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Spectral Modeling of Switched-Mode Power Converters 
in Discontinuous Conduction Mode 

K.T. Chau*, C.F. Lamt and C.C. Chan* 
* The University of Hong Kong, Hong Kong ' Tuen Mun Technical Institute, Hong Kong 

Abstract - Analytical spectral modeling of switched-mode PWM 
converters, operating in the discontinuous conduction mode, is 
presented. The modeling approach is to derive analytical 
expressions of the converter output response using the extended 
Volterra functional series. Nonlinear frequency responses, 
including additional DC offset as well as significant subharmonic 
and higher harmonic components, due to large-signal 
perturbations of both the duty ratio and source voltage, are 
investigated. Their vulnerability to switching frequencies are also 
described. This modeling approach has been applied to various 
PWM converters, boost, buck and buck-boost types, operating in 
the discontinuous conduction mode, and the results are verified. 

I. INTRODUCTION 

Due to the switching nature of power converters, their 
dynamical behavior is inherently nonlinear. Although a 
number of small-signal modeling techniques have been 
developed to assess their small-signal frequency responses and 
dynamical stability, these techniques can neither handle large- 
signal frequency responses nor predict spectral contamination. 
Moreover, linear system theory such as superposition theorem 
can no longer be used for multiple independent inputs with 
large-signal perturbations. 

In 1991, the classical Volterra functional series was firstly 
applied to model the control-to-output response of switched- 
mode boost PWM converters [ I]. Instead of being confined to 
single-input single-output converters, the Volterra functional 
series was extended in a new way and applied to the nonlinear 
modeling of switched-mode boost PWM converters with 
multiple independent inputs and the spectral modeling of 
various switched-mode PWM converters [2]. However, these 
papers have made the same assumption that the converter must 
operate in the continuous conduction mode. In this mode of 
operation, the inductor current is always positive and only two 
topological stages exist. Switching between stages depends 
only on the externally-controlled duty ratio. Once the 
continuous conduction mode can be maintained by adopting a 
sufficiently high switching frequency or large inductance, the 
switching frequency has no influence on the converter 
dynamical performance. 

Either due to design or because of light load, the converter 
can operate in the discontinuous conduction mode. In this 
mode of operation, there are three topological stages in which 
the additional stage is due to the fact that the inductor current 
becomes zero before the end of switching period. Thus, there is 

a problem that switching between stages not only depends on 
the extemally-controlled duty ratio but also on the intemal 
circuit parameters. 

It is the purpose of this paper to further extend the 
application of Volterra functional series to the spectral 
modeling of switched-mode power converters operating in the 
discontinuous conduction mode. Analytical spectral models of 
various PWM converters are derived. 
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The derivation of Volterra transfer functions for nonlinear 
systems with multiple independent inputs in [2] is applicable to 
this paper because it is independent of the modes of operation. 
Without duplicating the corresponding derivation while 
maintaining the readability, the Volterra model of switched- 
mode PWM converters is shown in Fig. 1. In this model, 
superscripts a and b represent input perturbations of the duty 
ratio and source voltage, respectively, Hf and H: are the 

1st-order Volterra transfer functions, Hy , H:h and H," are 

the 2nd-order transfer functions, and H y  , H!hh, H Y b  and 

H3abh are the 3rd-order functions. Hf , H! , H Y ,  H2hb, 

H Y  and H3hbh are for describing the individual contribution 

of each input to the output response, while H;', H Y h  and 

H:bb are for the interaction of two inputs to affect the output 
response. In general, the frrst three orders are sufficient to 
represent the output response. The higher-order transfer 
functions can similarly be derived with ever increasing tedium. 

Also, the derivation of spectral frequency responses of 
switched-mode PWM converters in [2] is applicable to this 
paper. Although the detailed derivation is omitted, the general 
expressions of the 1st- and 2nd-order responses are listed in 
Table I, where A, and B, are complex amplitudes of the zth 

tone of a and b, respectively, A,* and B,* are their conjugates, 

and A!*) and B r )  are their optional conjugates corresponding 
to the minus sign of +sai and +S,!,j, respectively. It should be 
noted that when a negative frequency is encountered, the 
complex conjugation of its amplitude becomes a realistic 
amplitude because of the general properties 

H,(-s,;..,-s,) = H,( ( S I , . . . ,  s,) * 
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THE IST- AND 2ND-ORDER RESPONSES 
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111. SPECTRAL MODELING 

Since the PWM boost, buck and buck-boost converters are 
the basic converters fiom which the other converters are 
derived, the spectral modeling approach is exemplified using 
these basic converters. As shown in Fig. 2, these converters 
consist of the same circuit elements: power switch S, power 
diode D, inductor L, capacitor C and resistor R. All parasitics 
such as equivalent series resistances, junction capacitances and 
stray inductances are neglected to simpli.fy the derivation and 
explanation. In fact, these parasitics can be included with 
increasing complexity. The input excitations are the duty ratio 
d,  and source voltage v g ,  while the output response is the 
output voltage V ,  . 

Fig, 3 shows a general inductor current i, waveform of 
these converters operating in the discontinuous conduction 
mode. Each switching period T, is divided into three stages: 
the 1st stage corresponds with S on and D off, the 2nd stage 
with S off and D on, and the 3rd stage with S off and D off. 
Their intervals are denoted as dlTs,  d,T, and d,?, 
respectively [3]. 

L i ,  D 
N 

S D 

(c) 
Fig. 2 PWM converters: (a) boost (b) buck (c) buck-boost 
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Fig. 3 Inductor current in discontinuous conduction mode 
T s  

A. Boost Converter 

Firstly, a continuous-time large-signal model describing the 
converter dynamical behaviour is formulated using the well- 
known state-space averaging technique. This technique is valid 
when the converter natural fiequencies are all well below its 
switching frequency, which is the case for a practical PWM 
converter with switching frequencies ranging from tens of 
kilohertz to hundreds of kilohertz. The resulting time-invariant 
model is given by 
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where x = E L  
D , ,  D, and D3 are given by 

v,IT is the state vector, and C,, C,,  C , ,  

T 

D l = [ +  O ] T  D 2 = [ i  01 D3=[O OlT 
In order to express V ,  in terms of d,  and vg  analytically, 

those dependent variables d, and d3 have to be rewritten. 
Since the summation of intervals d,T , ,  d,T, and d3T, must 
equal T, , this relationship can be expressed as 

Since i, does not have free boundary conditions, but fixed at 
zero, a constraint can be expressed as 

which follows that i, ceases to be a true state-space variable. 
Since a perturbation of the instantaneous i, causes a 
perturbation of the average i, , the average i, is the quantity 
which reflects the effect of the introduced perturbation. Thus, a 
second constraint can be obtained from the converter circuit 
itself and is given by 

dl + d2 + d3 = 1 (3) 

i, = O  (4) 

( 5 )  
v g  i, =- dl r, 

By substituting (2)-(5) into (l), the desired large-signal 
dynamical equation describing the converter output voltage 
response can be obtained as 

d f v i T s  -- vo ;(, = 
2CL(v, - v g )  CR 

Perturbations in the input excitations d, and vg cause a 

perturbation in the output response V ,  . Thus 

d ,  = Zl + Jl 
vg = vg  + vg 

v ,  = V(J + V(, 
(7) 

- -  

where the steady-state and perturbed quantities are indicated 
with a bar and a tilde, respectively. By substituting (7) into (6) ,  
and using the fact that is always zero, (6) can be rewritten 
as 

By equating the steady-state quantities in (S), the steady-state 
output voltage can be obtained as 

(9) 

where z = T,R / L is the dimensionless ratio of switching 
period to time constant. 

Having obtained the dynamical equation of the converter 
output voltage, the nth-order Volterra transfer functions can be 
determined by using the probing method [4]. In order to 
determine the first three Volterra transfer functions, the input 
excitations are represented by three-exponential expressions 

i=l 
3 - v g  = b(t)  = c exp(shit) 

i=l 

and the resulting output response is represented by 

i=l i=l 

i= l  j=i 

1 7  

5 - 4 1  

3 3 3  

( 1  1) 
By substituting (10) and (11) into (S), and equating relevant 
exponentials, the corresponding coefficients can be obtained as 
MP(s) =zd,6; /D,(s) 

M: (s) = (6, + z q i Q  / D, (s) 

D, (s) = (26, - V g )  + CR(V, - V g ) s  

M2"a(s1, s2) = (ZVg" -. ..) / D, (s, , s2) 

(12) 

M i b  (sl ,s2) = ( z q  +-..) / D, (s, , s,) 
M,"h(s,, s,) = (2zd,Vg +. ..) / D, (sl  ,s, ) 

D2 (si, ~2 ) = (2V, - Fg) + CR(6, - Vg) ( s ,  + ~2 ) 

Similarly for M T  , M y ,  M Y b  and Mfbb 
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Since the Volterra transfer functions that differ only by the 
permutations of their arguments are lumped together to form 
the coefficient of a particular exponential, the first three 
symmetrized Volterra transfer functions can be expressed as 
H f ( s )  = Mp(s)  

H;(s)  = M [ ( s )  . 
H,aa(s1,s2) = M,aa(s,,s,)/2 

2 ( 12s2)  = @ ( S l J 2 ) / 2  

H2"6 (SI , s 2  1 = MTb ($1 3 s2 1 
(16) 

H y  (SI ~ ~ 2 ,  $3) = M y  (si, ~ 2 ,  ~ 3 )  / 6 

H!6b (SI, ~ 2 ,  ~ 3 )  = (SI ,s2 , s3 )  / 6 
(17) 

H p  (SI ,s2 ,s3) = M3""h (SI , s 2 ,  s3) / 2  

Hf"' (SI, s2 ,  s3) = Mfbh (sl, s2 ,  s3) / 2  
which are used to construct the Volterra model of the boost 
converter operating in the discontinuous conduction mode. 

IV. MODELING RESULTS 
B. Buck Converter 

Similar to those derivations for the boost converter, the 
desired large-signal dynamical equation can be obtained as 

By perturbing (18) and then separating the steady-state and 
perturbed quantities, the following equations can be obtained 
which describe the Volterra model of the buck converter 
operating in the discontinuous conduction mode. 

v ,  = (19) 
- 

1+ ;% l + T  

MP (s )  = 2 4 v g  (Vg - vo ) / D, ( s )  

MP(s) =#(2Vg - v , ) / D , ( s )  (20) 

Dl(s )  = ( d ? V g  +4Vo)+2CRV,s 

M F  ($1, ~2 ) = (22Vg (V, - V ,  )-.*.) / D2 (s, , $2 ) 

M i h  (SI, ~ 2 )  = (222; -.-.) / D2 (8, , s 2 )  

M , " b ( ~ 1 , ~ 2 )  = (2d1(2V ,  -V,)-...)/ D 2 ( s l , s 2 )  

D2(s , , s2 )  = ( d ; V g  +4V,)+2CRVo(sl + s 2 )  

(21) 

Similarly for M y ,  M F b  and (22) 

C. Buck-Boost Converter 

Similarly, the corresponding equations for the buck-boost 
converter operating in the discontinuous conduction mode are 
given by 

In order to evaluate the converter nonlinear dynamical 
performance, both the duty ratio and source voltage excitations 
are incorporated with large-signal perturbations which are 
given by 
d, = 0.5 + 0.1  COS(^^ 200t) + 0.05 ~ 0 4 2 7 ~  300t + n / 2 )  
v g  = 20 + 4 C O S ( ~ X  600t + 7 ~ )  + 2  COS(^^ 700t + 3n / 2)  V (28) 
The converter parameters are selected as L = 50 pH, 
C =  10 pF, R =  100 SZ and f ,  =50 kHz in such a way that 
the converter can operate in the discontinuous conduction 
mode. Moreover, another typical switching frequency 
f ~ = 10 kHz is adopted to investigate the vulnerability of the 
converter output response to different switching frequencies. In 
order to compare the dynamical performance among the boost, 
buck and buck-boost converters, their input excitations and 
circuit parameters are kept unchanged. 

By using (9) and (12)-(17), the output voltage response of 
the boost converter due to the excitations given by (28) can be 
obtained. Spectral components, including both DC and AC 
terms, for two typical switching frequencies are listed in Table 
11. Furthermore, the spectral components are normalized by the 
corresponding DC term, hence the resulting spectra are shown 
in Fig. 4. Firstly, it can be found that both the spectral 
magnitudes and their normalized values depend on switching 
frequencies. Notice that they are frequency independent for all 
PWM converters operating in the continuous conduction 
mode. Secondly, it can be seen that the DC term, namely 0 Hz, 
is not only contributed by the steady-state component V ,  
resulting from (9), but also by the components (.so, - s,, ) and 

(sb, - s h r )  which are the 2nd-order responses due to the 
intermodulation of the same tone. Thirdly, apart from the 
fundamental frequency components, namely 200 Hz, 300 Hz, 
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600 Hz and 700 Hz, due to the input excitations, there are 
significant subharmonic and higher harmonic frequency 
components. These additional frequencies are due to the 
converter nonlinearity. 

Similarly, the output voltage response of the buck converter 
can be obtained by using (1 9)-(22) and (1 5)-( 17). The resulting 
spectral magnitudes are also listed in Table 11, and their 
normalized values are shown in Fig. 5. Similar to the boost 
converter, both the spectral magnitudes and their normalized 
values of the buck converter are fi-equency dependent. 
Additional DC offset as well as significant subharmonic and 
higher harmonic frequency components also exist. 

For the buck-boost converter, its output voltage response 
can be obtained by using (24)-(27) and (15)-( 17). The resulting 
spectral magnitudes are also listed in Table 11. The spectral 
magnitudes are frequency dependent, and there are additional 
DC offset as well as significant subharmonic and higher 
harmonic frequency components. However, it should be noted 
that the normalized spectral values shown in Fig. 6 are 
independent of switching frequencies. This phenomenon can 
be explained by observing that all LHS variables in (24)-(27) 
are directly proportional to & , and hence the normalized 
spectral components are independent of T, or f, . 

0.2 

0.16 

0.16- 

0.14 

0 3 0 . 1 2 -  

U 

m 
8 0.1 

E O O S -  

._ - 

’ 0.06 

0.04 

- 

+ 

- 

0 
- + 

+ 
0 

- 

- 9 

m 
P e b 6 e m O P m  

0.02 

0 a m +  

0 500 1000 1500 2 
Frequency (I+) 

0.16 

0.16 

Fig. 4 Boost converter spectra at different switching 
frequencies: ‘0’ 50 kHz; ‘+’ 10 kHz 
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TABLE I1 
OUTPUT VOLTAGE SPECTRA AT 50 AND 10 KHZ 
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Freq. Boost Buck Buck-Boost 
(Hz) (VI (VI (VI 

50k  lOk 50k 10k  50k  lOk 

0.18 

0.16 

0 56.89 
100 0.85 
200 7.79 
300 4.04 
400 1.23 
500 0.53 
600 6.09 
700 2.69 
800 0.35 
900 0.37 
1000 0.14 
1100 0.05 
1200 0.21 
1300 0.22 
1400 0.07 
1500 0.03 
1600 0.02 
1700 0.00 
1800 0.02 
1900 0.02 
2000 0.01 
2100 0.00 

- 
0 - 

~~ ~ 

110.5 17.08 
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1.41 0.06 
17.23 0.92 
8.73 0.54 
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1.05 0.21 
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0.04 0.00 
0.02 0.00 
0.00 0.00 
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V. VERIFICATION 
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To verify the proposed approach, the modeling results are 
compared with the simulated results obtained by PSpice 
simulation. The experimental verification is not carried out 
because the modeling accuracy can hardly be proved in the 
presence of inevitable experimental errors. The PSpice 
simulation involves a tedious transient analysis from start-up to 
steady-state and a Fourier analysis of the resulting transient 
waveform over a defined period. 

Based on the aforementioned input excitations and circuit 
parameters, the PSpice-simulated output voltage and inductor 
current waveforms of the boost converter operating at 50 kHz 
are shown in Fig.7(a). The inductor current waveform verifies 
that the converter operates in the discontinuous conduction 
mode. The corresponding output voltage spectrum obtained by 
PSpice simulation is marked ‘x’ and is compared with the 
modeling results marked ‘0’ as shown in Fig. 7(b). It is 
obvious that the agreement between the results is very good. 

Similarly, the PSpice-simulated inductor current 
waveforms of the buck and buck-boost converters operating 
at 50 kHz can verify their discontinuous conduction mode of 
operation as well as the accuracy and applicability of the 
modeling approach. It should be noted that the PSpice- 
simulated results are obtained at the expense of an hour while 
the modeling results can be obtained in less than a second. 
Moreover, numerical simulation can never provide an 
analytical model as given by the proposed approach. 

- 
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- 

- 
m 

VI. CONCLUSIONS 

An analytical spectral modeling approach for switched- 
mode PWM converters, operating in the discontinuous 
conduction mode, has been presented. The modeling approach 
has been successfully applied to various PWM converters, 
including the boost, buck and buck-boost, to investigate their 
spectral responses due to large-signal perturbations of both the 
duty ratio and source voltage. In the output voltage spectra of 
these converters, it can be found that there are additional DC 
offset as well as significant subharmonic and higher harmonic 
frequency components, which are omitted in small-signal 
analysis. Contrary to the frequency independence in the 
continuous conduction mode, their spectral magnitudes for the 
discontinuous conduction mode of operation are influenced by 
switching frequencies. Moreover, it is interested to note that 
the normalized spectral values of the buck-boost converter are 
independent of switching frequencies while those of the boost 
and buck converters are frequency dependent. The modeling 
results has been compared with the PSpice-simulated results, 
and hence the modeling accuracy and applicability are verified. 
The approach is so general that it can readily be extended to 
other switched-mode power converters. 
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Fig. 7 Verification of boost converter: (a) PSpice-simulated 
output voltage (upper trace) and inductor current (lower 

trace) waveforms (b) normalized output voltage spectra with 
‘0’ resulting from modelling and ‘x’ from PSpice simulation 
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