connected binary matroid with
spec(M) = {c, d}. If C1 and C2 are circuits of M such that C1 ∩ C2 ≠ ∅, then:
(i) C1 △ C2 is a minimum size circuit of M when |C1| = |C2| = c.
(ii) C1 △ C2 is a maximum size circuit of M when {|C1|, |C2|} = {c, d}.
(iii) C1 △ C2 is a union of pairwise disjoint minimum size circuits of M when |C1| = |C2| = d.

Proof. There are pairwise disjoint circuits D1,D2, . . . ,Dn ofM such that C1 △C2 = D1 ∪D2 ∪· · ·∪Dn.
Thus

|C1| + |C2| − 2|C1 ∩ C2| = |C1 △ C2| = |D1| + |D2| + · · · + |Dn|. (4)

If |C1| = |C2| = c , then, by (4),

2c > |D1| + |D2| + · · · + |Dn| ≥ nc.

Hencen = 1 and so C1△C2 is a circuit ofM . Observe that |C1△C2| is even by (4). Therefore |C1△C2| = c.
Hence (i) holds.
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If |C1| = c and |C2| = d, then, by (4), |C1 △ C2| is odd. By (4), there is i ∈ {1, 2, . . . , n} such that |Di|

is odd, say |D1| = d. Again, by (4),

c + d > c + d − 2|C1 ∩ C2| = |D1| + |D2| + · · · + |Dn| ≥ d + (n − 1)c.

Hence n = 1 and (ii) follows.
If |C1| = |C2| = d, then, by (4), |C1 △ C2| is even and an even number of Di has maximum size.

Again, by (4),

2d > d + d − 2|C1 ∩ C2| = |D1| + |D2| + · · · + |Dn|

and so at most one Di have maximum size. Thus no Di has maximum size and (iii) follows. �

Lemma 5.3. Let c, d ∈ Z+ with c < d and d odd. Suppose M is a connected binary matroid with
spec(M) = {c, d}. If C is the family of minimum size circuits of M, then:

(i) There is a binary matroid N over E(M) such that C(N) = C.
(ii) The cycle space of M is spanned by the cycle space of N together with any maximum size circuit of M.

Moreover, if N1,N2, . . . ,Nn are the connected components of N with non-zero corank and N0 is the set
of coloops, then there are matroids M0,M1, . . . ,Mn such that:

(iii) E(Mi) ∩ E(Mj) = {e}, for every 2-element subset {i, j} of {0, 1, . . . , n};
(iv) Ni = Mi \ e, for every i ∈ {1, 2, . . . , n};
(vi) E(M0) = L∗

∪ e ∈ C(M0), where L∗ is the set of coloops of N;
(vii) for i ∈ {1, 2, . . . , n}, {e} is a series class of Mi, all the other series class of Mi has size li and the

cosimplification of Mi is isomorphic to

(a) U1,ni , for some ni ≥ 3, where c = 2li; or
(b) PG(ri, 2)∗, for some ri ≥ 2, where c = 2ri li; or
(c) AG(ri, 2)∗, for some ri ≥ 3, where c = 2ri−1li; or
(d) S∗

ni , for some ni ≥ 4, and e is the tip of Sni , where c = 4li;
(e) B(ri, 2)∗, for some ri ≥ 3, and e corresponds to the cotip, where c = 2ri li; and

(viii) M = S(M0,M1, . . . ,Mn)/e.

Proof. Observe that (i) is a consequence of Lemma 5.2(i). Now, we establish (ii). Fix a maximum size
circuitC ofM .Weneed toprove that {C}∪C spans the cycle space ofM . It is enough to show that {C}∪C
spans any maximum size circuit D ofM . If C ∩D ≠ ∅, then the result follows from Lemma 5.2(iii). We
may assume that C ∩ D = ∅. There is a circuit C ′ofM meeting both C and D because M is connected.

If C ′ is even, then C △ C ′ is an maximum size circuit ofM , by Lemma 5.2(ii). But C △ C ′ is spanned
by {C} ∪ C. By Lemma 5.2(iii), (C △ C ′) △ D is spanned by C. Hence D is spanned by {C} ∪ C.

If C ′ is odd, then, by Lemma 5.2(iii), both C △ C ′ and C ′
△ D are spanned by C. Therefore C △ D =

(C △ C ′) △ (C ′
△ D) is spanned by C. Thus D is spanned by {C} ∪ C. Thus (ii) holds.

Let Ki be the binary matroid whose ground set is E(Ni)∪C ∪ e andwhose cycle space is spanned by
the circuits ofNi togetherwith C∪e. SetMi = Ki/[C−E(Ni)]. Observe thatM = S(M0,M1, . . . ,Mn)/e.
Note that the cycle space of S(M0,M1, . . . ,Mn) is spanned by C(N1) ∪ · · · ∪ C(Nn) = C together
with ∪

n
i=0[(C ∩ E(Ni)) ∪ e] = C ∪ e. As every circuit of Ni has size c and every circuit of Mi that

contains e must have the same size, it follows, by Theorem 1.2, that Mi is as described in (vii). The
result follows. �

Proof of Theorem 1.3. Theproof of the reverse direction of the theoremstatement is straightforward.
The forward direction of the theorem statement follows from Lemma 5.3. �
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6. An example

We next give some examples to show that the problem of finding all connected binary matroids
with a circuit-spectrum of size two is very complex. In particular, the following proposition together
with Theorem 1.1 allows us to construct many such matroids.

Proposition 6.1. If c, d ∈ Z+, then there exists a connected binary matroid with spec(M) = {2c,
d|E(Z)|}, where Z is a connected binary matroid with spec(M) = {c}.

Proof. LetN be a coloopless simple binarymatroidwith spec(N) = {c}whose connected components
N1, N2, . . ., Nk have the same size. Suppose H is a connected binary matroid on {1, 2, . . . , k} with
spec(H) = {d}. We next construct the matroid M . Add an element e′ in series with each element e
of N to obtain the matroid N ′. Each circuit of N ′ has size 2c. For a subset A of {1, 2, . . . , k}, we set
XA = ∪i∈A E(Ni). Note that XA △ XB = XA△B, where A and B are subsets of {1, 2, . . . , k}.

Let M be the binary matroid whose cycle space is spanned by C(N ′) ∪ {XC : C ∈ C(H)}. If C is a
circuit ofM , then there are circuits C1, C2, . . . , Cm of N ′ and circuits D1,D2, . . . ,Dn of H such that

C = (C1 △ C2 △ · · · △ Cm) △ (XD1 △ XD2 · · · △ XDn).

This identity can be rewritten as

C = (C1 △ C2 △ · · · △ Cm) △ (XD1△D2△···△Dn).

If D1 △ D2 △ · · · △ Dn = ∅, then C is a circuit of N ′. In this case, C has 2c elements. We may
assume that D1 △ D2 △ · · · △ Dn ≠ ∅. The symmetric difference D1 △ D2 △ · · · △ Dn is a union of
disjoint circuits of H . However, since for all i ∈ {1, 2, . . . ,m}, Ci ⊆ N ′

j for some j ∈ {1, 2, . . . , k}, if
(C1 △ C2 △ · · · △ Cm) △ XD1△D2△···△Dn is a circuit, then D1 △ D2 △ · · · △ Dn must also be a circuit as
otherwise (C1 △ C2 △ · · · △ Cm) △ XD1△D2△···△Dn would be a union of disjoint circuits by the definition
of the cycle space ofM . Denote D1 △ D2 △ · · · △ Dn by D. Then

C = (C1 △ C2 △ · · · △ Cm) △ XD. (5)

Choose C1, C2, . . . , Cm so that this identity holds andm is as small as possible. Then C1, C2, . . . , Cm are
pairwise disjoint by the choice ofm.

We show, by induction on n, that

(C1 △ C2 △ · · · △ Cn) △ XD

meets each series class of N ′

i in exactly half of its elements, when i ∈ D, and avoids each series class
of N ′

i , when i ∉ D. In particular, the cardinality of this set is equal to−
i∈D

|E(Ni)| = |D||E(N1)| = d|E(N1)|,

where the first equality follows by (5). Takingm = n, we obtain the cardinality of C .
If n = 0, then the result holds. Suppose that the result holds for n − 1. Assume that Cn is a circuit

of Ni. Note that i ∈ D because Ci ∩ XD ≠ ∅. As i ∈ D and every series class S of N ′

i is contained in Cn or
avoids Cn, it follows that

S ∩ [(C1 △ · · · △ Cn) △ XD] = S ∩ [(C1 △ · · · △ Cn−1) △ XD],

when S avoids Cn, and

S ∩ [(C1 △ · · · △ Cn) △ XD] = S − (S ∩ [(C1 △ · · · △ Cn−1) △ XD]),

when S meets Cn. The result follows by induction because |S| = 2|S ∩ (C1 △ . . . △ Cn−1)|. �

The statement of Proposition 6.1 is particularly attractive if, for example, c = 2r−1l and the
components Ni chosen in the proof are all isomorphic to either an l-subdivision of AG(r, 2)∗, where
r ≥ 3, or are isomorphic to a 2r−2l-subdivision of U1,4. In this case |E(N1)| = 2c so that the matroid
M produced will have spec(M) = {2c, 2cd}.
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Note that M(K3,n), for n ≥ 3, is a 3-connected graphic matroid having circuits whose sizes are
equal to 4 and 6 only.

We end by giving another example that shows that the problem in general is complex. Let {C1, C2}

be a partition of the circuits of F∗

7 . Then there are even integers c1 and c2 satisfying c1 < c2 and a
subdivision of F∗

7 such that |C | = ci for every circuit C that is a subdivision of a circuit in Ci. This may
be true for the dual of other projective geometries, but to prove this we need to find positive integers
c1 and c2 such that the solutions for the system are positive integers:−

e∈Ci

xe = ci,

for every Ci ∈ Ci and i ∈ {1, 2}. Note that the systemhas integer solutionswhen c1 and c2 aremultiples
of the determinant of the system; however these integers may not be positive.
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