1,120 research outputs found

    Discussion of the technology and research in fuel injectors common rail system

    Get PDF
    Common rail is one of the most important components in a diesel and gasoline direct injection system. It features a high-pressure (100 bar) fuel rail feeding solenoid valves, as opposed to a low-pressure fuel pump feeding unit injectors. Third-generation common rail diesels now feature piezoelectric injectors for increased precision, with fuel pressures up to 2,500 bar. The purpose of this review paper is to investigate the technology and research in fuel injectors common rail system. This review paper focuses on component of common rail injection system, pioneer of common rail injection, characteristics of common rail injection system, method to reduce smoke and NOx emission simultaneously and impact of common rail injection system. Based on our research, it can be concluded that common rail injection gives many benefit such as good for the engine performance, safe to use, and for to reduce the emission of the vehicle. Fuel injection common rail system is the modern technology that must be developed. Nowadays, our earth is polluting by vehicle output such as smoke. If the common rail system is developed, it can reduce the pollution and keep our atmosphere clean and safe

    A unified analysis of PWM converters in discontinuous modes

    Get PDF
    Three discontinuous operating modes of PWM (pulsewidth modulated) converters are considered: the discontinuous inductor current mode (DICM), the discontinuous capacitor voltage mode (DCVM), and a previously unidentified mode called the discontinuous quasi-resonant mode (DQRM). DC and small-signal AC analyses are applicable to all basic PWM converter topologies. Any particular topology is taken into account via its DC conversion ratio in the continuous conduction mode. The small-signal model is of the same order as the state-space averaged model for the continuous mode, and it offers improved predictions of the low-frequency dynamics of PWM converters in the discontinuous modes. It is shown that converters in discontinuous modes exhibit lossless damping similar to the effect of the current-mode programming

    Spectral modeling of switched-mode power converters in discontinuous conduction mode

    Get PDF
    Analytical spectral modeling of switched-mode PWM converters, operating in the discontinuous conduction mode, is presented. The modeling approach is to derive analytical expressions of the converter output response using the extended Volterra functional series. Nonlinear frequency responses, including additional DC offset as well as significant subharmonic and higher harmonic components, due to large-signal perturbations of both the duty ratio and source voltage, are investigated. Their vulnerability to switching frequencies are also described. This modeling approach has been applied to various PWM converters, boost, buck and buck-boost types, operating in the discontinuous conduction mode, and the results are verified.published_or_final_versio

    Multi-harmonic Modeling of Low-power PWM DC-DC Converter

    Get PDF
    Modeling and simulation of switched-mode Pulse Width Modulated (PWM) DC-DC converters form an essential ingredient in the analysis and design process of integrated circuits. In this research work, we present a novel large-signal modeling technique for low-power PWM DC-DC converters. The proposed model captures not only the time-averaged response within each moving switching cycle but also high-order harmonics of an arbitrary degree, hence modeling both the average component and ripple very accurately. The proposed model retains the inductor current as a state variable and accurately captures the circuit dynamics even in the transient state. By continuously monitoring state variables, our model seamlessly transitions between the continuous conduction mode (CCM) and discontinuous conduction mode (DCM), which often occurs in low-power applications. The nonlinearities of devices are also considered and efficiently evaluated resulting in a significant improvement in model accuracy. With a system decoupling technique, the DC response of the model is decoupled from higher-order harmonics, providing additional simulation speedups. For a number of converter designs, the proposed model obtains up to 10x runtime speedups over transistor-level transient simulation with a maximum output voltage error less than 4%

    Dynamic modeling of pwm and single-switch single-stage power factor correction converters

    Get PDF
    The concept of averaging has been used extensively in the modeling of power electronic circuits to overcome their inherent time-variant nature. Among various methods, the PWM switch modeling approach is most widely accepted in the study of closed-loop stability and transient response because of its accuracy and simplicity. However, a non-ideal PWM switch model considering conduction losses is not available except for converters operating in continuous conduction mode (CCM) and under small ripple conditions. Modeling of conductor losses under large ripple conditions has not been reported in the open literature, especially when the converter operates in discontinuous conduction mode (DCM). In this dissertation, new models are developed to include conduction losses in the non-ideal PWM switch model under CCM and DCM conditions. The developed model is verified through two converter examples and the effect of conduction losses on the steady state and dynamic responses of the converter is also studied. Another major constraint of the PWM switch modeling approach is that it heavily relies on finding the three-terminal PWM switch. This requirement severely limits its application in modeling single-switch single-stage power factor correction (PFC) converters, where more complex topological structures and switching actions are often encountered. In this work, we developed a new modeling approach which extends the PWM switch concept by identifying the charging and discharging voltages applied to the inductors. The new method can be easily applied to derive large-signal models for a large group of PFC converters and the procedure is elaborated through a specific example. Finally, analytical results regarding harmonic contents and power factors of various PWM converters in PFC applications are also presented here

    A unified hybrid model with two level networks for peak current mode controlled buck-boost converters operating in DCM and CCM

    Full text link
    Theis paper presents a unified hybrid model with two level networks for peak current mode controlled buck-boost converters operating in continuous conduction mode (CCM) and discontinuous conduction mode (DCM). It is a network model with two levels in which both a detailed switching model and a small signal average model are included correspondingly. The nonlinearity of some electronic components and the parasitical effects of circuit elements are considered. The nonlinear inductance is calculated by finite element analysis (FEA). The dynamical performance of the buck-boost converter can be obtained from the detailed switching model in the first level network, and then the frequency domain performance can be obtained from the average model in the second level network. As an automatic mechanism of exchanging data between two models is proposed, all the performances can be obtained automatically. By implementing the proposed model in Simulink surrounding, both the large signal transient performance and the frequency domain behavior of converters are obtained efficiently

    One-cycle control of switching converters

    Get PDF
    A new large-signal nonlinear control technique is proposed to control the duty-ratio d of a switch such that in each cycle the average value of a switched variable of the switching converter is exactly equal to or proportional to the control reference in the steady-state or in a transient. One-cycle control rejects power source perturbations in one switching cycle; the average value of the switched variable follows the dynamic reference in one switching cycle; and the controller corrects switching errors in one switching cycle. There is no steady-state error nor dynamic error between the control reference and the average value of the switched variable. Experiments with a constant frequency buck converter have demonstrated the robustness of the control method and verified the theoretical predictions. This new control method is very general and applicable to all types of pulse-width-modulated, resonant-based, or soft-switched switching converters for either voltage or current control in continuous or discontinuous conduction mode. Furthermore, it can be used to control any physical variable or abstract signal that is in the form of a switched variable or can be converted to the form of a switched variable
    • …
    corecore