1,356 research outputs found

    Compressive Sensing-Based Grant-Free Massive Access for 6G Massive Communication

    Full text link
    The advent of the sixth-generation (6G) of wireless communications has given rise to the necessity to connect vast quantities of heterogeneous wireless devices, which requires advanced system capabilities far beyond existing network architectures. In particular, such massive communication has been recognized as a prime driver that can empower the 6G vision of future ubiquitous connectivity, supporting Internet of Human-Machine-Things for which massive access is critical. This paper surveys the most recent advances toward massive access in both academic and industry communities, focusing primarily on the promising compressive sensing-based grant-free massive access paradigm. We first specify the limitations of existing random access schemes and reveal that the practical implementation of massive communication relies on a dramatically different random access paradigm from the current ones mainly designed for human-centric communications. Then, a compressive sensing-based grant-free massive access roadmap is presented, where the evolutions from single-antenna to large-scale antenna array-based base stations, from single-station to cooperative massive multiple-input multiple-output systems, and from unsourced to sourced random access scenarios are detailed. Finally, we discuss the key challenges and open issues to shed light on the potential future research directions of grant-free massive access.Comment: Accepted by IEEE IoT Journa

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Multidimensional Index Modulation for 5G and Beyond Wireless Networks

    Get PDF
    This study examines the flexible utilization of existing IM techniques in a comprehensive manner to satisfy the challenging and diverse requirements of 5G and beyond services. After spatial modulation (SM), which transmits information bits through antenna indices, application of IM to orthogonal frequency division multiplexing (OFDM) subcarriers has opened the door for the extension of IM into different dimensions, such as radio frequency (RF) mirrors, time slots, codes, and dispersion matrices. Recent studies have introduced the concept of multidimensional IM by various combinations of one-dimensional IM techniques to provide higher spectral efficiency (SE) and better bit error rate (BER) performance at the expense of higher transmitter (Tx) and receiver (Rx) complexity. Despite the ongoing research on the design of new IM techniques and their implementation challenges, proper use of the available IM techniques to address different requirements of 5G and beyond networks is an open research area in the literature. For this reason, we first provide the dimensional-based categorization of available IM domains and review the existing IM types regarding this categorization. Then, we develop a framework that investigates the efficient utilization of these techniques and establishes a link between the IM schemes and 5G services, namely enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communication (URLLC). Additionally, this work defines key performance indicators (KPIs) to quantify the advantages and disadvantages of IM techniques in time, frequency, space, and code dimensions. Finally, future recommendations are given regarding the design of flexible IM-based communication systems for 5G and beyond wireless networks.Comment: This work has been submitted to Proceedings of the IEEE for possible publicatio

    Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems

    Get PDF
    Millimeter wave signals and large antenna arrays are considered enabling technologies for future 5G networks. While their benefits for achieving high-data rate communications are well-known, their potential advantages for accurate positioning are largely undiscovered. We derive the Cram\'{e}r-Rao bound (CRB) on position and rotation angle estimation uncertainty from millimeter wave signals from a single transmitter, in the presence of scatterers. We also present a novel two-stage algorithm for position and rotation angle estimation that attains the CRB for average to high signal-to-noise ratio. The algorithm is based on multiple measurement vectors matching pursuit for coarse estimation, followed by a refinement stage based on the space-alternating generalized expectation maximization algorithm. We find that accurate position and rotation angle estimation is possible using signals from a single transmitter, in either line-of- sight, non-line-of-sight, or obstructed-line-of-sight conditions.Comment: The manuscript has been revised, and increased from 27 to 31 pages. Also, Fig.2, Fig. 10 and Table I are adde

    Analysis of Wireless Networks With Massive Connectivity

    Get PDF
    Recent years have witnessed unprecedented growth in wireless networks in terms of both data traffic and number of connected devices. How to support this fast increasing demand for high data traffic and connectivity is a key consideration in the design of future wireless communication systems. With this motivation, in this thesis, we focus on the analysis of wireless networks with massive connectivity. In the first part of the thesis, we seek to improve the energy efficiency (EE) of single-cell massive multiple-input multiple-output (MIMO) networks with joint antenna selection and user scheduling. We propose a two-step iterative procedure to maximize the EE. In each iteration, bisection search and random selection are used first to determine a subset of antennas with the users selected before, and then identify the EE-optimal subset of users with the selected antennas via cross entropy algorithm. Subsequently, we focus on the joint uplink and downlink EE maximization, under a limitation on the number of available radio frequency (RF) chains. With the Jensen\u27s inequality and the power consumption model, the original problem is converted into a combinatorial optimization problem. Utilizing the learning-based stochastic gradient descent framework and the rare event simulation method, we propose an efficient learning-based stochastic gradient descent algorithm to solve the corresponding combinatorial optimization problem. In the second part of the thesis, we focus on the joint activity detection and channel estimation in cell-free massive MIMO systems with massive connectivity. At first, we conduct an asymptotic analysis of single measurement vector (SMV) based minimum mean square error (MMSE) estimation in cell-free massive MIMO systems with massive connectivity. We establish a decoupling principle of SMV based MMSE estimation for sparse signal vectors with independent and non-identically distributed (i.n.i.d.) non-zero components. Subsequently, using the decoupling principle, likelihood ratio test and the optimal fusion rule, we obtain detection rules for the activity of users based on the received pilot signals at only one access point (AP), and also based on the cooperation of the received pilot signals from the entire set of APs for centralized and distributed detection. Moreover, we study the achievable uplink rates with zero-forcing (ZF) detector at the central processing unit (CPU) of the cell-free massive MIMO systems. In the third part, we focus on the performance analysis of intelligent reflecting surface (IRS) assisted wireless networks. Initially, we investigate the MMSE channel estimation for IRS assisted wireless communication systems. Then, we study the sparse activity detection problem in IRS assisted wireless networks. Specifically, employing the generalized approximate message passing (GAMP) algorithm, we obtain the MMSE estimates of the equivalent effective channel coefficients from the base station (BS) to all users, and transform the received pilot signals into additive Gaussian noise corrupted versions of the equivalent effective channel coefficients. Likelihood ratio test is used to acquire decisions on the activity of each user based on the Gaussian noise corrupted equivalent effective channel coefficients, and the optimal fusion rule is used to obtain the final decisions on the activity of all users based on the previous decisions on the activity of each user and the corresponding reliabilities. Finally, we conduct an asymptotic analysis of maximizing the weighted sum rate by joint beamforming and power allocation under transmit power and quality-of-service (QoS) constraints in IRS assisted wireless networks
    • …
    corecore