270,842 research outputs found

    Manipulating the Label Space for In-Context Classification

    Full text link
    After pre-training by generating the next word conditional on previous words, the Language Model (LM) acquires the ability of In-Context Learning (ICL) that can learn a new task conditional on the context of the given in-context examples (ICEs). Similarly, visually-conditioned Language Modelling is also used to train Vision-Language Models (VLMs) with ICL ability. However, such VLMs typically exhibit weaker classification abilities compared to contrastive learning-based models like CLIP, since the Language Modelling objective does not directly contrast whether an object is paired with a text. To improve the ICL of classification, using more ICEs to provide more knowledge is a straightforward way. However, this may largely increase the selection time, and more importantly, the inclusion of additional in-context images tends to extend the length of the in-context sequence beyond the processing capacity of a VLM. To alleviate these limitations, we propose to manipulate the label space of each ICE to increase its knowledge density, allowing for fewer ICEs to convey as much information as a larger set would. Specifically, we propose two strategies which are Label Distribution Enhancement and Visual Descriptions Enhancement to improve In-context classification performance on diverse datasets, including the classic ImageNet and more fine-grained datasets like CUB-200. Specifically, using our approach on ImageNet, we increase accuracy from 74.70\% in a 4-shot setting to 76.21\% with just 2 shots. surpassing CLIP by 0.67\%. On CUB-200, our method raises 1-shot accuracy from 48.86\% to 69.05\%, 12.15\% higher than CLIP. The code is given in https://anonymous.4open.science/r/MLS_ICC

    Compositional Morphology for Word Representations and Language Modelling

    Full text link
    This paper presents a scalable method for integrating compositional morphological representations into a vector-based probabilistic language model. Our approach is evaluated in the context of log-bilinear language models, rendered suitably efficient for implementation inside a machine translation decoder by factoring the vocabulary. We perform both intrinsic and extrinsic evaluations, presenting results on a range of languages which demonstrate that our model learns morphological representations that both perform well on word similarity tasks and lead to substantial reductions in perplexity. When used for translation into morphologically rich languages with large vocabularies, our models obtain improvements of up to 1.2 BLEU points relative to a baseline system using back-off n-gram models.Comment: Proceedings of the 31st International Conference on Machine Learning (ICML

    Improving Language Modelling with Noise-contrastive estimation

    Full text link
    Neural language models do not scale well when the vocabulary is large. Noise-contrastive estimation (NCE) is a sampling-based method that allows for fast learning with large vocabularies. Although NCE has shown promising performance in neural machine translation, it was considered to be an unsuccessful approach for language modelling. A sufficient investigation of the hyperparameters in the NCE-based neural language models was also missing. In this paper, we showed that NCE can be a successful approach in neural language modelling when the hyperparameters of a neural network are tuned appropriately. We introduced the 'search-then-converge' learning rate schedule for NCE and designed a heuristic that specifies how to use this schedule. The impact of the other important hyperparameters, such as the dropout rate and the weight initialisation range, was also demonstrated. We showed that appropriate tuning of NCE-based neural language models outperforms the state-of-the-art single-model methods on a popular benchmark

    Topically Driven Neural Language Model

    Full text link
    Language models are typically applied at the sentence level, without access to the broader document context. We present a neural language model that incorporates document context in the form of a topic model-like architecture, thus providing a succinct representation of the broader document context outside of the current sentence. Experiments over a range of datasets demonstrate that our model outperforms a pure sentence-based model in terms of language model perplexity, and leads to topics that are potentially more coherent than those produced by a standard LDA topic model. Our model also has the ability to generate related sentences for a topic, providing another way to interpret topics.Comment: 11 pages, Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017) (to appear

    The Construction of Verification Models for Embedded Systems

    Get PDF
    The usefulness of verification hinges on the quality of the verification model. Verification is useful if it increases our confidence that an artefact bahaves as expected. As modelling inherently contains non-formal elements, the qualityof models cannot be captured by purely formal means. Still, we argue that modelling is not an act of irrationalism and unpredictable geniality, but follows rational arguments, that often remain implicit. In this paper we try to identify the tacit rationalism in the model construction as performed by most people doing modelling for verification. By explicating the different phases, arguments, and design decisions in the model construction, we try to develop guidelines that help to improve the process of model construction and the quality of models
    • ā€¦
    corecore