
Syracuse University Syracuse University 

SURFACE at Syracuse University SURFACE at Syracuse University 

Dissertations - ALL SURFACE at Syracuse University 

Summer 7-1-2022 

Analysis of Wireless Networks With Massive Connectivity Analysis of Wireless Networks With Massive Connectivity 

Mangqing Guo 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/etd 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Guo, Mangqing, "Analysis of Wireless Networks With Massive Connectivity" (2022). Dissertations - ALL. 
1557. 
https://surface.syr.edu/etd/1557 

This Dissertation is brought to you for free and open access by the SURFACE at Syracuse University at SURFACE at 
Syracuse University. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of 
SURFACE at Syracuse University. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F1557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1557?utm_source=surface.syr.edu%2Fetd%2F1557&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Abstract

Recent years have witnessed unprecedented growth in wireless networks in terms of both

data traffic and number of connected devices. How to support this fast increasing demand

for high data traffic and connectivity is a key consideration in the design of future wireless

communication systems. With this motivation, in this thesis, we focus on the analysis of

wireless networks with massive connectivity.

In the first part of the thesis, we seek to improve the energy efficiency (EE) of single-

cell massive multiple-input multiple-output (MIMO) networks with joint antenna selection

and user scheduling. We propose a two-step iterative procedure to maximize the EE. In

each iteration, bisection search and random selection are used first to determine a subset of

antennas with the users selected before, and then identify the EE-optimal subset of users

with the selected antennas via cross entropy algorithm. Subsequently, we focus on the joint

uplink and downlink EE maximization, under a limitation on the number of available radio

frequency (RF) chains. With the Jensen’s inequality and the power consumption model,

the original problem is converted into a combinatorial optimization problem. Utilizing the

learning-based stochastic gradient descent framework and the rare event simulation method,

we propose an efficient learning-based stochastic gradient descent algorithm to solve the

corresponding combinatorial optimization problem.

In the second part of the thesis, we focus on the joint activity detection and channel esti-

mation in cell-free massive MIMO systems with massive connectivity. At first, we conduct an

asymptotic analysis of single measurement vector (SMV) based minimum mean square error

(MMSE) estimation in cell-free massive MIMO systems with massive connectivity. We es-

tablish a decoupling principle of SMV based MMSE estimation for sparse signal vectors with

independent and non-identically distributed (i.n.i.d.) non-zero components. Subsequently,



using the decoupling principle, likelihood ratio test and the optimal fusion rule, we obtain

detection rules for the activity of users based on the received pilot signals at only one access

point (AP), and also based on the cooperation of the received pilot signals from the entire set

of APs for centralized and distributed detection. Moreover, we study the achievable uplink

rates with zero-forcing (ZF) detector at the central processing unit (CPU) of the cell-free

massive MIMO systems.

In the third part, we focus on the performance analysis of intelligent reflecting surface

(IRS) assisted wireless networks. Initially, we investigate the MMSE channel estimation for

IRS assisted wireless communication systems. Then, we study the sparse activity detection

problem in IRS assisted wireless networks. Specifically, employing the generalized approxi-

mate message passing (GAMP) algorithm, we obtain the MMSE estimates of the equivalent

effective channel coefficients from the base station (BS) to all users, and transform the re-

ceived pilot signals into additive Gaussian noise corrupted versions of the equivalent effective

channel coefficients. Likelihood ratio test is used to acquire decisions on the activity of each

user based on the Gaussian noise corrupted equivalent effective channel coefficients, and the

optimal fusion rule is used to obtain the final decisions on the activity of all users based on

the previous decisions on the activity of each user and the corresponding reliabilities. Finally,

we conduct an asymptotic analysis of maximizing the weighted sum rate by joint beamform-

ing and power allocation under transmit power and quality-of-service (QoS) constraints in

IRS assisted wireless networks.
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Chapter 1

Introduction

1.1 Wireless Networks With Massive Connectivity

Wireless networks have experienced significant growth recently in terms of both data traffic

and the number of connected devices. Supporting such fast increasing demand for data traffic

and connectivity is one of the core tasks in future wireless networks, and several advanced

technologies, including massive multiple-input multiple-output (MIMO), millimeter wave

transmissions, full-duplex operation, and device-to-device (D2D) communication, have been

proposed and analyzed intensively in recent years. In particular, massive MIMO systems

have large number of antennas at the base station (BS). Thanks to such large number of

antennas, space multiplicity and diversity can be fully used. Indeed, the channels of massive

MIMO networks are orthogonal to each other, which can lead to significant growth in the

data rates per cell by hundreds of times [2, 3]. By utilizing large number of antennas at the

BS, massive MIMO network could support large number of mobile devices simultaneously.

With such benefits, massive MIMO has become one of the key technologies for 5G cellular

systems, and it has been intensively studied in recent years [4, 5].

Cell-free massive MIMO is a potentially key technology for next generation wireless sys-

tems, and it has also been intensively studied in recent years. In these systems, a large

1



number of access points (APs) are spatially distributed in the coverage area, and all the

users are jointly and simultaneously served by all of the APs. Compared to the traditional

cellular massive MIMO systems, the APs of cell-free massive MIMO networks could be placed

at anywhere among a large area, which could achieve larger energy efficiency (EE) and more

cost-efficient deployment [6]. Moreover, since there are no cell-edge users, cell-free massive

MIMO system could achieve more uniform quality-of-service (QoS) among all users [7].

Internet-of-Things (IoT) is another potentially key technology for future wireless com-

munications. There will be 29.3 billion networked devices by 2023, and IoT connections will

be half of the global connected devices and connections [8]. Massive connectivity and spo-

radic activity are two main characteristics of the future IoT networks [9, 10]. Large number

of devices (such as vehicles, sensors, smart furniture, etc.) are potential nodes of the IoT

network, while only a small fraction of the nodes actively connect to the network at a given

time instant. Active users initially send pilots and then connect to the network to exchange

information within the network, and then disconnect from the network after information ex-

change is completed. In this way, throughput of the network can be significantly improved,

and many more users could be served by the network.

Channel condition is one of the decisive factors affecting the performance of wireless net-

works. However, most of the wireless network technologies can only control the transmitter

and receiver, not the environment in between [11]. By introducing large number of passive

scattering elements, intelligent reflecting surface (IRS) makes it possible to tune the wireless

environments between transmitter and receiver to promote the spectral and energy efficiency

of wireless systems [12–15].

2



1.2 Literature Overview

1.2.1 Antenna Selection and User Scheduling in Massive MIMO

Networks

As also noted above, massive MIMO represents a system model in which the BS equipped

with a large number of antennas simultaneously serves a large number of users. Owing to

the high degrees of freedom available for each user, massive MIMO can increase the capacity

ten times or more while improving the EE on the order of one hundred times [16]. Due to

such benefits, there has been significant interest in massive MIMO in recent years, and it is

considered as one of the key technologies for 5G [17].

The large number of antennas and radio frequency (RF) chains needed at the BS in mas-

sive MIMO systems brings forth challenges regarding the system complexity and hardware

energy consumption. Therefore, how to achieve the maximum EE is one of the core tasks

in the analysis and design of massive MIMO networks. For instance, if uplink and downlink

are considered together, improvements in EE could be achieved [1]. Also, in order to lower

the hardware cost and complexity, the number of RF chains available at the BS can be

reduced to be less than the number of antennas. In such cases, how to improve the EE of

massive MIMO systems under limitations on the number of RF chains becomes a critical

consideration. In addition to just addressing EE, one may also need to consider the tradeoff

between the EE and spectral efficiency (SE) in order to achieve the best performance in the

system while ensuring a target data transmission level.

While there are various approaches to improve the EE of massive MIMO systems, antenna

selection and user scheduling have been commonly considered and studied in this respect.

For instance, multi-objective optimization [18], principal component analysis [19], successive

removal [20], L1/2-regularity based methods [21], norm-and-correlation-based selection algo-

rithms [22], average absolute value of the channel coefficients based methods [23] and convex

optimization [24] have been employed in antenna selection to maximize the downlink EE or

3



SE of massive MIMO systems. We note that the number of available RF chains at the BS is

limited in [21] and [22]. Both uplink and downlink are considered and an antenna selection

method that searches for the channels with the strongest absolute channel coefficients is ap-

plied to maximize the EE of single-cell massive MIMO systems in [25]. Reference [26] shows

that simple random antenna selection can lead to significant EE gains. Moreover, when

the EE-optimal number of antennas at the BS is larger than a certain threshold, then the

performance of random antenna selection is already very close to that of the optimum an-

tenna selection. Convex relaxation and greedy approach have been used for antenna selection

in [27] to maximize the sum rate of an uplink single-cell massive MIMO system.

K∗-random user selection, K∗-location-dependent user selection [28], greedy user selec-

tion with linear precoding scheme [29], and joint antenna selection and user scheduling

method [30] have been used in downlink massive MIMO systems to maximize the sum rate.

Greedy two-step joint antenna selection and user scheduling have been used in [31] to maxi-

mize the sum rate of uplink massive MIMO systems, while [32] has the objective to maximize

the downlink sum rate. Norm-based, greedy-based and TCB (throughput and complexity

balanced) based sub-optimal iterative joint antenna selection and user scheduling algorithms

have been proposed to improve the downlink channel capacity of distributed massive MIMO

systems in [33]. Semidefinite programming (SDP) approach is used in [34] for state esti-

mation in smart grids. Besides, the authors in [1] work on the EE maximization problem

with joint antenna selection and user scheduling. By utilizing the power allocation tech-

nique from [35], each user could achieve the same rate. Then, the antenna selection and user

scheduling problem becomes finding the optimal number of antennas and users which could

maximize the EE of the system.
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1.2.2 Sparse Activity Detection and Channel Estimation in Cell-

Free Massive MIMO Systems With Massive Connectivity

IoT is one of the promising technologies for next generation wireless networks, and massive

connectivity and sporadic activity are two key characteristics of future IoT networks [10].

Specifically, large amount of devices are served by such network. However, only a small

partial of the devices are active at a given time instant, while the remaining devices keep

inactive. For instance, a device is inactive most of the time, turns to active only when it

needs to exchange messages with the network, and converts to inactive once the information

exchange is completed. Therefore, at a given time instant, only a small unknown subset out

of the entire set of users is active, while most of the users are inactive. Then, identifying

the active users is a key requirement in IoT networks with massive connectivity, and this is

also referred to as the activity detection problem. In addition to activity detection, it is also

critical to estimate the channel coefficients between the active users and APs.

In the literature, IoT networks with massive connectivity have been intensively studied.

For instance, massive connectivity for industrial IoT networks has been addressed in [36],

where the signal-to-interference-plus-noise ratio (SINR) and SE under the maximum ratio

(MR) or zero-forcing (ZF) decoding at the receiver are investigated for the uplink network.

Massive connectivity for IoT in distributed massive MIMO networks is analyzed in [37],

where the activity detection problem is addressed via the alternating direction method of

multipliers (ADMM) algorithm in light-load traffic scenarios and via the dynamic clustering

method in heavy-load traffic scenarios. The orthogonal matching pursuit (OMP) algorithm is

used in [38] to deal with the activity detection problem, and the authors in [39] have proposed

a compressed sensing Neyman-Pearson based activity detection algorithm for IoT networks

with massive connectivity. Activity detection using the maximum likelihood method is

investigated in [40].

Moreover, several recent studies have analyzed the joint activity detection and effective

channel estimation (JADECE) in IoT networks with massive connectivity by employing the
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approximate message passing (AMP) algorithm. AMP algorithm can obtain the minimum

mean square error (MMSE) estimate of sparse signals with tolerable complexity, and it breaks

down the received signal into Gaussian noise corrupted scalar versions. Besides, the vari-

ance of the Gaussian noise in the decoupled signal can be described with the state evolution

equations, facilitating the performance analysis of the AMP algorithm. With these benefits,

AMP algorithm has been widely used in solving the JADECE problem in IoT networks

with massive connectivity. For instance, the AMP algorithm is used in [9, 10, 41] to solve

the JADECE problem in single-cell massive MIMO networks with massive connectivity, and

multi-cell massive MIMO cooperative networks are analyzed with the AMP algorithm in [42].

Authors in [43–45] focus on solving the JADECE problem via the distributed AMP algo-

rithm. The authors in [46] have proposed a structured group sparsity estimation approach to

solve the JADECE problem in IoT networks with massive connectivity. Furthermore, sparse

matrix factorization and AMP algorithms are used in [47] and [48] to solve the JADECE

problem in IRS assisted massive MIMO networks with massive connectivity. In addition

to the AMP algorithm, sparsity learning based methods are used in [49] to deal with the

JADECE problem in grant-free massive-device multiple access system. The authors in [50]

employ a compressed sensing algorithm to solve the JADECE problem for massive connectiv-

ity with 1-bit digital-to-analog converter. A turbo receiver based on the bilinear generalized

approximate message passing algorithm is proposed to solve the JADECE problem for grant-

free massive random access in [51].

Although AMP algorithm is efficient in solving the JADECE problem, it is sensitive to

the mean and condition number of the measurement matrix, which impairs the convergence

property of the algorithm [52–54]. In order to overcome this, various modified AMP algo-

rithms have been proposed, including mean removal AMP [54], swept AMP [55], generalized

approximate message passing (GAMP) [56] and complex Bayesian approximate message

passing (CB-AMP) algorithm [57]. Damping and mean removal techniques are employed

in [53, 58] to further promote the convergence of the GAMP algorithm.
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However, the state evolution equations of the above algorithms depend on the asymptotic

mean square error of the estimated signal. Therefore, in order to theoretically analyze the

performance of these algorithms, one needs to identify the corresponding asymptotic mean

square error first. Since we consider MMSE estimation in chapter 4 and 5, how to find the

asymptotic mean square error of the MMSE estimate of the sparse signal becomes a core

problem.

Replica method from statistical physics has been widely used to find the asymptotic

mean square error of the AMP algorithm [59, 60], and it is shown to work well empirically.

With the replica method, the authors in [61] have provided a decoupling principle for the

asymptotic analysis of MMSE estimation in large system limit, and the replica analysis

for MMSE estimation of multimeasurement vector (MMV) problem is performed in [62].

Moreover, the asymptotic behavior of MMSE estimation for sparse signals with random

matrix theory and large deviations is analyzed in [63, 64].

Cell-free massive MIMO is another promising technology for future wireless communica-

tions, in which a large number of APs are distributed in the coverage area, and all the APs

are connected with the fusion center (FC). All the users are jointly and simultaneously served

by all the APs. The channel hardening and favorable propagation properties of cell-free mas-

sive MIMO networks are studied in [65]. The achievable rates of cell-free massive MIMO

systems are investigated in [7, 66–69]. Power control in cell-free massive MIMO networks

is studied in [70–72].Spectral and energy efficiency of cell-free massive MIMO networks are

analyzed in [73–77]. Pilot assignment and power control in cell-free massive MIMO systems

are analyzed in [69].

In chapter 4 and 5, we focus on the asymptotic analysis of single measurement vector

(SMV) based MMSE estimation in cell-free massive MIMO systems with massive connec-

tivity. We address the JADECE problem using the frameworks of MMSE estimation and

likelihood ratio test. Prior studies on the MMSE estimation of sparse signals have developed

methodologies, including a closed-form method in [78], an approximation method in [79],
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and AMP and CB-AMP algorithms. Since we consider cell-free massive MIMO here, the

non-zero components of the sparse signal vectors to be estimated are independent and non-

identically distributed (i.n.i.d.). However, to the best of our knowledge, all the asymptotic

analyses of the MMSE estimation with replica method in the literature focus on the sparse

signal vectors with independent and identically distributed (i.i.d.) non-zero components.

With i.n.i.d. non-zero components, analysis becomes more challenging. Although the au-

thors in [78] have obtained closed-form expressions for the MMSE estimates of the sparse

signals with heteroscedastic non-zero entries, there is a requirement for the measurement

matrix to be unitary, while we in our setting have an underdetermined system as a result of

the facts that limited number of pilots can be used, and condition of having a unitary mea-

surement matrix cannot be satisfied. An approximation method for the MMSE estimation

of sparse signals is provided in [79]. However, when the number of variables becomes large,

the computational complexity will grow quickly and the accumulated error will be high.

1.2.3 Intelligent Reflecting Surface Assisted Wireless Networks

Wireless propagation environment is one of the key factors affecting the performance of

wireless networks. Typically, the wireless network technologies can only control the trans-

mitter and receiver, not the environment in between [11]. By introducing large amount of

passive scattering elements, IRSs make it possible to tune the wireless environments be-

tween transmitter and receiver to promote higher spectral and energy efficiency in wireless

communication systems [12–15].

Recently, various aspects of IRS assisted wireless networks have been studied, e.g., chan-

nel capacity, beamforming optimization, power allocation, channel estimation, etc. In [80],

the capacity limit of IRS-aided point-to-point MIMO communication system is considered by

jointly optimizing the IRS reflection coefficients and the MIMO transmit covariance matrix.

Coverage probability and ergodic capacity of IRS assisted single-input single-output (SISO)

system is considered in [81]. Sum rate maximization for IRS based multi-user communication
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is achieved in [82] with hybrid beamforming, and joint design of the reflecting coefficients

and transmit beamforming to maximize the users’ worst rate is studied in [83]. The total

transmit power of IRS aided wireless network is minimized by jointly design the transmit

beamforming and the passive beamforming at IRS, subject to the users’ individual SINR

constraints in [84–86]. The energy efficiency of IRS enhanced wireless network is considered

by jointly optimize the transmit power and the phase shifts of the scattering elements in [87].

The rate and energy efficiency of wireless communication systems with classic decode-and-

forward (DF) relaying or IRS are compared in [11]. In [88], the authors investigated the

performance of energy harvesting for IRS enhanced simultaneous wireless information and

power transfer (SWIPT) aided systems. Latency minimization for IRS Aided mobile edge

computing is considered in [89], and IRS carried by unmanned aerial vehicles (UAVs) to

support cellular communication networks is studied in [90]. A stochastic geometry analysis

is performed in [91] for large intelligent surface (LIS) assisted millimeter wave networks, and

it is demonstrated that the LISs dramatically improve the average rate and area spectral

efficiency of millimeter wave networks when the BS density is lower than the LIS density.

In [92], weighted sum-rate optimization has been performed by jointly optimizing the active

beamforming at the BS and the passive beamforming at the IRS in IRS enhanced wireless

networks.

Channel estimation plays a key role in the performance enhancement of IRS assisted

wireless networks, and certain challenges exist in estimating the channel since the passive

reflecting elements do not have active transmitting/receiving or signal processing abilities.

For instance, the existing channel estimation methods for IRS assisted wireless networks

are typically costly in terms of either pilot signal usage or computational complexity. The

channel estimation process in [93, 94] is divided into several sub-frames, and the number of

symbols transmitted in each sub-frame is greater than or equal to the number of users. The

channel coefficients of different scattering element assisted links are serially estimated by

the control loop of a micro-controller connected to the IRS in [95]. A two-timescale channel
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estimation scheme for IRS assisted wireless networks is proposed in [96] by considering the

properties that the BS-IRS channel is high dimensional but quasi-static, while the IRS-user

channel is mobile but low-dimensional. Minimum variance unbiased estimator is utilized for

channel estimation in IRS aided networks in [97]. The channel estimation in an IRS as-

sisted millimeter wave MIMO system is converted into a fixed-rank constrained non-convex

optimization problem in [98]. In [94] and [99], the cascade channel, which consists the chan-

nels from the BS to the IRS and from the IRS to the users, is estimated using compressed

sensing techniques. Sparse matrix factorization technique is employed in [100] and [101] for

channel estimation in IRS enhanced wireless communications. The authors in [47] perform

joint activity detection and channel estimation for IRS assisted wireless networks with mas-

sive connectivity in three stages, namely, by employing sparse matrix factorization, matrix

completion and MMV method.

Moreover, channel capacity could be improved dramatically by improving the number of

antennas at the BS or the number of users, i.e., using massive MIMO technology. Asymptotic

analysis is one of the key tools for the performance analysis of massive MIMO networks.

Several recent studies in the literature have focused on the asymptotic analysis of large IRS

aided wireless networks. The rate distribution and outage probability of large IRS assisted

wireless networks are asymptotically analyzed in [102]. Asymptotic analysis of the uplink

data rate in an IRS-based large antenna array system is performed in [103]. Deterministic

equivalents of the SINR and the sum rate of IRS assisted MIMO downlink systems under

imperfect CSI are analyzed in [104].

Furthermore, maximizing the weighted sum rate is another key approach to improve the

channel capacity of wireless networks. Successive zero-forcing dirty paper coding is designed

for maximizing the weighted sum rate of a single cell MIMO network in [105]. The weighted

sum rate of all users are maximized by jointly designing the beamforming at APs and phase

vector of IRS elements for IRS aided wireless networks in [106]. Large system analysis of

weighted sum rate maximization of wireless networks are performed in [107, 108]. Motivated
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by the relationship between mutual information and MMSE, several studies address the

weighted sum rate maximization problem using its relationship with the weighted MMSE

approach [109, 110].

In addition, max-min weighted SINR is an effective way to explore the achievable SINR

region to facilitate the study of weighted sum rate and weighted MMSE in wireless networks

[111, 112]. Max-min weighted SINR under a weighted sum transmit power constraint in

MIMO downlink systems is analyzed in [113]. Asymptotic analysis of max-min SINR subject

to a given transmit power constraint in a large-scale single-cell multi-user system is performed

in [114]. Asymptotic analysis of max-min SINR under a given transmit power constraint in

IRS assisted single-cell multi-user networks is conducted in [115].

1.3 Outline of the Thesis

In this thesis, we focus on the performance analysis of wireless networks with massive con-

nectivity. First, higher EE is achieved by joint antenna selection and user scheduling in

massive MIMO systems. Then, we study the joint activity detection and channel estimation

problem in cell-free massive MIMO systems with massive connectivity. Finally, different

types of performance analysis on IRS assisted wireless networks are performed, including

channel estimation, asymptotic analysis and joint activity detection and channel estimation.

An energy-efficient joint antenna and user selection algorithm in single-cell massive

MIMO communication systems is proposed in Chapter 2. The proposed algorithm involves

a two-step iterative procedure. At each time, we first obtain a subset of antennas for the

given set of users via bisection search and random selection, and then obtain the optimally

energy efficient subset of users with the selected antennas using cross-entropy algorithm.

This two-step procedure is demonstrated to improve the EE at each iteration. Simulation

results show that the EE could be improved by 71.16% with the maximum-ratio combining

(MRC) receiver when the total number of users is 60.
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In Chapter 3, we propose a learning-based stochastic gradient descent algorithm to obtain

the optimal joint uplink and downlink EE with joint antenna selection and user scheduling in

single-cell massive MIMO systems, under a limitation on the number of available RF chains.

Using Jensen’s inequality and the characteristics of wireless channels, a lower bound on the

system throughput is obtained. Subsequently, incorporating the power consumption model,

the corresponding lower bound on the EE of the system is identified. Finally, learning-based

stochastic gradient descent method is used to solve the joint antenna selection and user

scheduling problem, which is a combinatorial optimization problem. Rare event simulation

is embedded in the learning-based stochastic gradient descent method to generate samples

with very small probabilities. In the analysis, both perfect and imperfect channel state

information (CSI) at the BS are considered. MMSE channel estimation is employed in the

study of the imperfect CSI case. In addition, the effect of a constraint on the number of

available RF chains in massive MIMO system is investigated considering both perfect and

imperfect CSI at the BS.

In Chapter 4, we investigate the MMSE estimation of effective channel coefficients in cell-

free massive MIMO systems with massive connectivity. To facilitate the theoretical analysis,

only SMV based MMSE estimation is considered, i.e., the MMSE estimation is performed

based on the received pilot signals at each AP separately. Inspired by the decoupling principle

of replica symmetric postulated MMSE estimation of sparse signal vectors with i.i.d. non-

zero components, we develop the corresponding decoupling principle for the SMV based

MMSE estimation of sparse signal vectors with i.n.i.d. non-zero components, which plays a

key role in the theoretical analysis of SMV based MMSE estimation of the effective channel

coefficients in cell-free massive MIMO systems with massive connectivity. Subsequently,

based on the obtained decoupling principle of MMSE estimation, likelihood ratio test and

the optimal fusion rule, we perform user activity detection based on the received pilot signals

at only one AP, or cooperation among the entire set of APs for centralized or distributed

detection. Via theoretical analysis, we show that the error probabilities of both centralized
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and distributed detection tend to zero when the number of APs tends to infinity while the

asymptotic ratio between the number of users and pilots is kept constant. We also investigate

the asymptotic behavior of oracle estimation in cell-free massive MIMO systems with massive

connectivity via random matrix theory. Moreover, in order to demonstrate the potential

performance loss of SMV based MMSE estimation, which does not employ the correlation

between the received pilot signals at different APs, the MMV based MMSE estimation, i.e.,

joint MMSE estimation with pilot signals from all APs, is analyzed via numerical results.

Numerical analysis shows that the theoretical analyze with our decoupling principle for the

SMV based MMSE estimation of sparse signal vectors with i.n.i.d. non-zero components

matches well with the numerical results.

In Chapter 5, we focus on the achievable rate of cell-free massive MIMO networks with

massive connectivity. With the decoupling properties of MMSE estimation for large linear

systems [61], the received pilot signals are decomposed into scalar additive complex Gaussian

noise corrupted versions. We determine the variance of the scalar additive complex Gaussian

noise with the help of the state evolution equations of the GAMP algorithm, and then identify

the variances of both the estimated channel and the corresponding channel estimation error.

Subsequently, with the results in [76], we analyze the achievable uplink data transmission

rates in cell-free massive MIMO systems with massive connectivity when ZF detector is

employed. Moreover, we demonstrate the impact of the accuracy of activity detection on

the achievable rates via numerical results.

In Chapter 6, we investigate the MMSE channel estimation of IRS assisted wireless

networks. By considering the equivalent channel from the BS to the users, the MMSE

channel estimation process can be achieved in one stage via transmitting orthogonal pilots

from the users. With the help of the Gaussian scale mixture (GSM) model, we obtain the

MMSE estimate of the equivalent channel, and identify analytical upper and lower bounds

on the mean square error. Applying the central limit theorem, we perform an asymptotic

analysis of the channel estimation, through which we show that the upper bound on the
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mean square error of the MMSE estimation equals the asymptotic mean square error of the

MMSE estimation when the number of reflecting elements at the IRS tends to infinity.

In Chapter 7, we consider the sparse activity detection in IRS assisted wireless networks.

The equivalent channel coefficients from users to the BS are approximated with a Gaussian

approximation (GA) model. With GAMP algorithm, the received pilot signals at the BS are

decoupled into scalar Gaussian noise corrupted versions of the effective channel coefficients.

Subsequently, MMSE estimate of the effective channel coefficients and threshold detection

rules are acquired. Finally, the optimal fusion rule is used to obtain the activity detection

results of each user. Numerical results show that the average error probability of the sparse

activity detection method proposed in this chapter diminishes as the SNR, number of pilots,

number of antennas at the BS or number of elements at the IRS increases.

In Chapter 8, we investigate the asymptotic analysis of maximizing weighted sum rate

under transmit power and QoS constraints in IRS assisted wireless networks. With the help

of the asymptotic results of the max-min SINR problem, the original problems are converted

into the optimization over SINR. After a transformation of the optimization variables, the

weighted sum rate maximization problem is converted into a concave-convex optimization

problem and it can be solved with the iterative approach of the concave-convex fractional

programming algorithm proposed in [116]. Besides, we show that the optimal power alloca-

tion scheme always makes full use of the available transmit power.
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Chapter 2

Energy-Efficient Joint Antenna and

User Selection in Single-Cell Massive

MIMO Systems

In this chapter, we propose a two-step iterative procedure to maximize the EE of single-

cell massive MIMO communication systems. At each time, we first use bisection search

and random selection to determine a subset of antennas with the users selected before, and

then identify the EE-optimal subset of users with the selected antennas via cross entropy

algorithm. Theoretical analysis shows that this two-step procedure improves the EE at each

iteration. The performance is evaluated through numerical results.

2.1 System Model

We consider the uplink of a single-cell massive MIMO system, which consists of a BS with

M antennas, and K single-antenna users. We assume that the system operates over flat

Rayleigh fading channels, the transmission bandwidth is B Hz, and the BS has perfect CSI.

The received signal at the BS is

y =
√
puGx+ n (2.1)
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where pu is the user transmit power, G = [g1, g2, ..., gK ] ∈ CM×K is the channel matrix from

all users to the BS, and n is i.i.d. Gaussian noise vector with zero mean and covariance

matrix σ2I. x is the signal vector whose components are the transmitted signals from the

users, and satisfies E{xxH} = IK . gk is the uplink channel gain from the kth user to all

the antennas at the BS. For flat fading channels, gk can be written as gk = βkhk, in which

the fast fading coefficients hk have i.i.d. complex Gaussian CN (0, 1) elements. βk describes

the path loss and shadow fading, and can be expressed as, βk =
zk
rα
k

, where rk is the distance

between the kth user and the BS, α is the path loss decay exponent, and the shadow fading

coefficient zk is a log-normal random variable, i.e., the quantity 10log10(zk) is zero-mean

Gaussian distributed with standard deviation σshad [2].

We use linear combination at the BS. Then, the received signal, after linear combination,

can be expressed as

ŷ =
√
puAGx+An (2.2)

where A = GH is the MRC matrix at the BS. Then, the kth user’s received signal at the

BS is

ŷk =
√
puakgkxk +

√
pu

K∑

i=1,i 6=k

akgixi + akn (2.3)

where ak is the kth row of A. Therefore, the received SINR of the kth user’s signal at the

BS is

γk =
pu |akgk|2

pu
K∑

i=1,i 6=k

|akgi|2 + ‖ak‖2 σ2

. (2.4)

Then, the total achievable uplink rate in bits per second (bps) is

R = B
∑K

k=1
E{log2(1 + γk)}. (2.5)

By Jensen’s inequality and the properties of the Wishart matrix, we can obtain the following

18



lower bound on R [117]:

R̃ = B
∑K

k=1
log2

(
1 +

pu(M − 1)βk

pu
∑K

i=1,i 6=k βi + σ2

)
. (2.6)

2.2 Energy Efficiency

2.2.1 Power Consumption

We use the power consumption model proposed in [26]. For completeness, we provide a brief

discussion of the model here. The total power consumption can be expressed as

Psum = KPPA +MPC (2.7)

where PPA = pu
ηe

is the power consumed by the power amplifier at a user, PC = PBB

M
+ PRF

is the circuit power per RF chain at the BS. ηe is the power amplifier efficiency at the user

terminal, PBB = χp

̺e
is the baseband power consumption at the BS, and PRF is the BS RF

front-end power consumption which includes the power consumptions of the mixer, filter and

digital-to-analog converter power consumption. ̺e is the VLSI processing efficiency, and

χp =MB

[(
Tu
Ts

)
log2(TuB) +

(
Tu
Ts

)(
1− Tp

Tsl

)
K +

(
TuTp
TsTsl

)
log2

(
TuTp
TsTd

)
+

(
Td
Tsl

)
K2

]
.

(2.8)

The description of each parameter in (2.8) is shown in Table 2.1.
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Table 2.1: Baseband power consumption parameters in (2.8)

Parameters Description Value

Tsl slot length 0.5ms

Tp Pilot length in one slot 0.214ms

Ts Symbol duration 71.4us

Tg Guard Interval (GI) 4.7us

Tu Symbol without GI 66.7us

Td Delay spread 4.7us

2.2.2 Joint Antenna and User Selection with MRC Receiver

A lower bound on the EE of a single-cell massive MIMO communication system with an

MRC receiver is given by

EE(M,K) = B

Psum

|K|∑

i=1

log2


1 +

pu (|M| − 1) βk

pu
|K|∑

i=1,i 6=k

βi + σ2


 . (2.9)

The goal is to maximize the EE and hence solve the following optimization problem:

maximize
M,K

EE(M,K) (2.10)

where M, K are the subsets of selected antennas and users, respectively. We address this

problem in two steps. First, we get a suboptimum subset of antennas M∗ considering the

entire set of users. Then, we determine the EE-optimal subset of users withM∗.

As the number of antennas at the BS is very large in massive MIMO systems, it is

difficult to determine the EE-optimal subset of antennas. Because random antenna selection

can achieve significant EE gains in massive MIMO systems [26], we first obtain the EE

optimal number of antennas M∗, and then randomly select a subset of antennas M∗, i.e.,

|M∗| = M∗. The derivative of EE(M,K) with respect to the number of antennas can be
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expressed as1

∂

∂ |M|(EE(M,K)) = Blog2e

(|K|PPA + |M|Pc)
2




|K|∑

k=1

puβk(|K|PPA + |M|Pc)

pu(|M| − 1)βk + pu
|K|∑

i=1,i 6=k

βi + σ2

−Pc ln


1 +

pu(|M| − 1)βk

pu
|K|∑

i=1,i 6=k

βi + σ2





 . (2.11)

Setting ∂
∂|M|(EE(M,K)) = 0, we get

(
|K|PPA

PC

+ |M|)
|K|∑

k=1

puβk

pu(|M| − 1)βk + pu
∑|K|

i=1,i 6=k βi + σ2

−
|K|∑

k=1

ln

(
1 +

pu(|M| − 1)βk

pu
∑|K|

i=1,i 6=k βi + σ2

)
= 0. (2.12)

We define the left-hand side of (2.12) as Γ1(M). Then, the derivative of Γ1(M) with respect

to the number of antennas can be expressed as

∂

∂ |M|(Γ1(M)) = −
( |K|PPA

PC

+ |M|
) |K|∑

k=1

p2uβ
2
k

[pu(|M| − 1)βk + pu
∑|K|

i=1,i 6=k βi + σ2]2
. (2.13)

It is obvious that ∂
∂|M|(Γ1(M)) < 0 when |M| ≥ 0. Therefore, Γ1(M) is monotone decreasing

in [0,+∞). As Γ1(0) > 0 and Γ1(∞) tends to −∞, there exists one M∗ which satisfies

Γ1(M
∗) = 0. Because Γ1(M) is monotone decreasing in [0,+∞), we can use bisection search

to determine M∗. Now, the EE can be expressed as

EE(M∗,K) = B log2 e

PC

|K|∑

k=1

puβk

pu(M∗ − 1)βk + pu
|K|∑

i=1,i 6=k

βi + 1

. (2.14)

1Note that we have applied a relaxation here so integer valued |M| is assumed to be real valued.
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Then the optimization problem in (2.10) becomes

maximize
K

EE(M∗,K), (2.15)

and hence we would like to choose a subset of users K1 from the total user set K so that the

EE of the system is maximized. The above problem is an NP-hard problem, and couldn’t

be solved analytically. We assume q is a K × 1 dimensional vector, where K = |K|, and

qi ∈ {0, 1}. Let us define

f(q) =
B

Psum

K∑

i=1

log2

(
1 +

pu(M
∗ − 1)qkβk

pu
∑K

i=1,i 6=k qiβi + σ2

)
. (2.16)

Then, the optimization problem in (2.15) can be written as

maximize f(q)

subject to qi ∈ {0, 1}, i = 1, 2, ..., K. (2.17)

The above optimization problem could be solved efficiently by the cross-entropy framework

introduced in [118]. The detailed procedure to obtain the EE-optimal subset of users via

the cross-entropy algorithm is shown in Algorithm 2.1 below. In this algorithm, ρr ∈ (0, 1)

is a user specified rarity parameter, Ns is the number of samples, αs ∈ (0, 1) is a smoothing

parameter, 1{·} denotes the indicator function, and ⌈a⌉ is the smallest integer which is greater

than or equal to a.

Now, we have obtained a pair ofM∗ and K∗ with bisection, random selection and cross-

entropy algorithm. Since the selected subsets M∗ and K∗ are not necessarily EE-optimal,

we propose the following two-step iterative procedure: At each time, we obtain a subset

of antennas for the given user set via bisection search and random selection, and then ob-

tain the optimally energy efficient subset of users with the selected antenna subset using

cross-entropy algorithm. Does this procedure converge to the EE-optimalM∗ and K∗? The
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Algorithm 2.1 Cross-entropy algorithm to get EE optimum subset of users

1: Initialize parameter vector v̂0. Let N
e = ⌈ρrNs⌉. Set ns = K, t = 1 (iteration counter).

2: Generate i.i.d. multivariate Bernoulli random vectors q1, q2, · · · , qN . The probability
of each entry in qi equals to 1 corresponds to the respective element in v̂t−1. Determine
f(qi) for every i, and sort them in increasing order: f(q1) ≤ f(q2) ≤ ... ≤ f(qN ). Let
γ̂t be the sample (1− ρr)-quantile of f(qi), i.e., γ̂t = f(qNs−Ne+1).

3: Set Q = [q1,q2, ...,qNs
], obtain v̂t with Q, where v̂t,i =

∑Ns
k=1(1{f(qi)≥γ̂t}

Qk,i)/
∑Ns

k=1 1{f(qi)≥γ̂t}
.

4: v̂t = αsv̂t + (1− αs)v̂t−1.
5: Set dt = max1≤j≤ns

{min{v̂t,j, 1− v̂t,j}}. If dt ≤ 10−3, stop; otherwise, set t = t + 1, and
return to step 2.

following theorem provides us with the characterization that by using bisection search, ran-

dom selection and cross-entropy algorithm step by step, we can improve the EE at each

iteration and approach the EE-optimalM∗ and K∗.

Theorem 2.1 Consider a single-cell uplink massive MIMO communication system which

consists of a BS with M antennas and K single antenna users. Assume that we determine

the number of antennas M1 and a subset of users K1 (K1 = |K1|) via bisection and cross-

entropy algorithms, and the achieved EE is EE1. Then, we set K1 as the total user set, and

we obtain the number of antennas M2 and a subset of users K2 (K2 = |K2|) leading to the

new EE of EE2. The EE of the second iteration is no smaller than that obtained in the first

iteration, i.e., EE1 ≤ EE2.

Proof 2.1 At the beginning of the second iteration, we set K1 as the total user set and

obtain the antenna subsetM2 (possibly different fromM1) with bisection search and random

selection. Thus, EE(M2,K1) > EE(M1,K1). With antenna subsetM2 and the total user

set K, we select the user subset K2 with cross-entropy algorithm. Since K2 is the best user

subset that maximizes the energy efficiency with antenna set M2, we have EE(M2,K2) >

EE(M2,K1). Therefore, EE(M2,K2) > EE(M1,K1), i.e., EE1 ≤ EE2. �

From Theorem 1, we know that the EE obtained in the second iteration is no smaller

than that obtained at the first time. With the two-step iterative procedure, we obtain a
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sequence EE1, EE2, EE3, · · · , where EEk is the optimal EE achieved at the kth iteration.

By Theorem 1, we have EE1 6 EE2 6 EE3 6 · · · . Note that for a given antenna set M

and user set K, the maximum EE that we can obtain is upper bounded. Therefore, this

iterative procedure will converge to the EE-optimalM∗ and K∗.

Remark 2.1 The M∗ we determined is in general a real number, while the number of an-

tennas should be integer valued. If M∗ is real valued, we can determine the corresponding

subset of users K1, K2 with ⌈M∗⌉−1, ⌈M∗⌉, respectively, using the cross-entropy algorithm.

Then we select either ⌈M∗⌉ − 1 or ⌈M∗⌉, as the optimal number of antennas, depending on

which leads to a larger EE.

2.3 Numerical Results

The cell radius used in the simulations is rc = 250m, and the cell hole radius is rh = 35m

(there is no user in the cell hole). The path loss decay exponent of the wireless channel is

α = 2.5, and the shadow fading standard deviation is σshadow = 8dB. The bandwidth is

20MHz. The noise power spectral density is N0

2
= −133dBm/Hz. SNR is 30dB. VLSI

processing efficiency is ̺e = 5Gflop/W . Power amplifier efficiency at the user terminals are

22%. RF front-end power consumption PRF is 97.5mW . Some other parameters of the power

consumption model are given in Table 2.1. We assume that the user distribution within the

cell does not change, i.e., βk, k ∈ {1, ..., K} stays the same during simulation.

Fig. 2.1 provides the simulation results of EE versus M and K for the MRC receiver.

The grid plots the EE with no antenna and user selection. The red curve is the EE with

only antenna selection at the BS. For a given K, this curve shows the points which have

the largest EE. We can see that the red curve is a bit lower than the grid. That is because

we use a lower bound on the channel capacity in the algorithm. But this does not prevent

us from getting the optimum M . Simulation results show that the optimum M which we

obtain with the bisection algorithm matches well with the Monte Carlo ergodic results. The
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Figure 2.1: EE versus M and K for MRC receiver with different strategies.
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Figure 2.2: The optimum number of M∗ versus K for MRC receiver.
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Figure 2.3: The optimum number of K∗ versus K for MRC receiver.
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Figure 2.4: Energy Efficiency of antenna selection with and without user selection for MRC
receiver.
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blue curve demonstrates the EE with both antenna and user selection. The EE has been

improved by 71.16% for the MRC receiver when K = 60. We can also conclude that the

improvement in EE becomes increasingly larger as M and K grow.

In order to show the results in Fig. 1 in more detail, we present Figs. 2, 3 and 4. Fig.

2.2 depicts the optimum number of antennas M∗ versus the total number of users K. Fig.

2.3 gives the overall optimum number of users K∗ versus the total number of users K. Fig.

2.4 plots the EE with only antenna selection or both antenna and user selection at the BS

versus K.
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Chapter 3

Statistical Learning Based Joint

Antenna Selection and User

Scheduling for Single-Cell Massive

MIMO Systems

In this chapter, we propose a learning-based stochastic gradient descent algorithm to obtain

the optimal joint uplink and downlink EE of single-cell massive MIMO systems with joint an-

tenna selection and user scheduling, under a limitation on the number of available RF chains.

With Jensen’s inequality and the power consumption model, the original joint antenna se-

lection and user scheduling problem is converted into a combinatorial optimization problem.

The learning-based stochastic gradient descent algorithm proposed in this chapter to solve

the corresponding combinatorial optimization problem is based on the learning framework

proposed in [119]. However, the original learning framework for combinatorial optimization

problem does not converge to the optimum value of the objective function, and it is difficult

to generate random samples based on the given distribution parameters directly when the

constraints for the problem are strict. By generating a population of Ns samples instead of
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only one sample and selecting the fittest one at each iteration, and using an efficient subset

selection method for rare event simulation proposed in [120], we overcome the disadvantages

of the original learning algorithm, and devise an efficient learning-based stochastic gradient

descent algorithm for the joint antenna selection and user scheduling problem considered in

this chapter.

3.1 System Model

Consider a single-cell massive MIMO system consisting of one BS with the antenna setM,

and K single-antenna users. The user set is denoted by K. And we have |M| = M and

|K| = K, where | · | denotes the cardinality of a given set. Without loss of generality, we

assume that the system operates over a flat-fading channel 1, the transmission bandwidth

is B Hz, and the channel coherence bandwidth is Bc Hz. U symbols are transmitted during

a time-frequency coherence block. The uplink and downlink transmissions are considered

together with fixed ratios of ςul and ςdl, respectively, with ςul + ςdl = 1. During each channel

coherence interval, Uςul uplink symbols are transmitted first, then the Uςdl downlink symbols.

We assume that BS and all users are perfectly synchronized and operating according to the

time-division duplex (TDD) protocol. The uplink and downlink channels are considered to

be reciprocal and the uplink channel estimation at the BS could be used for both uplink

reception and downlink transmission. As shown in Fig. 3.1, τulK pilot symbols are used

during uplink transmission for channel estimation, while another τdlK pilot symbols are

used during downlink transmission to estimate each user’s effective channel and interference

variance under the current precoding [1]. We assume τul, τdl > 1 to enable orthogonal pilot

sequences among users.

The pilot sequences used by the K users during channel estimation are
√
ppilotΦ

T , where

ΦHΦ = τulKIK and ppilot is the transmit power of pilot signals. Then, the received pilot

1For frequency selective channels, orthogonal frequency division multiplexing (OFDM) can, for instance,
be used to create flat-fading subchannels.
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Figure 3.1: Illustration of TDD protocol, where ςul and ςdl are the fractions of uplink and
downlink transmission, respectively.

signal at the BS during each channel coherence interval is

Ypilot =
√
ppilotGΦT +N (3.1)

where N is the AWGN noise matrix with i.i.d. complex Gaussian CN (0, σ2) components

with zero mean and variance σ2, and G = [g1, g2, ..., gK ] ∈ CM×K is the matrix describing

the channel from all the users to the BS. More specifically, gk is the uplink channel vector

from the kth user to all the antennas at the BS. For flat fading channels, gk can be written

as [2],

gk = βkhk

where the vector hk of fading coefficients is composed of i.i.d. CN (0, 1) elements. βk describes

the effects of path loss and shadow fading, and can be expressed as

βk =
zk

(rk/d0)α

where rk is the distance between the kth user and the BS, d0 is a reference distance, α is

the path loss decay exponent, and the shadow fading coefficient zk is a log-normal random

variable, i.e., 10log10(zk) is zero-mean Gaussian distributed with standard deviation σshad.

The received uplink data signal at the BS is

yul =
√
pulGx + n (3.2)

where
√
pulx denotes the signal vector transmitted from the users to the BS (with E{xxH} =
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IK) and n ∼ CN(0, σ2IM) is the AWGN noise vector at the BS.

During downlink data transmission, the received signal vector of all users can be expressed

as

ydl =
√
pdlGHWx+ n (3.3)

where
√
pdlx is the signal transmitted from the BS to users, and W = [w1,w2, ...,wK ] ∈

CM×K is the precoding matrix at the BS.

3.2 Linear Processing in Single-Cell Massive MIMO

Systems

As the number of antennas at the BS is very large in massive MIMO systems, linear pre-

coding schemes can obtain near-optimal performance [121]. Therefore, we consider linear

processing in this chapter. More specifically, we assume that linear processing with MRC

or ZF receiver is employed at the BS during uplink data transmission, and maximum ra-

tio transmission (MRT) or ZF precoding is used during downlink transmission, under both

perfect and imperfect CSI assumptions. Finally, we obtain lower bounds for the achievable

data rates of different users with different linear processing methods.

3.2.1 Linear Processing with Perfect CSI

In this subsection, we assume the availability of perfect CSI at the BS. Both MRC and ZF

receiving strategies are considered at the BS during uplink data transmission, while MRT

and ZF precoding schemes are considered for downlink data transmission.
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3.2.1.1 Uplink

The received uplink signal at the BS after linear processing can be expressed as

ŷul =
√
pulAGx+An (3.4)

where A is the linear combination matrix at the BS and is given by

A =





GH for MRC,

(GHG)−1GH for ZF.

(3.5)

The kth component of ŷul can be expressed as

ŷul
k =

√
pulakgkxk +

√
pul

K∑

i=1,i 6=k

akgixi + akn (3.6)

where ak is the kth row ofA. Therefore, the SINR corresponding to kth user’s signal received

at the BS is

γulk =
pul |akgk|2

pul
K∑

i=1,i 6=k

|akgi|2 + ‖ak‖2 σ2

. (3.7)

Then the achievable uplink data rate (bps/Hz) of kth user is

Rul
k = E{log2 (1 + γulk )}. (3.8)

Using Jensen’s inequality and the characteristics of wireless channels, we obtain the following

lower bounds on Rul
k when MRC and ZF schemes are employed, respectively, at the BS [117]:

R̃MRC,ul
k = log2


1 +

pul(M − 1)βk

pul
K∑

i=1,i 6=k

βi + σ2


, (3.9)
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R̃ZF,ul
k = log2

(
1 +

pul(M −K)βk
σ2

)
. (3.10)

Since the number of antennas at the BS should be no less than the number of users to achieve

space multiplicity and diversity gains in MIMO systems, the condition M ≥ K should be

satisfied in (3.9). Because E{[(GHG)−1]kk} = 1
(M−K)βk

, M ≥ K + 1 should be satisfied in

(3.10).

3.2.1.2 Downlink

We assume MRT or ZF precoding is employed at the BS for downlink transmission and the

precoding vector can be expressed as

wk =
aH
k

‖ak‖
. (3.11)

The received signal at the kth user is

ydl
k =

√
pdlgH

k wkxk +
√
pdl

K∑

i=1,i 6=k

gH
k wixi + nk. (3.12)

Thus, the SINR at the kth user during downlink transmission is

γdlk =
pdl
∣∣gH

k wk

∣∣2

pdl
K∑

i=1,i 6=k

|gH
k wi|2 + σ2

. (3.13)

Then the achievable downlink data rate (bits/s/Hz) of the kth user is

Rdl
k = E{log2 (1 + γdlk )}. (3.14)
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Following the same procedure as in [117], we obtain the following lower bounds on Rdl
k with

MRT and ZF precoding, respectively:

R̃MRT,dl
k = log2

(
1 +

pdl(M − 1)βk
pdl(K − 1)βk + σ2

)
, (3.15)

R̃ZF,dl
k = log2

(
1 +

pdl(M −K)βk
σ2

)
. (3.16)

Similar to (3.9) and (3.10), (3.15) and (3.16) require that the conditions of M ≥ K and

M ≥ K + 1, respectively, are satisfied. Then, the lower bound on the total achievable data

rate in the system is

R̃ = R̃ul + R̃dl

= a
K∑

k=1

R̃ul
k + b

K∑

k=1

R̃dl
k (3.17)

where

a = ςul
(
1− τulK

Uςul

)
B (3.18)

b = ςdl
(
1− τdlK

Uςdl

)
B (3.19)

in which the factor 1− τulK
Uςul

and 1− τdlK
Uςdl

account for the uplink and downlink pilot overhead,

respectively [1].

3.2.2 Linear Processing with Imperfect CSI

In practice, CSI obtained via channel estimation is imperfect. Let us denote the channel

estimate obtained from (3.1) as Ĝ. Then, the channel estimation error is

ε = Ĝ−G. (3.20)
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The MMSE estimate of G given Ypilot is [122]

Ĝ =
1

√
ppilot

YpilotΦ
∗
(

σ2

ppilot
D−1 + τulKIK

)−1

(3.21)

where Φ∗ is the complex conjugate of the pilot sequence matrix, andD = diag(β1, β2, ..., βK).

The error covariance

CMMSE = E
{
vec(ε) ∗ vec(ε)H

}

=

(
D−1 +

τulKppilot
σ2

IK

)−1

⊗ IM (3.22)

where vec(·) and ⊗ are matrix vectorization and kronecker product operation, respectively.

Therefore, each element of ε is independent of each other, and the kth column of ε, denoted

as εk, is a vector of random variables with zero mean and variance

γvk =
βkσ

2

τulKppilotβk + σ2
, k = 1, 2, ..., K. (3.23)

Substituting (3.1) into (3.21), we can obtain

Ĝ =

(
τulKG+

NΦ∗
√
ppilot

)(
σ2

ppilot
D−1 + τulKIK

)−1

. (3.24)

Therefore, elements of Ĝ are independent of each other, and the kth column of Ĝ, denoted

as ĝk, is a vector of random variables with zero mean and variance

β̂k =
τulKppilotβ

2
k

τulKppilotβk + σ2
, k = 1, 2, ..., K. (3.25)
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Moreover, ε is independent of G and Ĝ. Now, we can obtain the following lower bounds on

the achievable uplink data rate of the kth user under imperfect CSI [117]:

R̃MRC,ul
k = log2

(
1 +

(M − 1)β̂k∑K
i=1,i 6=k β̂i +

∑K
i=1 γ

v
i +

σ2

pul

)
(3.26)

R̃ZF,ul
k = log2

(
1 +

(M −K)β̂k∑K
i=1 γ

v
i +

σ2

pul

)
(3.27)

where the constraintsM ≥ K andM ≥ K+1 are required for (3.26) and (3.27), respectively.

For the downlink case, the vector of received signals can be expressed as

ydl =
√
pdlGHŴx + n

=
√
pdlĜ

H
Ŵx−

√
pdlεHŴx+ n. (3.28)

The received signal at the kth user is

ŷdlk =
√
pdlĝH

k ŵkxk +
√
pdl

K∑

i=1,i 6=k

ĝH
k ŵixi −

√
pdl

K∑

i=1

εHk ŵixi + n. (3.29)

Then, we can obtain the following lower bounds on the achievable downlink data rate to the

kth user under imperfect CSI [117]:

R̃MRT,dl
k = log2

(
1 +

(M − 1)β̂k

(K − 1)β̂k +Kγvk +
σ2

pdl

)
(3.30)

R̃ZF,dl
k = log2

(
1 +

(M −K)β̂k

Kγvk +
σ2

pdl

)
(3.31)

Similarly, M ≥ K and M ≥ K + 1, respectively, are required to be satisfied for (3.30) and

(3.31).
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3.3 Energy Efficiency under a Constraint on the Num-

ber of RF Chains

We have obtained lower bounds on the achievable data rate with different linear processing

methods under perfect or imperfect CSI in the previous section. In this section, we formulate

the EE of massive MIMO systems with a limitation on the number of RF chains. First, we

introduce the power consumption model for massive MIMO systems. Subsequently, we

express the energy-efficiency maximization problem in massive MIMO systems subject to a

constraint on the number of RF chains.

3.3.1 Power Consumption Model

We use the power consumption model proposed in [1]. For the sake of completeness, we

describe the main characterizations here. The total power consumption consists of the

power consumed by the power amplifiers, transceiver chains, channel estimation process,

channel coding and decoding units, load-dependent backhaul, linear processing at the BS,

and the fixed power consumption (such as power required for site-cooling, control signaling,

load-independent power of backhaul infrastructure and baseband processors). Now, the total

power can be expressed as follows:

Psum = c+ dM + fR (3.32)

where

c =





c1 MRC/MRT,

c1 +
BK3

3ULBS
ZF/MRT, MRC/ZF and ZF/ZF,

(3.33)
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d =





d1 +
3BK
ULBS

MRC/MRT,

d1 +
B(3K2+4K)

ULBS
ZF/MRT and MRC/ZF,

d1 +
B(3K2+K)

ULBS
ZF/ZF,

(3.34)

f = PCOD + PDEC + PBT, (3.35)

c1 = K

(
pul

ηul
+
pdl

ηdl

)
+

2BK2

U

(
τulM

LBS

+
2τdl

LU

)
+ PFIX + PSYN +KPU , (3.36)

d1 = PBS +
2BK

LBS

(
1− (τul + τdl)K

U

)
. (3.37)

Above, different expressions in (3.33) and (3.34) are for different combinations of uplink and

downlink linear processing schemes at the BS. For instance, MRC/MRT notation describes

that MRC is used at the BS for reception in uplink and MRT is employed at the BS for

downlink transmission. The differences in (3.33) and (3.34) are the results of differences

in the power consumption of different linear processing methods. The description of the

parameters in these equations along with their typical values are given in Table 3.1. Readers

can also refer to [1] for more details.

Table 3.1: Baseband power consumption parameters in (3.32) to (3.37)

Parameter description Value

Power amplifier efficiency at the users: ηul 0.3

Power amplifier efficiency at the BS: ηdl 0.39

Fixed power consumption: PFIX 18 W

Power consumed by local oscillator at BS: PSYN 2 W

Power for the circuit components at each user: PU 0.1 W

Power for the circuit components at BS: PBS 1 W

Computational efficiency at BS: LBS 12.8 Gflops/W

Power required for coding of data signals: PCOD 0.1 W/(Gbit/s)

Power required for decoding of data signals: PDEC 0.8 W/(Gbit/s)

Power required for backhaul traffic: PBT 0.25 W/(Gbit/s)
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3.3.2 Energy Efficiency for ZF/ZF under RF Chain Constraints

As the formula of the lower bounds on the achievable data rate with different linear processing

methods are similar, we consider only ZF receiver in uplink and ZF precoding in downlink

in this subsection. Note that since the formulas for the lower bounds on the achievable

data rate under imperfect CSI are almost the same as those under perfect CSI, we only

formulate the energy-efficiency maximization problem under perfect CSI. The results for

the combination of other linear processing methods under perfect or imperfect CSI can be

obtained easily following the same procedure introduced in this chapter. For the sake of

brevity in notations, we will eliminate the subscript “ZF/ZF” in the following equations for

the results of ZF receiver in uplink and ZF precoding in downlink. The lower bound on the

EE with ZF reception in uplink and ZF precoding in downlink under perfect CSI can be

expressed as

EE(M,K) = R̃(M,K)
c+ dM + fR̃(M,K)

(3.38)

where

R̃(M,K) = a
K∑

k=1

R̃ZF,ul
k + b

K∑

k=1

R̃ZF,dl
k . (3.39)

Our goal is to find a subset of antennas M1 at the BS and a subset of users K1 which

maximize EE(M,K) under a limitation on the number of RF chains. Therefore, the original

energy-efficiency maximization problem could be written as follows:

maximize
M1⊆M,K1⊆K

EE(M1,K1)

subject to |M1| ≤ NRF, |K1| ≤ |M1| − 1 (3.40)

where NRF is the number of available RF chains at the BS.

The above problem is an NP-hard problem, and it cannot be solved analytically. We
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assume q is an N × 1 vector, where N = K +M , and qi ∈ {0, 1} for all i ∈ {1, . . . , N}. The

first K elements of q correspond to the user selection results, and the latter M elements

correspond to antennas. Define

φ(q) =

a
K∑
k=1

log2

(
1 + pul(M1−K1)qkβk

σ2

)
+ b

K∑
k=1

log2

(
1 + pdl(M1−K1)qkβk

σ2

)

c+ dM + f

(
a

K∑
k=1

log2

(
1 + pul(M1−K1)qkβk

σ2

)
+ b

K∑
k=1

log2

(
1 + pdl(M1−K1)qkβk

σ2

))

(3.41)

where K1 =
∑K

i=1 qi is the number of selected users, and M1 =
∑N

i=K+1 qi is the number of

selected antennas. Then, the optimization problem in (3.40) can be rewritten as

maximize φ(q)

subject to
N∑

i=K+1

qi 6 NRF,

K∑

i=1

qi 6

N∑

i=K+1

qi − 1,

qi ∈ {0, 1}, i = 1, 2, ..., K, (3.42)

which is a typical combinatorial optimization problem, and it can be solved efficiently via

the Gibbs-sampling based method. In the following sections, we study how to obtain the

energy-efficiency maximizing subset of users and antennas via a learning-based stochastic

gradient descent method.

3.4 Learning-Based Stochastic Gradient Descent Com-

binatorial Optimization Algorithm

In this section, we analyze how to solve the combinatorial optimization problem using the

learning-based stochastic gradient descent method. For the completeness of this chapter,

we initially review the original learning-based stochastic gradient descent method proposed
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in [119], and then address its advantages and disadvantages in solving the problem in (3.42).

Following this, we provide several extensions to the original learning-based stochastic gradi-

ent descent method to make it an efficient algorithm for solving the problem in (3.42).

3.4.1 Learning-Based Stochastic Gradient Descent Method

Suppose we have a combinatorial optimization problem with N features q = [q1, q2, ..., qN ]
T ,

qi ∈ {0, 1}, and we want to minimize the objective function ϕ(q). In [119], a learning-

based stochastic gradient descent algorithm is proposed for solving this problem based on

the characteristics of Gibbs distribution and dynamical systems.

The Gibbs distribution maps each value of the objective function onto a probability

defined by

p∗Tt
(q) =

exp(−ϕ(q)/Tt)∑
y∈S exp(−ϕ(q)/Tt)

(3.43)

where Tt > 0 is the analogue of a temperature and S = {0, 1}N is the set of all possible q.

Let us define U = {q ∈ S|∀q1 ∈ S, ϕ(q) ≤ ϕ(q1)}. The Gibbs distribution p∗Tt
converges

to a uniform distribution on U when Tt tends to zero. In other words, we can obtain the

optimal solutions by finding the limit distribution of p∗Tt
as Tt → 0. However, this is difficult

in practice. So instead of finding the limit distribution directly, we search for a distribution

which has the smallest Kullback-Leibler (KL) divergence to an implicit Gibbs distribution.

The KL divergence between p and p∗Tt
is

D(p, p∗Tt
) = −

∑

q∈S
p(q) ln

p∗Tt
(q)

p(q)
(3.44)

where ln(·) is the natural logarithm function. Then, the problem is converted into the

minimization of the free energy of the system:

Fe =
∑

q∈S
p(q)ϕ(q) + Tt

∑
q∈S

p(q)ln(p(q)). (3.45)
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This is still a discrete problem, and it is not easy to solve in practice. By introducing

θp = [θ1,p, θ2,p, ..., θN,p]
T as the probability distribution parameter for the N -dimensional

random vector q = [q1, q2, ..., qN ]
T , we can convert the discrete optimization into a continuous

optimization problem. Then, we introduce the following dynamical system

∂θp

∂t
+
∂Fe

∂θp

= 0. (3.46)

At last, we obtain the following statistical update rule:

θi,p(t+ 1) = θi,p(t)− αl (ϕ(q) + Tt(1 + ln(p(q))))
∂ ln(p(q))

∂θi,p
(3.47)

where αl is the learning rate, and ∂ ln(p(q))
∂θi,p

is the gradient.

Suppose we choose the random variables qi to be independent binomially distributed.

Then, the joint distribution of the random vector q is as follows:

p(q) =

N∏

i=1

(qipi + (1− qi)(1− pi)) (3.48)

where pi is the probability that qi equals to 1. The relationship between pi and θi,p is

pi =
1

2
(1 + tanh(βlθi,p)), (3.49)

and the gradient of ln(p(q)) is

∂ ln(p(q))

∂θi,p
= 2βl(qi − pi). (3.50)

With this, the update rule in (3.47) becomes

θi,p(t+ 1) = θi,p(t)− 2αlβl (ϕ(q) + Tt(1 + ln(p(q)))) (qi − pi). (3.51)
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As noted before, the Gibbs distribution converges to a uniform distribution which achieves

the optimal solutions, and Algorithm 3.1 below will obtain the optimal solutions with suffi-

ciently many iterations. If we use the Metropolis algorithm to update the Gibbs distribution

to get the optimal solutions, then we have the well-known simulated annealing algorithm. As

the objective function decreases fastest in the gradient direction, Algorithm 3.1 will arrive

at the optimal solution quicker than the simulated annealing algorithm.

If we are interested in finding the maximum value of an objective function, we just need to

add a negative sign before the objective function, and then substitute it into our algorithm.

Below, we provide the learning-based combinatorial optimization algorithm using the

stochastic gradient descent as Algorithm 3.1.

Algorithm 3.1 Learning-based combinatorial optimization algorithm.

1: Initialize the multivariate Bernoulli distribution parameter θp, learning rate αl, and βl;
2: Generate an N -dimensional Bernoulli random vector q which satisfies all the constraints

in the combinatorial optimization problem, with parameter vector θp;
3: Calculate the objective function value ϕ(q);
4: Update θp with (3.51);
5: If the stop criteria is met, stop; otherwise, go to step 2.

3.4.2 Drawbacks of Algorithm 3.1 and the Corresponding Solu-

tions

Although Algorithm 3.1 could arrive at the maximum value of the objective function, fluc-

tuations occur, slowing the convergence.

Another drawback lies in step 2 of Algorithm 3.1, which should generate anN -dimensional

multivariate Bernoulli random vector q which satisfies all the constraints with parameter vec-

tor θp. It may become difficult to produce this N -dimensional multivariate Bernoulli random

vector directly as the constraints for the combinatorial optimization problem are strict, e.g.,

especially when the probability of the N -dimensional multivariate Bernoulli random vector

is very small, such as less than 10−10. Such low probabilities may be experienced in practice

43



and such cases require a large number of samples to get a realization of the event.

These observations motivate us to provide the following modifications to Algorithm 3.1

and use an efficient rare event simulation method to overcome these drawbacks:

3.4.2.1 Convergence

The fluctuation problem of Algorithm 3.1 could be solved by some revisions in steps 2

and 3. Instead of generating only one sample, we generate a population of Ns individuals

from the N -dimensional multivariate Bernoulli distribution, which satisfy the constraints

with parameter vector θp in step 2. Then we determine the objective function value for

each individual and select the one which leads to the smallest value in step 3. Numerical

results demonstrate that Algorithm 3.1 converges to the optimal solutions quickly with these

changes.

3.4.2.2 Rare event simulation

The second drawback of Algorithm 3.1 is overcome with the efficient subset simulation

method for rare event estimation, proposed by Au and Beck in [120]. The basic idea of

subset simulation method is to decompose the rare event Fn into a sequence of progressively

“less-rare” nested events Fn = Fm,n ⊂ Fm−1,n ⊂ · · · ⊂ F1,n, where F1,n is a relatively frequent

event [123]. Then the small probability P (Fn) of the rare event Fn can be represented as

P (Fn) = P (F1,n) · P (F2,n|F1,n) · ... · P (Fm,n|Fm−1,n) (3.52)

where P (Fk,n|Fk−1,n) = P (Fk,n)/P (Fk−1,n) is the conditional probability of Fk,n given the

occurrence of Fk−1,n, for k = 2, ..., m. With this, the estimation of the rare event problem is

transferred to the product of relatively frequent events. In practice, it is always not obvious

how to decompose the rare event into a sequence of relatively frequent events. This could

be done adaptively via the Markov chain Monte Carlo technique [123].
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With the former two revisions, we obtain the learning-based stochastic gradient descent

algorithm for EE maximization as described in Algorithm 3.2 below.

Algorithm 3.2 Learning-based stochastic gradient descent algorithm for EE maximization.

1: Initialize the multivariate Bernoulli distribution parameter θp, learning rate αl, βl, and
the number of samples at each iteration Ns;

2: Generate Ns N -dimensional multivariate Bernoulli random vectors q with parameter
vector θp;

3: If none of the Ns multivariate Bernoulli random vectors q generated in step 2 satisfies
the constraints in (3.42), we use the subset simulation method introduced in this section
to produce another Ns multivariate Bernoulli random vectors q, instead of the vectors
produced in step 2.

4: Calculate φ(q) for each of the multivariate Bernoulli random vectors q generated in step
2 or 3, which satisfy the constraints in (3.42). Then, select the one that maximize φ(q);

5: Update θp with (3.51). As the goal is to maximize the EE, we substitute ϕ(q) = −φ(q)
into (3.51);

6: If the stop criteria is met, stop; otherwise, go to step 2.

We usually stop learning when EE converges to some value. The subset of antennas

at the BS and subset of users are selected jointly in Algorithm 3.2. Numerical simulation

results in the following section will show that Algorithm 3.2 is very efficient to solve the EE

maximization problem subject to a limitation on the number of RF chains.

In order to see the effect of RF chains constraint on the maximum EE that the system

could achieve, We also consider the case where there is no RF chains constraint for the

selected number of antennas. In this situation, it is equivalent to the case that the number

of RF chains constraint equals the total number of antennas at the BS, i.e., NRF = M in

equation (3.42).

3.5 Numerical Results

In this section, we provide numerical results to analyze the performance. More specifically,

we primarily focus the EE achieved when a ZF receiver is used at the BS for uplink data

reception, and ZF precoding is employed at the BS for downlink data transmission (abbrevi-

ated as the ZF/ZF strategy). We analyze the EE as a function of the SNR and the number
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of available RF chains. Performance levels achieved with other uplink receivers and down-

link precoders, addressed in Section 3.2, can be determined similarly. In Section 3.5.4, we

compare our learning-based stochastic gradient descent method with the algorithm proposed

in [1], and demonstrate that our algorithm can further improve the EE of the system.

In Section 3.5.1, 3.5.2 and 3.5.3, we consider a single-cell massive MIMO system with

a radius of 1000 m. Users are uniformly distributed in the cell, and we assume that there

is no user within the radius of 100 m. The path loss decay exponent is α = 3.8, and the

shadow fading has a standard deviation of σshad = 8 dB. The transmission bandwidth is

B = 20 MHz, while the channel coherence bandwidth is Bc = 180 kHz. The number of

symbols transmitted during a time-frequency coherence block is U = 1800. The total noise

power at the BS is −96 dBm. The relative pilot length during uplink and downlink channel

estimation is τul = τdl = 1, i.e., the number of pilots equal to the number of users. The

uplink and downlink transmission ratios are ςul = 0.4 and ςdl = 0.6. The parameters related

to the baseband power consumption model are given in Table 3.1. The energy efficiency is

averaged with 5000 independent realizations.

3.5.1 Convergence of Algorithm 3.2

Algorithm 3.2 can be regarded as a variant of stochastic gradient decent algorithms, which

have been widely used to solve the optimization problems with nonconvex objective func-

tions. Indeed, while being different, Algorithm 3.2 has certain similarities to the stochastic

gradient descent algorithms addressed in [124–126], where the convergence properties of

such algorithms are discussed in detail. Additionally, while establishing theoretical guaran-

tees for the convergence is challenging, the convergence of Algorithm 3.2 can be addressed

and demonstrated by numerical analysis in the settings considered in the simulations. Fig.

3.2 plots the achieved EE with Algorithm 3.2 versus the number of iterations with imper-

fect CSI under RF chain constraints for a single realization of the channel coefficients. We

observe that Algorithm 3.2 converges after about 70 iterations. Numerical results show that
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the convergence tendency of Algorithm 3.2 under different settings are similar to Fig. 3.2.
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Figure 3.2: EE versus number of iterations under imperfect CSI, SNR=20 dB, RF=15, 60
antennas at the BS and 50 users uniformly distributed in the cell.

Moreover, since the optimal solution of combinatorial optimization problems can be ob-

tained by exhaustive search, it is obvious that if it achieves the same performance as exhaus-

tive search, Algorithm 3.2 converges to the optimal solution. In order to perform exhaustive

search, we consider a relatively low-dimensional setting and assume that there are 8 antennas

at the BS, and 6 users uniformly distributed in the cell.

In Fig. 3.3, we compare the maximum EE levels achieved with Algorithm 3.2 and also

with exhaustive search in single-cell massive MIMO systems, assuming both perfect and

imperfect CSI, with and without a limitation on the number of available RF chains. We

observe that the performances of Algorithm 3.2 and exhaustive search are indistinguishable,

and hence Algorithm 3.2 can attain approximately optimal solutions for problem of joint

antenna selection and user scheduling to maximize the achievable joint uplink and down-

link EE, i.e., Algorithm 3.2 converges to the approximately optimal solution points of the

corresponding combinatorial optimization problem.

Fig. 3.4 plots the average number of iterations (averaged over channel fading) needed for
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Figure 3.3: Comparison of the maximum EE levels versus SNR achieved with Algorithm 3.2
and exhaustive search method in single-cell massive MIMO systems.
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Figure 3.4: Average number of iterations needed for the converge of Algorithm 3.2.
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the converge of Algorithm 3.2. In the numerical simulations, when the successive number

of objective function values, whose difference between the former and latter is smaller than

a given tolerance, is larger than 200, we deem Algorithm 3.2 as converged and stop the

iteration process. Therefore, the lower bound of the average iteration number is 200. With

this stopping criterion, the total number of iterations before Algorithm 3.2 is stopped in

the simulation provided in Fig. 3.2 is 277 (although convergence is attained after about 70

iterations as seen in the figure).

3.5.2 Computational Complexity of Algorithm 3.2

Since Algorithm 3.2 is a Gibbs distribution based stochastic gradient descent method, it

is difficult to analyze the computational complexity theoretically. Thus, the computational

complexity is analyzed via numerical results. From the convergence analysis before, we know

that Algorithm 3.2 can achieve approximately optimal solutions for the corresponding com-

binatorial optimization problem considered in this chapter, which could also be obtained by

exhaustive search. Therefore, we here compare the computational complexities of Algorithm

3.2 and exhaustive search. The former is comprised of generating multivariate Bernoulli

random vectors, checking the RF chain constraint, and computing φ(q), while the latter

consists of only checking the RF chain constraint and computing φ(q). Numerical results

demonstrate that the time used for the computation of φ(q) dominates the computational

complexity of both Algorithm 3.2 and exhaustive search. Therefore, the number of times

φ(q) is computed during the simulations is used as a criterion for the computational complex-

ity comparison. In this section, we consider 60 antennas at the BS, and 50 users uniformly

distributed in the cell.

Fig. 3.5 plots the curves for the computational complexities of Algorithm 3.2 and the

exhaustive search method versus SNR, the number of antennas at BS and the number of

users, respectively. The y-axis corresponds to the average number of times φ(q) is computed

during the numerical simulations. All the curves in Fig. 3.5 show that the computational
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Figure 3.5: Average number of computations of φ(q) vs. SNR, number of BS antennas, M ,
and number of users, K, when employing Algorithm 3.2 and exhaustive search method.

complexity of Algorithm 3.2 is significantly (e.g., many orders of magnitude) less than that

of the exhaustive search method.

3.5.3 Maximum EE achieved by the ZF/ZF strategy

In this subsection, we assume that there are 60 antennas at the BS, and 50 users uniformly

distributed in the cell. In Figs. 3.6, 3.7 and 3.8, we plot the maximum EE (that the single-

cell massive MIMO system could achieve) as a function of SNR with perfect and imperfect

CSI and with and without RF chain constraints. We observe in Figs. 3.6 and 3.7 that

there is almost no difference in EE with and without RF chains constraints at low SNRs,

regardless of whether there is perfect (Fig. 3.6) or imperfect CSI (Fig. 3.7). On the other
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hand, at medium and large SNR levels, the presence of RF chain constraints leads to a

noticeable decrease in the maximum EE. We note that the curves approach straight lines

in the high SNR regime, but the slopes decrease when SNR is larger than 20 dB as the RF

chain constraints become more stringent. Finally, we observe in Fig. 3.8 that compared

to perfect CSI case, the maximum EE is smaller under imperfect CSI with the same SNR.

However, the curves in this figure demonstrate that the performance gap is less than 10%

under imperfect CSI, compared with that under perfect CSI. Besides, since the magnitude

of PFIX, PSYN and PBS are very large compared with the summation of uplink and downlink

transmitting power, the dominate component of the power consumption model in (3.32)

increases slower than the increasing rate of system’s total achievable data rate. Therefore,

other than bell-shaped curves, the maximum EE achieved by the system keeps increasing as

the SNR increases.

Additionally, we have the following intriguing observations. Under perfect CSI, we notice

in Fig. 3.6 that the EE curve with RF = 45 overlaps with the one without a constraint on

the number of RF chains, while the EE curves with RF = 35 and RF = 45 both overlap

in Fig. 3.7 with the one without RF chain constraints under imperfect CSI. This indicates

that under imperfect CSI, a smaller number of RF chains is needed to attain the same

performance level achieved in the absence of RF chain constraints. At the same time, it

is important to note that the best performance under imperfect CSI is less than the best

performance under perfect CSI.

The maximum EE that can be achieved in single-cell massive MIMO systems versus the

number of allowed RF chains for different SNRs under perfect and imperfect CSI are plotted

in Figs. 3.9, 3.10 and 3.11. Under both perfect and imperfect CSI, EE initially increases as

the number of allowed RF chains grows, but the rate of increase slows and EE starts staying

fixed after a certain threshold on the number of RF chains. We observe that this RF chain

threshold is larger at higher SNR levels. However, at the same SNR, the RF thresholds are

interestingly equal under perfect and imperfect CSI, although, as noted before, the maximum
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Figure 3.6: Maximum EE achieved in a single-cell massive MIMO system versus SNR with
different RF constraints under perfect CSI.
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Figure 3.7: Maximum EE achieved in a single-cell massive MIMO system versus SNR with
different RF constraints under imperfect CSI.
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Figure 3.8: Comparison of maximum EE achieved in a single-cell massive MIMO system
versus SNR under perfect and imperfect CSI.

EE that can be achieved under imperfect CSI is less than that under perfect CSI.

We remark that the results in Fig. 3.10 could guide the design of single-cell massive

MIMO systems in practice. As there are large numbers of antennas at the BS, how many

RF chains should be employed is a critical consideration in the design of massive MIMO

systems. For instance, in the design of a real system, given the EE requirements, one can

determine approximately how many RF chains should be set up at the BS from the results

in Fig. 3.10.

3.5.4 Comparison of Algorithm 3.2 and the Method in [1]

Since [1] also addresses joint uplink and downlink EE maximization in single-cell massive

MIMO systems, we in this section compare the performance of Algorithm 3.2 with that of the

method proposed in [1]. Specifically, we assume that the users are distributed in a circular

cell with maximum radius dmax = 250m and minimum radius dmin = 35m. Path-loss is

the dominant component in the large-scale fading of users’ channels. The large-scale fading

is expressed as βk = β0/(dk)
α, where dk is the distance from the kth user to the BS, the
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Figure 3.9: Maximum EE achieved in a single-cell massive MIMO system versus RF chains
constraint with different SNR under perfect CSI.
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Figure 3.10: Maximum EE achieved in a single-cell massive MIMO system versus RF chains
constraint with different SNR under imperfect CSI.

54



5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

EE
 [M

bi
ts

/J
ou

le
]

RF

 perfect CSI,SNR=20dB
 perfect CSI,SNR=40dB
 imperfect CSI,SNR=20dB
 imperfect CSI,SNR=40dB

Figure 3.11: Comparison of maximum EE achieved in a single-cell massive MIMO system
versus RF chains constraint under perfect and imperfect CSI.

path-loss decay exponent α = 3.76, and the large-scale fading at dmin is β0 = 35.3 dB. We

assume that there are 220 antennas at the BS, and 150 users uniformly distributed in the

cell. The other parameters are the same as described at the beginning of this section.

Algorithm 3.2 and [1] achieve optimal joint uplink and downlink EE with two entirely

different methods. For instance, EE maximization is achieved with joint antenna selection

and user scheduling in Algorithm 3.2, while the algorithm proposed in [1] maximizes EE

with random antenna and user selection (Specifically, in [1], with a specified power allocation

algorithm, each user is assumed to attain the same rate. Then, the EE maximization problem

reduces to finding the optimal number of antennas and users, which maximize the EE of the

system. Given the optimal numbers of antennas and users, the set of users and antennas are

selected randomly). In other words, as its most important aspect, Algorithm 3.2 performs

joint antenna selection and user scheduling, while the algorithm proposed in [1] is used

to obtain the optimal number of antennas and users. Additionally, Algorithm 3.2 can be

employed under any power allocation scheme, while the algorithm proposed in [1] only works

under the power allocation scheme which leads to the same rate for all the users.
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In order to have fairness in the comparison, we assume equal total transmit power for

both Algorithm 3.2 and the method in [1], i.e., the total transmit power for the entire set

of users is Bςulσ2ρSβK/η
ul or Bςdlσ2ρSβK/η

dl, for uplink or downlink communication, re-

spectively, where the design parameter ρ = pulβk/σ
2 = pdlβk/σ

2, and Sβ = E{β−1}. For

ZF/ZF strategy, each user’s transmit power for the algorithm proposed in [1] is proportional

to 1/‖gk‖2. We also employ Algorithm 3.2 under this power allocation scheme. Besides,

since Algorithm 3.2 can operate under any power allocation scheme, we also provide numer-

ical results with Algorithm 3.2 under other power allocation schemes, such as equal power

allocation, transmit power proportional to βk or 1/βk. We would like to point out here that

when the transmit power is proportional to 1/βk, each user would achieve the same rate

lower bound.

We assume that the pilot and data signals are transmitted with the same power, and

ZF/ZF strategy is used during uplink and downlink data transmissions. Since RF chain

constraint is not considered in [1], we will not include this constraint in this section.

Fig. 3.12 and Fig. 3.13 display the maximum EE achieved in a single-cell massive MIMO

system versus ρ (proportional to the transmit power) considering perfect and imperfect CSI,

respectively. Comparing with the algorithm proposed in [1], Algorithm 3.2 can further

improve the EE under both assumptions of perfect and imperfect CSI when equal power

allocation scheme is used, or the transmit power is proportional to βk. The maximum EE

achieved with Algorithm 3.2 under transmit power proportional to 1/βk overlaps with that

achieved under transmit power proportional to 1/‖gk‖2, for both perfect and imperfect CSI.

With equal power allocation and perfect CSI, while the curves of our algorithm and the

alternating optimization algorithm in [1] have similar shapes, Algorithm 3.2 improves the

EE by more than 40%, compared with the approach in [1]. Under imperfect CSI, the authors

in [1] used an exhaustive search method. The curve with equal power allocation in Fig. 3.13

shows that our algorithm can also achieve a substantial improvement, compared with the

exhaustive search method in [1].
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Figure 3.12: Maximum EE achieved in a single-cell massive MIMO system versus ρ under
perfect CSI.
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Figure 3.13: Maximum EE achieved in a single-cell massive MIMO system versus ρ under
imperfect CSI.

57



Chapter 4

Joint Activity Detection and Channel

Estimation in Cell-Free Massive

MIMO Networks with Massive

Connectivity

In this chapter, we focus on the asymptotic analysis of SMV based MMSE estimation in cell-

free massive MIMO systems with massive connectivity. We address the JADECE problem

using the frameworks of MMSE estimation and likelihood ratio test. Prior studies on the

MMSE estimation of sparse signals have developed methodologies, including a closed-form

method in [78], an approximation method in [79], and AMP and CB-AMP algorithms.

Since we consider cell-free massive MIMO in this paper, the non-zero components of the

sparse signal vectors to be estimated are i.n.i.d.. However, to the best of our knowledge,

all the asymptotic analyses of the MMSE estimation with replica method in the literature

focus on the sparse signal vectors with i.i.d. non-zero components. With i.n.i.d. non-zero

components, analysis becomes more challenging. Although the authors in [78] have obtained

closed-form expressions for the MMSE estimates of the sparse signals with heteroscedastic
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non-zero entries, there is a requirement for the measurement matrix to be unitary, while we

in our setting have an underdetermined system as a result of the facts that limited number

of pilots can be used, and condition of having a unitary measurement matrix cannot be

satisfied. An approximation method for the MMSE estimation of sparse signals is provided

in [79]. However, when the number of variables becomes large, the computational complexity

will grow quickly and the accumulated error will be high.

Inspired by the decoupling property of replica symmetric postulated MMSE estimation

for sparse signal vectors with i.i.d. non-zero components [61, 127], we establish a decoupling

principle of SMV based MMSE estimation for sparse signal vectors with i.n.i.d. non-zero

components, which plays a key role in our theoretical analysis of SMV based MMSE estima-

tion in cell-free massive MIMO networks with massive connectivity. Subsequently, Using the

decoupling principle, likelihood ratio test and the optimal fusion rule, we obtain detection

rules for the activity of users based on the received pilot signals at only one AP, and also based

on the cooperation of the received pilot signals from the entire set of APs for centralized and

distributed detection. Then, we determine the false alarm and miss detection probabilities of

activity detection in cell-free massive MIMO networks with massive connectivity. We show

that the error probabilities of both centralized and distributed activity detection schemes

tend to zero when the number of APs tends to infinity while the asymptotic ratio between the

number of users and pilots is kept constant. Moreover, we analyze oracle estimation, which

provides a lower bound on the mean square error of MMSE estimation for sparse signals, as

a benchmark scheme in the case of known user activities. In particular, we investigate the

asymptotic behavior of oracle estimation in cell-free massive MIMO systems with massive

connectivity via random matrix theory, and provide comparisons. Furthermore, we conduct

a numerical analysis on MMV based MMSE estimation for cell-free massive MIMO networks

with massive connectivity and demonstrated the performance differences with that of SMV

based MMSE estimation via numerical results.
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4.1 System Model

We consider a cell-free massive MIMO network that consists ofM APs and N single antenna

users as depicted in Fig. 4.1. There is only one antenna at each AP. All the APs and users

are uniformly distributed in a circular area with radius Rr, and all the APs are connected

to the CPU through a backhaul network [128]. We consider sparse activity detection in the

presence of massive connectivity, i.e., N is very large, and among all the users, only a small

fraction of them are active at a given time instant. We assume the probability of each user

being active is λ, and the user activities remain the same during each channel coherence

interval.
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Figure 4.1: Cell-free massive MIMO network.

We assume flat fading channel between all the users and APs. The channel coefficient

from the ith user to the jth AP is

gij = β
1/2
ij hij (4.1)

where βij is the large-scale fading coefficient which can be expressed as βij = min
(
d−α
ij , d

−α
0

)
,
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where dij is the distance from the ith user to the jth AP, d0 is the reference distance, and α

is the path loss decay exponent [65]. As all the APs and users are uniformly distributed in

a circle with radius Rr, the probability density function of dij is

p(dij) =
4dij

πRr
2

[
cos−1

(
dij
2Rr

)
− dij

2Rr

(
1− d2ij

4R2
r

) 1
2

]
(4.2)

for 0 < dij < 2Rr, and p(dij) = 0 elsewhere [129].

We denote the probability density function of βij by p(β). Since βij changes slowly over

time, we assume it is known at the central processing unit (CPU) and all APs. We denote by

βj ∈ RN×1 the large-scale fading vector from all users to the jth AP. Hence, the ith element

of βj equals βij. We define Λj = diag (βj). Furthermore, hij ∼ CN (0, 1) is the corresponding

small-sale fading coefficient from the ith user to the jth AP, and all the small-scale fading

coefficients are i.i.d.. We use gj ∈ RN×1 and hj ∈ RN×1 to denote the channel coefficients

and small-scale fading coefficients from all users to the jth AP, respectively. It is obvious

that gj = Λ
1/2
j hj and all the elements of hj are i.i.d.. Since the diagonal elements of Λj are

known at the CPU and APs and they are not equal to each other, the elements of gj are

i.n.i.d..

We describe the activity of the ith user with binary-valued ai, i.e., ai = 1 if the ith user

is active, while ai = 0 if it is inactive. The probability of each user being active is λ, i.e.,

P (ai = 1) = λ and P (ai = 0) = 1 − λ. We designate the combination of the ith user’s

activity and the channel coefficient from the ith user to the jth AP as the effective channel

coefficient θij, i.e., θij = aigij. Additionally, we denote by bij = aihij the effective small-scale

fading coefficient from the ith user to the jth AP. Similarly, we use the vectors θj and bj to

denote the effective channel coefficients and effective small-scale fading coefficients from all

users to the jth AP, respectively. It is obvious that θj = Λjbj , and the non-zero elements

of θj are i.n.i.d. while the non-zero elements of bj are i.i.d..

In each channel coherence interval, active users will send pilots to APs first, and then
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transmit messages. The pilots are used by APs to recognize the activity of the users. We

assume that L symbols are used for pilot transmission during each channel coherence interval.

The pilot matrix is denoted by an L × N complex matrix Φ, and each element of Φ is

independent and circularly symmetrically distributed with zero mean and variance 1
L
. Then,

the received pilot signal at the jth AP is

yj = Φθj + nj (4.3a)

= ΦΛ
1/2
j bj + nj (4.3b)

where nj ∈ CN (0, σ2
0IL) is the i.i.d. additive white Gaussian noise vector at the jth AP.

Finally, the aggregated received pilot signal of the entire set of APs can be expressed as

Y = ΦΘ +N (4.4)

where Θ = [θ1, θ2, · · · , θM ] is the effective channel matrix from all users to the entire set of

APs, and N = [n1,n2, · · · ,nM ] is the aggregated noise matrix at all APs.

Remark 4.1 For facilitating the theoretical analysis, we consider SMV based MMSE esti-

mation of θj in (4.3a), although the estimation of Θ in (4.4) is an MMV problem. The

performance gap introduced by dividing the MMV problem into multiple SMV problems is

shown via numerical results in Section 4.7.

Remark 4.2 Through Section 4.2 to Section 4.4, we consider SMV based MMSE estimation

and activity detection with the received pilot signals at only one AP. For instance, if we

consider the jth AP, then the large-scale fading coefficients, effective channel coefficients,

effective small-scale fading coefficients, received pilot signals and noise are Λj, θj, bj, yj

and nj, respectively. For the sake of notational brevity, we omit the subscript “j” in these

symbols through Section 4.2 to Section 4.4 when there is no confusion.

For the completeness of this chapter, in the next section, we briefly address preliminary
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characterizations on SMV based postulated MMSE estimation and the CB-AMP algorithm,

which will be used in our subsequent analysis.

4.2 Preliminaries

Several preliminary characterizations from prior work are provided in this section. First,

we introduce the decoupling principle of SMV based postulated MMSE estimation of sparse

signal vectors with i.i.d. non-zero components. Then, we describe the SMV based CB-AMP

algorithm for MMSE estimation of sparse signals.

4.2.1 SMV Based Postulated MMSE Estimation

From Section II, we know that the elements of b are i.i.d., and the variance of the AWGN

noise at AP is σ2
0 . We denote the probability density function of each element of b by p0(b).

Now we can express

p0(b) = (1− λ) δ (b) + λCN (b; 0, 1) (4.5)

where δ(·) is the Dirac delta function, and CN (x0; c0, d0) stands for the probability density

function (at point x0) of a circularly symmetric complex Gaussian random variable x with

mean c0 and variance d0.

Suppose we are given the postulated prior distribution of each element of b as ppost(b),

and the postulated AWGN noise variance is σ2
post. Then, the postulated MMSE (PMMSE)

estimate of b is defined as

b̂ pmmse (y) = E
{
b|y; ppost(b), σ2

post

}
. (4.6)

Note that in the case in which ppost(b) = p0(b) and σ2
post = σ2

0 , b̂
pmmse (y) is the MMSE

estimate of b given the received signal y. Thus, postulated MMSE estimation is used in this

chapter to aid the asymptotic analysis of SMV based MMSE estimation for sparse signal
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vectors with both i.i.d. and i.n.i.d. non-zero components.

Now, let us consider a scalar Gaussian noise corrupted received signal

z = b+
√
ηn (4.7)

where n ∼ CN (0, 1). We define the conditional MMSE estimate of b as

b̂ pmmse
scalar (z; ppost(b), η) = E {b|z; ppost(b), η} . (4.8)

Given two distributions, p1post(b) and p
2
post(b), and two noise levels, η1 and η2, we define

MSE
(
p1post(b), p

2
post(b), η1, η2

)
=

∫ ∣∣∣b− b̂ pmmse
scalar

(
z; p1post(b), η1

)∣∣∣
2

p
(
b|z; p2post(b), η2

)
db. (4.9)

Equation (4.9) shows the mean square error of postulated MMSE estimation for signal dis-

tribution p2post(b) and noise variance η2 under postulated signal distribution p1post(b) and pos-

tulated noise variance η1. When p1post(b) = p2post(b) = p0(b) and η1 = η2 = σ2
0, equation (4.9)

gives the mean square error of MMSE estimation for b. Then, we can obtain the decou-

pling principle of replica symmetric PMMSE estimation for sparse signal vectors with i.i.d.

non-zero components. We present this characterization as a property below.

Property 4.1 [Decoupling Principle of Replica Symmetric SMV based MMSE Estimation

for Sparse Signal Vectors with i.i.d. non-zero components] [61, 127]: Consider the lin-

ear model in (3b). Assume that the number of pilots used for estimation, L, changes with

the number of users, N (using L(N) to denote the relationship between L and N), and

lim
N→∞

N
L(N)

= γ. Let b̂ pmmse (y) be the MMSE estimate of b based on the prior distribution

p0(b) and noise variance σ2
0. Then, under replica symmetry, there exist effective noise levels

σ2
eff and σ2

p-eff such that:

(1) As N →∞, the random vector (bk,βk ,̂b
pmmse
k ) converges in distribution to the random

vector (b,β ,̂b). Here, bk and b̂ pmmse
k are the kth elements of b and b̂ pmmse (y), respectively.
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βk is the kth diagonal element of Λ. b, β and n are independent with distributions b ∼ p0(b),

β ∼ p(β), n ∼ CN (0, 1), and

zmmse = b+
√
ηn, (4.10a)

b̂ = b̂ pmmse
scalar (zmmse; p0(b), ηp) (4.10b)

where η =
σ2
eff

β
and ηp =

σ2
p-eff

β
.

(2) The effective noise levels satisfy the equations

σ2
eff = σ2

0 + γE {βMSE (p0(b), p0(b), ηp, η, z)} , (4.11a)

σ2
p-eff = σ2

0 + γE {βMSE (p0(b), p0(b), ηp, ηp, z)} (4.11b)

where the expectations are taken over β ∼ p(β) and z is generated by (4.10a).

Property 4.1 shows that the MMSE estimation of the SMV problem in (4.3b) can be de-

coupled into scalar Gaussian noise corrupted linear problems as described in (4.10a), and the

corresponding noise variance in (4.10a) can be obtained by solving the fixed point equations

in (4.11). Then, we can readily find the MMSE estimates in (4.10b) and the corresponding

mean square error.

Remark 4.3 Since we consider SMV based MMSE estimation in this chapter, the postulated

prior of b and the postulated noise level used in Property 4.1 are the prior distribution p0(b)

and noise variance σ2
0, respectively.

Remark 4.4 In general, there may exist multiple solutions for the fixed point equations in

(4.11). In this case, the true solution is the minimizer of a certain free energy function as

described in [61].
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4.2.2 SMV Based CB-AMP Algorithm

The CB-AMP algorithm is used during numerical simulations to obtain the SMV based

MMSE estimates of the sparse effective channel coefficients in cell-free massive MIMO net-

works. For the sake of completeness in this chapter, we briefly introduce the CB-AMP

algorithm proposed in [57]. We summarize the recursions of the CB-AMP algorithm in

Algorithm 4.1 below.

Algorithm 4.1 SMV based CB-AMP algorithm [57].

For the linear model in (4.3a) with a given pilot matrix Φ, received signal y, and the prior

probability function p(θ), the CB-AMP algorithm generates a sequence of estimates θ̂t, r̂t,
for t = 1, 2, . . . through the following recursions:

(1) Initialization: Set t = 1, θ̂1 = θ, κ̂1 = var(θ), z0 = 1L, p = y, where θ and var(θ) are
the corresponding mean and variance for each element of θ, and 1M is an 1 ×M vector
whose elements are 1.
(2) For each j ∈ [L] (where [L] stands for the set which includes the integers from 1 to
L), calculate

ztj =
∑

i

|φji|2κ̂ti, (4.12a)

ptj =
∑

i

φjiθ̂
t
i −

ztj

σ2
0 + zt−1

j

(
ya − pt−1

a

)
(4.12b)

where φji is the corresponding element on the jth row and ith column of Φ.
(3) For each i ∈ [N ], calculate

τ ti =

[
∑

j

|φji|2
σ2
0 + ztj

]−1

, (4.13a)

r̂ti = θ̂ti + τ ti
∑

j

φ∗
ji

(
yj − ptj

)

σ2
0 + ztj

, (4.13b)

θ̂t+1
i = gin

(
r̂ti , τ

t
i

)
, (4.13c)

κ̂t+1
i = ̟in

(
r̂ti, τ

t
i

)
. (4.13d)

Then let t← t+1, and return to step (2) and repeat until a sufficient number of iterations
have been performed or a given termination condition is satisfied.

Considering the AWGN output channel and the recursions of the CB-AMP algorithm,

66



the estimated signal is decoupled into scalar AWGN Gaussian noise corrupted signals, i.e.,

r̂ti = θi +
√
ξtn (4.14)

where ξt is the variance of the corrupting noise, and it satisfies the following state evolution

equation [57]:

ξt+1 = σ2
0 + γE

{
|θi − θ̂ti |

2
}
. (4.15)

The MMSE estimates of θ̂ti given r̂
t
i for the linear model in (4.14) is [64]

θ̂t+1
i

(
r̂ti; ξ

t, λ, βi
)
= E

{
θ|r̂ti; ξt, λ, βi

}

= G
(
|r̂ti|

2
; ξt, λ, βi

) βi
βi + ξt

r̂ti (4.16)

where

G
(
|r̂ti|

2
; ξt, λ, βi

)
=

1

1 + (1−λ)(βi+ξt)
λξt

exp
(
− βi|r̂ti |2

ξt(βi+ξt)

) .

Then we can obtain the MMSE estimate of θ̂t+1
i as

gin(r̂
t
i, τ

t
i ) = θ̂t+1

i

(
r̂ti ; τ

t
i , λ, βi

)
(4.17)

where τ ti provided in (4.13a) is the estimated value of ξt. Finally, the estimated variance of

θ̂t+1
i can be expressed as

̟in(r̂
t
i, τ

t
i ) = τ ti

∂

∂r̂ti
gin
(
r̂ti, τ

t
i

)

= βiG

[
βi(τ

t
i + |r̂ti|2) + |τ ti |2

(βi + τ ti )
2 −G βi|r̂ti|2

(βi + τ ti )
2

]
(4.18)

where G stands for the function G
(
|r̂ti|2; τ ti , λ, βi

)
.
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4.3 SMV Based MMSE Estimation in Cell-Free Mas-

sive MIMO Networks with Massive Connectivity

In this chapter, we focus on the asymptotic analysis of SMV based MMSE estimation for

sparse signal vectors with i.n.i.d. non-zero components, which is the case for the linear

model in (4.3a). Since it is challenging to find closed-form results, CB-AMP is an efficient

algorithm to acquire the MMSE estimate of θj numerically. However, to the best of our

knowledge, there is no previous work which has focused on the asymptotic analysis of this

setting. Several previous studies in the literature addressed the asymptotic analysis of SMV

based MMSE estimation for sparse signal vectors with i.i.d. non-zero components. In order

to use these results, we need to convert the problem in (4.3a) into (4.3b), in which case the

unknown sparse vector bj has i.i.d. non-zero components. On the other hand, in the same

situation with (4.3a), it is challenging for us to find a closed-form MMSE estimate of bj

in (4.3b), and CB-AMP is an efficient algorithm to be considered. However, CB-AMP has

strict requirements on the structure of the measurement matrix to ensure that the algorithm

works [57, 130]. For a given pilot matrix Φ, the equivalent measurement matrix in (4.3b)

is ΦΛj as we consider only yj for SMV based MMSE estimation when seeking to estimate

bj . Since the elements of Λj are random variables, it is difficult to control the structure

of ΦΛj to meet the measurement matrix requirements of the CB-AMP algorithm. Thus,

it is challenging to find the MMSE estimate of bj in (4.3b) numerically with the CB-AMP

algorithm. In summary, we can not perform asymptotic and numerical analysis with the same

linear model, i.e., linear model in (4.3a) is suitable for numerical analysis but challenging

for asymptotic analysis, while (4.3b) is challenging for numerical analyze but suitable for

asymptotic analysis.

In this section, by considering the relationship between the MMSE estimate of unknown

vectors in (4.3a) and (4.3b), we arrive at a decoupling principle as represented in Property

4.2, with which we can perform asymptotic analysis on the MMSE estimate of θj in (4.3a).
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Then, the asymptotic and numerical analyses can be performed within the same linear

model (4.3a), facilitating the performance analysis on SMV based MMSE estimation for

sparse signal vectors with i.n.i.d. non-zero components (the case of cell-free massive MIMO

being included), and also the likelihood ratio test in the following sections.

Initially, to provide a benchmark, we analyze the “oracle estimation” with which the

MMSE estimation is performed using the linear model (4.3a) under the idealistic assumption

that the support of the users (i.e., their being active or inactive) is known at the APs. With

the prior information on user support, it is obvious that the oracle estimation leads to a

lower bound on the mean square error of MMSE estimation using the linear model (4.3a)

with unknown user support. Additionally, the asymptotic analyze of oracle estimation is

performed with random matrix theory.

In order for the simplicity of descriptions, we define several notations first. Let us denote

the user activity support of θ as s∗ = [a1, a2, · · · , aN ]T . For a given user activity support

s ∈ {0, 1}N and its corresponding index set of non-zero elements, Is (i ∈ Is if i 6 N and

si = 1), we define Φs and Λs as matrices consisting of the columns of Φ and Λ on the index

set Is, respectively. Similarly, θs is comprised of the entries on the index set Is.

4.3.1 Oracle Estimation

Assume s∗ is known at all APs. Then,

p(y|Φs∗ , θs∗) =
1

πLσ2L
0

exp

(
−‖y −Φs∗θs∗‖2

σ2
0

)
(4.19)

and

p(θs∗) =
1

π|s∗| |Λs∗ |
exp

(
−θH

s∗Λ
−1
s∗ θs∗

)
(4.20)
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where |s∗| stands for the cardinality of s∗, and |Λs∗| denotes the determinant of Λs∗ . There-

fore, the oracle estimate is

θ̂oracle =

∫
θs∗p(θs∗|Φs∗ ,y)dθs∗

=
(
ΦH

s∗Φs∗ + σ2
0Λ

−1
s∗

)−1
ΦH

s∗y (4.21)

and the corresponding mean square error is

MSEoracle =
1

N
tr

((
1

σ2
0

ΦH
s∗Φs∗ +Λ−1

s∗

)−1
)

(4.22)

where tr(·) is the trace operator. Now, let us consider the asymptotic behavior of the

mean square error of the oracle estimate, i.e., determine MSEm∗ = lim
N→∞

MSEoracle, where

m∗ = lim
N→∞

|s∗|
N
. Recall that the elements of Φs∗ are i.i.d. with zero mean and variance 1/L.

Then we can obtain

R 1

σ2
0
ΦH

s∗
Φs∗

(z) =
1

σ2
0 −m∗γz

(4.23)

where RX (·) is the R-transform of random matrix X [131].

Via random matrix theory, the η-transform of Λ−1
s∗ is

ηΛ−1
s∗

(ς) = E

{
β

β + ς

}
(4.24)

where β is a random variable that has the same distribution as the diagonal elements of Λs∗ ,

and ς > 0 [131]. Using the relationship between R-transform and η-transform, we can obtain

RΛ
−1
s∗

(z) = −1
ς
− 1

z
(4.25)

where

z = −ςηΛ−1
s∗

(ς) . (4.26)
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Let us define Fs∗ = 1
σ2
0
ΦH

s∗Φs∗ +Λ−1
s∗ . Since

1
σ2
0
ΦH

s∗Φs∗ is unitarily invariant and Λ−1
s∗ is a

deterministic matrix with bounded eigenvalues, 1
σ2
0
ΦH

s∗Φs∗ and Λ−1
s∗ are asymptotically free.

Thus,

RFs∗ (z) = R 1

σ2
0
ΦH

s∗
Φs∗

(z) +RΛ
−1
s∗

(z)

=
1

σ2
0 −m∗γz

− 1

ς
− 1

z
. (4.27)

Therefore,

S−1
Fs∗ (−z) = RFs∗ (z) +

1

z

=
1

σ2
0 −m∗γz

− 1

ς
(4.28)

where S−1
X (·) stands for the inverse of Stieltjes transform of the random matrix X. Setting

S−1
Fs∗ (−z0) = 0, we can obtain

E

{
β

β + ς0

}
=
ς0 − σ2

0

m∗γς0
. (4.29)

Then, with the definition of Stieltjes transform, we have

1

m∗MSEm∗ = lim
|s∗|→∞

1

|s∗|tr
((

1

σ2
0

ΦH
s∗Φs∗ +Λ−1

s∗

)−1
)

= SFs∗ (0)

= SFs∗

(
S−1
Fs∗ (−z0)

)

= −z0

= ς0ηΛ−1
s∗

(ς0)

=
ς0 − σ2

0

m∗γ
(4.30)

where SX (·) is the Stieltjes transform of random matrix X, and ς0 can be obtained via the
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fixed point equation (4.29).

In this chapter, we consider the scenario in which the users are active independently with

the same probability λ. Therefore, λ = lim
N→∞

|s∗|
N

= m∗. Thus, the asymptotic mean square

error of the oracle estimation is

MSEoracle,A =MSEλ

=
ς∗ − σ2

0

γ
(4.31)

where ς∗ is the solution of the fixed point equation

E

{
β

β + ς∗

}
=
ς∗ − σ2

0

λγς∗
.

4.3.2 SMV Based MMSE Estimation

In this subsection, we focus on the asymptotic analysis of SMV based MMSE estimation for

sparse signal vectors with i.n.i.d. non-zero components, which is the statistical description of

linear model (4.3a). By comparing the formulas for the MMSE estimate of unknown vectors

in (4.3a) and (4.3b), we find a closed-form relationship between the MMSE estimates of θ

and b. Inspired by the decoupling principle in Property 4.1 for (4.3b), we propose a similar

decoupling principle for the linear model (4.3a) as represented in Property 4.2. Finally,

we arrive at two different methods to compute the effective noise level σeff for the MMSE

estimates of linear model (4.3a).

The SMV based MMSE estimator for the unknown vector in linear model (4.3a) is [79]

θ̂mmse =
∑

s∈{0,1}N
p(s|y)θ̂s (4.32)

where p(s|y) is the conditional probability that the user’s activity support equals s, and

θ̂s =
(
ΦH

s Φs + σ2
0Λ

−1
s

)−1
ΦH

s y. (4.33)
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Similarly, the MMSE estimator for the unknown vector in linear model (4.3b) is

b̂mmse =
∑

s∈{0,1}N
p(s|y)b̂s (4.34)

and

b̂s =
(
Λ1/2

s ΦH
s ΦsΛ

1/2
s + σ2

0I|s|
)−1

Λ1/2
s ΦH

s y

= Λ−1/2
s

(
ΦH

s Φs + σ2
0Λ

−1
s

)−1
ΦH

s y. (4.35)

For a given received signal y, we have the same p(s|y) in (4.32) and (4.34), and θ̂s =

Λ
1/2
s b̂s. Therefore,

θ̂mmse = Λ1/2b̂mmse. (4.36)

Decoupling principle in Property 4.1 indicates that the MMSE estimate for linear model

(4.3b) can be decomposed into Gaussian noise corrupted scalar models described in (4.10a).

As a result of the relationship in (4.36), it is natural for us to consider using zmmse
1 =

√
βzmmse

to describe the decoupling property of the MMSE estimate for linear model (4.3a), i.e.,

zmmse
1 = θ + σeffn. (4.37)

Now, let us try to verify the assumption of (4.37) via the MMSE estimates of the scalar

linear models in (4.10a) and (4.37). With the result in (4.16), it is easy for us to obtain that

b̂mmse = G
(
|zmmse|2; η, λ, 1

) zmmse

1 + η
, (4.38)

θ̂mmse = G
(
|zmmse

1 |2; σ2
eff, λ, β

) βzmmse
1

β + σ2
eff

, (4.39)

and

G
(
|zmmse

1 |2; σ2
eff, λ, β

)
= G

(
|z|2; η, λ, 1

)
(4.40)
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when zmmse
1 =

√
βzmmse. Therefore,

θ̂mmse =
√
βb̂mmse, (4.41)

which is consistent with the relationship in (4.36) and verifies our assumption of using (4.37)

to describe the decoupling property of the MMSE estimate for linear model (4.3a).

Combining (4.36), (4.37) and Property 1, we conclude that the MMSE estimator of

linear model (4.3a) breaks down the received signal into Gaussian noise corrupted versions

as described in (4.37), and the parameter σeff satisfies the fixed point equations in (4.11).

We call this property as the decoupling principle of the MMSE estimation of linear model

(4.3a) and summarize it in Property 4.2 as follows:

Property 4.2 [Decoupling Principle of Replica Symmetric SMV based MMSE Estimation

for Sparse Signal Vectors with i.n.i.d. non-zero Components]: Consider the linear model

in (4.3a), where θ = Λb, Λ is a diagonal matrix whose diagonal elements (denoted by the

random variable β) are i.i.d. distributed with distribution β ∼ p(β). The diagonal elements of

Λ are realizations from the random distribution p(β) and we assume that they are known for

further signal processing. The elements of b are i.i.d. distributed with distribution b ∼ p0(b).

As a consequence of knowing the diagonal elements of Λ, the elements of θ are i.n.i.d..

Assume that the number of pilots used for estimation, L, and the number of users, N satisfy

the conditions as described in Property 4.1. Let θ̂mmse(y) be the MMSE estimate of θ.

Then, under replica symmetry, as N →∞, the random vector (θk,βk,θ̂
mmse
k ) converges in

distribution to the random vector (θ,β,θ̂). Here, θk and θ̂ mmse
k are the kth elements of θ and

θ̂ mmse (y), respectively. βk is the kth diagonal element of Λ. b, β and n are independent

with distributions b ∼ p0(b), β ∼ p(β), n ∼ CN (0, 1). There exist effective noise levels σ2
eff
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and σ2
p-eff such that:

zmmse
1 = θ + σeffn, (4.42a)

θ̂ =
√
βb̂ pmmse

scalar (zmmse
1 ; p0(b), ηp) , (4.42b)

where ηp =
σ2
p-eff

β
. The effective noise levels σ2

eff and σ2
p-eff satisfy the fixed point equations in

(4.11).

Proof 4.1 From the results in Property 4.1, we can acquire that as N → ∞, the random

vector ( θk√
βk
,βk ,̂b

pmmse
k ) converges in distribution to the random vector ( θ√

β
,β ,̂b), and the

scalar Gaussian noise corrupted θ can be expressed as zmmse = θ√
β
+
√
ηn. As noted above,

the MMSE estimates θ̂mmse and b̂mmse have the relationship θ̂mmse =
√
βb̂mmse when the scalar

versions of Gaussian noise corrupted θ and b, which are denoted as zmmse
1 and zmmse, have

the relationship zmmse
1 =

√
βzmmse. Therefore, when the decoupled scalar Gaussian noise

corrupted θ is expressed as zmmse
1 =

√
βzmmse = θ + σeffn, the random vector (θk,βk,θ̂

mmse
k )

converges in distribution to the random vector (θ,β,
√
βb̂) as N → ∞, which has the same

distribution as that of the random vector (θ,β,θ̂). Hence, we have convergence in distribution

to (θ,β,θ̂), and Property 4.2 follows from Property 4.1. For details on the proof of Property

4.1, we refer to [61].

Similar to Property 4.1, Property 4.2 shows that the MMSE estimation of the SMV

problem in (4.3a) can be decoupled into scalar Gaussian noise corrupted linear problems

as represented in (4.42a), and the corresponding noise variance in (4.42a) can be obtained

by solving the fixed point equations in (4.11). Then it becomes obvious to find the MMSE

estimates in (4.42b) and the corresponding mean square error.

Now, we seek to find the value of σeff. Note that we can determine σeff by solving the

fixed point equations in (4.11). We refer to this method as Property1-σeff. The PMMSE
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estimator in (4.10b) is

b̂ pmmse
scalar (z; p0(b), ηp) = G

(
|z|2; ηp, λ, 1

) z

1 + ηp
. (4.43)

Then, with (4.9), the mean square error in (4.11b) is [64]

MSE (p0(b), p0(b), ηp, ηp, z) =

∫ ∣∣∣b− b̂ pmmse
scalar (z; p0(b), ηp)

∣∣∣
2

p (b|z; p0(b), ηp) db

=λ

[
1− η2p

1 + ηp
ω

(
(1 + ηp)(1− λ)

ληp
, ηp

)]
(4.44)

where

ω(a, b) =

∫ ∞

0

te−bt

1 + ae−t
dt.

Following the same procedure as in [64], we can obtain the mean square error in (4.11a) as

MSE (p0(b), p0(b), ηp, η, z) =

∫ ∣∣∣b− b̂ pmmse
scalar (z; p0(b), ηp)

∣∣∣
2

p (b|z; p0(b), η) db

=λ

[
1− 2η2p(1 + ηp)

(1 + η)2
ω
(
a, b
)
+

η2p
1 + η

ω2(a, b, c, d)

]
(4.45)

where

ω2(a, b, c, d) =

∫ ∞

0

te−bt
(
1− ce−dt

)

(1 + ae−t)2
dt,

a =
(1 + ηp)(1− λ)

ληp
,

b =
ηp(1 + ηp)

1 + η
,

c =
(1 + η)(1− λ)

λη
,

d = b/η.

Then, we determine σeff by substituting (4.44), (4.45) and the distribution of β into the fixed

point equations in (4.11).
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With the CB-AMP algorithm and also the theoretical result in (4.42a), we have another

approach to obtain σeff, specifically by using the state evolution equation (4.15). When

the CB-AMP algorithm converges, the noise variance in (4.14) should satisfy ξt+1 = ξt.

Therefore, σ2
eff satisfies the fixed point equation

σ2
eff = σ2

0 + γE

{∣∣∣θ − θ̂mmse

∣∣∣
2
}

(4.46)

where θ̂mmse is given in (4.39). Therefore, we can obtain σeff by solving the fixed point

equation (4.46). We call this method as State-σeff.

The mean square error of the MMSE estimate for the linear model (4.37) is

E

{∣∣∣θ − θ̂mmse

∣∣∣
2
}

= λ

(
E{β} −

∫ βmax

βmin

∫ ∞

0

f(σeff, β, t)dtdβ

)
(4.47)

where

f(σeff, β, t) =
λtp(β)e−tσ2

eff
/β

(
β
σ2
eff

+ 1
)2 (

λ
β+σ2

eff

+ (1−λ)e−t

σ2
eff

) ,

βmin = (2R)−α, and βmax = d−α
0 .

By now, we have introduced the Property1-σeff and State-σeff method to compute the

effective noise level σeff in (4.42a). Although derived with the state evolution equations of

the CB-AMP algorithm, the set up of State-σeff method is conditioned on the theoretical

result in (4.42a) which is introduced by the decoupling principle. In other words, decoupling

principle in Property 4.2 provides the theoretical basis for the asymptotic analysis of SMV

based MMSE estimation for sparse signal vectors with i.n.i.d. non-zero components in this

chapter, including both Property1-σeff and State-σeff method, and the likelihood ratio test

introduced in the following sections.

Since the mean square error E{|θ − θ̂mmse|
2} monotonically increases with σeff [132], there

exists at most one solution for the fixed point equation (4.46). However, the fixed point equa-

tions in (4.11) may have multiple solutions. Therefore, unlike in the State-σeff method, we
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may need to search for the true solution among several values to find σeff when Property1-σeff

method is used. Thus, State-σeff method leads to a more efficient numerical evaluation in

computing σeff, compared with the Property1-σeff method, while the set up of the former is

conditioned on the theoretical result which is introduced by the decoupling principle (facili-

tating the theoretical analysis that lead to the latter method).

4.4 Likelihood Ratio Test With SMV Based MMSE

Estimation

In this section, we consider the activity detection problem based on the received signal at

only one AP. From the previous section, we know that the MMSE estimation breaks down

the received signal of the linear model (4.3a) into Gaussian noise corrupted scalar versions

described in (4.42a). Then, we can obtain the corresponding likelihood functions as follows:

p(zmmse
1 |a = 1) =

1

π
(
β + σ2

eff

) exp
(
−|z

mmse
1 |2

β + σ2
eff

)
, (4.48)

p(zmmse
1 |a = 0) =

1

πσ2
eff

exp

(
−|z

mmse
1 |2
σ2
eff

)
. (4.49)

Now, the likelihood ratio is

R (zmmse
1 ) =

p(zmmse
1 |a = 1)

p(zmmse
1 |a = 0)

=
σ2
eff

β + σ2
eff

exp

(
β|zmmse

1 |2
σ2
eff(β + σ2

eff)

)
. (4.50)

Finally, we can obtain the likelihood ratio test rule

R (zmmse
1 )

a=1

≷
a=0

1− λ
λ

. (4.51)
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After some algebraic operations, we have the following threshold detection rule:

|zmmse
1 |2

a=1

≷
a=0

l′
(
σ2
eff, λ, β

)
(4.52)

where

l′
(
σ2
eff, λ, β

)
=
σ2
eff(β + σ2

eff)

β
log

(
(1− λ)(β + σ2

eff)

λσ2
eff

)
.

Then, the false alarm probability is

PF = E

{
exp

(
−
l′
(
σ2
eff, λ, β

)

σ2
eff

)}
(4.53)

and the miss detection probability is

PM = 1− E
{
exp

(
−
l′
(
σ2
eff, λ, β

)

β + σ2
eff

)}
(4.54)

where the expectation is over the large-scale fading coefficient β. Finally, the error probability

is

Perr = (1− λ)PF + λPM . (4.55)

4.5 Activity Detection With SMV Based MMSE Esti-

mation in Cell-Free Massive MIMO Networks

In this section, we consider activity detection in cell-free massive MIMO systems with massive

connectivity based on the cooperation of received pilot signals at the entire set of APs. As

noted before, with the CB-AMP algorithm, we can obtain the SMV based MMSE estimates

of the effective channel coefficients from all users to every AP, and the received pilot signals

at each AP are decomposed into scalar Gaussian noise corrupted versions which can be
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expressed as

zmmse
2 = θij + σeffn. (4.56)

Within this cooperative framework, there are two different approaches, namely, central-

ized and distributed activity detection. In the centralized detection method, received pilot

signals at all APs are transmitted to the CPU, and the decisions on the activity of all users

are made based on all received pilot signals. In the distributed detection method, each AP

makes its own decisions on the activity of all users based on its own received pilot signals,

and subsequently the decisions and the corresponding detection reliabilities are transmitted

to the CPU. The final decisions on the activity of all users are made at CPU based on the

decisions from all APs while taking into account corresponding detection reliabilities.

4.5.1 Centralized Activity Detection

We denote the decoupled Gaussian noise corrupted signal of the MMSE estimate of the

effective channel coefficients from the ith user to all the APs as zmmse
i ∈ C1×M , which can be

expressed as

zmmse
i = θi + σeffn. (4.57)

As also done in [9] and [10], we assume that each component of the noise vector n is inde-

pendent of other components. Note that the probability density function of θi is

p(θi) = (1− λ)δ(θi) + λCN (0,Λi), (4.58)

and the conditional probability density functions of zmmse
i are

p (zmmse
i |ai = 0) =

1

πMσ2M
eff

exp

(
−|z

mmse
i |2
σ2
eff

)
(4.59)
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and

p (zmmse
i |ai = 1) =

1

πM |Σi|
exp

(
−zmmse

i Σ−1
i (zmmse

i )H
)
, (4.60)

where Σi = Λi + σ2
effIM . Then we can obtain the probability density function

p (zmmse
i ) = (1− λ) p (zmmse

i |ai = 0) + λp (zmmse
i |ai = 1) . (4.61)

Note that the conditional probability density function is given by

p(zmmse
i |θi) =

1

πMσ2M
eff

exp

(
−|z

mmse
i − θi|2
σ2
eff

)
. (4.62)

Then we can obtain the posterior conditional probability density function as

p(θi|zmmse
i ) =

p(zmmse
i |θi)p(θi)

p (zmmse
i )

. (4.63)

Finally, we can express the MMSE estimate of θj as

θ̂mmse
i = E {θi|zmmse

i }

=
zmmse
i

(
σ2
effΛ

−1
i + IM

)−1

1 + (1−λ)|Σi|
λσ2M

eff

exp
(
−zmmse

i

(
1

σ2
eff

IM −Σ−1
i

)
(zmmse

i )H
) . (4.64)

It is obvious that the elements of θ̂mmse
i are same with θ̂mmse obtained in (4.39) with the

scalar Gaussian noise corrupted linear model. Since the channel coefficients are independent

of each other, Σj is a diagonal matrix. Thus,

θ̂mmse
i =

zmmse
i

(
σ2
effΛ

−1
i + IM

)−1

1 + (1−λ)
λ

exp (−M (ςi − κi))
(4.65)

where

ςi =
zmmse
i

(
IM − σ2

effΣ
−1
i

)
(zmmse

i )H

Mσ2
eff

(4.66)
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and

κi =
1

M

∑M

j=1
log
(
βij + σ2

eff

)
− 2 log (σeff) . (4.67)

As M grows without bound, we have θ̂mmse
i = zmmse

i

(
σ2
effΛ

−1
i + IM

)−1
, which is MMSE

estimate of θi given zmmse
i , when ςi > κi, and we have θ̂mmse

i = 0 when ςi < κi. Therefore,

we obtain the following threshold detection rule:





ai = 1, if ςi > κi,

ai = 0, if ςi < κi.

(4.68)

Let us denote z̃mmse
i = zmmse

(
IM − σ2

effΣ
−1
i

)1/2
/
√
Mσeff, ς

0
i = ςi under the condition

that ai = 0, and ς1i = ςi under the condition that ai = 1. According to (4.57), z̃mmse
i ∼

CN
(
0,

IM−σ2
eff

Σ
−1
i

M

)
when ai = 0, and z̃mmse

i ∼ CN
(
0,Σi

(
IM − σ2

effΣ
−1
i

)
/
(
Mσ2

eff

))
when

ai = 1. Since ςi = z̃mmse
i (z̃mmse

i )H and Σi is a diagonal matrix, ςi is the squared summation

of independent and circularly symmetric complex Gaussian random variables.

Denote the jth element of z̃mmse
i as zmmse

ij . Then, zmmse
ij ∼ CN

(
0,

βij

M(βij+σ2
eff)

)
when

ai = 0, and zmmse
ij ∼ CN

(
0,

βij

Mσ2
eff

)
when ai = 1. Therefore, (zmmse

ij )2 ∼ Γ

(
1,

βij

M(βij+σ2
eff)

)

when ai = 0, and (zmmse
ij )2 ∼ Γ

(
1,

βij

Mσ2
eff

)
when ai = 1, where Γ(a, b) stands for the Gamma

distribution with shape parameter a and scalar parameter b. We denote ρ0ij =
βij

M(βij+σ2
eff)

and ρ1ij =
βij

Mσ2
eff

.

Since x
1+x

< log(1 + x) < x when x > 0, we can obtain

∑M

j=1
ρ0ij < κi <

∑M

j=1
ρ1ij . (4.69)

With the law of large numbers, we have ς0i →
∑M

j=1 ρ
0
ij and ς1i →

∑M
j=1 ρ

1
ij as M grows.

Therefore, ς0i < κi and ς1i > κi when M → ∞. Thus, the false alarm and miss detection

probabilities of the threshold detection rule in (4.68) tend to zero as M → ∞. So does the

error probability.
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Remark 4.5 In order to compare the performances of different centralized activity detection

methods, error probability of centralized activity detection with MMV based MMSE estimation

in cell-free massive MIMO networks (which has been studied in [133]) is also provided in

Section 4.7 via numerical results.

4.5.2 Distributed Activity Detection

For distributed activity detection, each AP acquires the MMSE estimates of the effective

channel coefficients from all users to this AP with its own received pilot signals. Subsequently,

each AP makes its own decisions on the activity of all users based on the MMSE estimates

and the threshold detection rule in (4.51), and sends these decisions and the corresponding

reliabilities to the CPU. Then the final decisions on the activity of all users are made at the

CPU based on the decisions from the entire set of APs, while also taking into account the

corresponding reliabilities. The detection reliability of the decisions made at each AP can

be determined via (4.53) and (4.54).

Let us denote the decision made by the jth AP for the ith user as dij, and consider the

optimal fusion rule for the activity of the ith user. Based on dij (j = 1, 2, · · ·M), we divide

all the APs into two sets, S0 = {j|dij = 0} and S1 = {j|dij = 1}. As shown in [134], the

optimal fusion rule is

|S1| log
(
1− PM

PF

)
+ |S0| log

(
PM

1− PF

)
ai=1

≷
ai=0

log

(
1− λ
λ

)
, (4.70)

where PF and PM are given in (4.53) and (4.54), respectively. After several algebraic oper-

ation, it is easy to obtain the following fusion rule:

|S1| log
(1− PM)(1− PF )

PMPF

ai=1

≷
ai=0

log
1− λ
λ
−M log

PM

1− PF
. (4.71)

Let us set χ = log (1−PM )(1−PF )
PMPF

and ρ = (log 1−λ
λ
−M log PM

1−PF
)/χ. We assume λ < 0.5
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in this chapter1. Then l′
(
σ2
eff, λ, β

)
> 0 and

exp

(
−
l′
(
σ2
eff, λ, β

)

σ2
eff

)
< exp

(
−
l′
(
σ2
eff, λ, β

)

β + σ2
eff

)
. (4.72)

Therefore,

PF + PM < 1. (4.73)

Thus, χ > 0. Then, the optimal fusion rule is

|S1|
ai=1

≷
ai=0

ρ. (4.74)

When ai = 0, we have |S1| ∼ B(M,PF ), where B(M,PF ) stands for the binomial distri-

bution. Then we can obtain the false alarm probability as

P d
F = 1− ψ (⌊ρ⌋) (4.75)

where ψ (·) stands for the cumulative distribution function of the binomial distribution, and

⌊x⌋ is the largest integer which is smaller than or equal to x. Similarly, when ai = 1,

|S1| ∼ B(M, 1− PM), and the corresponding miss detection probability of the system is

P d
M = ψ (⌊ρ⌋) . (4.76)

Finally, the error probability of the system is

P d
err = (1− λ)P d

F + λP d
M . (4.77)

We define f(x) = PF log(x) + (1 − PF ) log(1 − x), 0 < x < 1. It can be readily shown

that f(x) is monotonically decreasing within the interval (PF , 1]. Since PF + PM < 1, we

1Massive connectivity and small active probability for each user are two important characteristics of IoT
networks.
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have f(PF ) > f(1− PM), i.e.,

PF log(PF ) + (1− PF ) log(1− PF ) > PF log(1− PM) + (1− PF ) log(PM). (4.78)

Thus,

PF log

(
1− PM

PF

)
< (1− PF ) log

(
1− PF

PM

)
+

1

M
log

(
1− λ
λ

)
. (4.79)

Then, we can obtain

lim
M→∞

ρ

MPF

> 1. (4.80)

Similarly, we can also obtain

lim
M→∞

ρ

M (1− PM)
< 1. (4.81)

As M grows, we have |S1| = MPF when ai = 0 and |S1| = M (1− PM) when ai = 1.

With (4.74), (4.80) and (4.81), we note that the false alarm and miss detection probabilities

of the optimal fusion rule tend to zero asM →∞. Thus, the error probability of the optimal

fusion rule also tends to zero when M grows without bound.

In cell-free massive MIMO systems, the backhaul link is from the APs to the CPU since

there is no information exchange between APs. As a consequence of transmitting only

activity decisions and the corresponding reliabilities by each AP, the capacity of backhaul

link which is needed for distributed activity detection is much smaller than that needed for

centralized activity detection, which sends the entire received pilots to the CPU by every

AP.

Remark 4.6 In this section, we have arrived at the conclusion that the error probabilities of

both centralized and distributed activity detection tend to zero when the number of APs grows

without bound. Since cell-free massive MIMO is a more general model that can be specialized

to a single-cell massive MIMO system when all APs are located at the same node, these

results confirm and generalize the conclusion in [10] that the error probabilities of activity
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detection in a single-cell massive MIMO system tend to zero when the number of antennas

at base station goes to infinity.

4.6 Extensions to MMV Based MMSE Estimation and

Activity Detection

Heretofore, we have considered the theoretical analysis of SMV based MMSE estimation for

effective channel coefficients in cell-free massive MIMO systems with massive connectivity,

and the corresponding theoretical analysis on error probabilities of activity detection rules

with SMV based MMSE estimation results. In Section 4.3, the theoretical mean square error

of SMV based MMSE estimation can be obtained with the Property1-σeff or State-σeff method

and equation (4.46). The theoretical error probability of likelihood ratio test with SMV based

MMSE estimation results depending on the received pilot signals at only one AP is shown

in equations (4.52), (4.53) and (4.54) of Section 4.4. Section 4.5 addresses the theoretical

analysis of likelihood ratio test with SMV based MMSE estimation results and cooperation

among different APs. We do not obtain closed-form theoretical error probabilities in this

section, but these probabilities are in general dependent on σeff, and they can be determined

via numerical analysis, i.e., by substituting the theoretical value of σeff into (4.56) and finding

the corresponding error probability numerically. Moreover, with the theoretical analysis, we

find that the error probabilities of both centralized and distributed activity detection tend

to zero when the number of APs tends to infinity while the asymptotic ratio between the

number of users and pilots is kept constant.

In order to simplify theoretical analysis, we consider only SMV based methods in Section

4.3 through Section 4.5. However, since equation (4.4) presents an MMV problem, there can

be a performance gap when the correlation between different columns of Y are not taken

into account, and (4.4) is decomposed into multiple SMV problems. On the other hand, it is

challenging to perform a theoretical analysis of MMV based MMSE estimation for effective
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channel coefficients of cell-free massive MIMO systems with massive connectivity. Therefore,

the performance loss between SMV and MMV based methods is shown via numerical results.

In the next section, AMP algorithm for MMV proposed in [9] is employed to obtain several

numerical results for the mean square error of MMV based MMSE estimation, and the error

probability of centralized activity detection with MMV based MMSE estimation results are

also determined numerically.

4.7 Numerical Results

In the setting for numerical analyze, we assume that the APs and users are uniformly dis-

tributed in a circular area with radius Rr = 500m. The path loss decay exponent is α = 2.5,

and the reference distance is set at d0 = 50m. The total user number is N = 4000. CB-

AMP and AMP for MMV algorithms are employed to obtain numerical results for the mean

square error of SMV and MMV based MMSE estimates, respectively, of the effective channel

coefficients in cell-free massive MIMO systems with massive connectivity. In the simulation

settings of Figs. 4.2 and 4.4, we consider 10 APs in cell-free massive MIMO system, and the

SNR at each AP is 30dB. In Figs. 4.3 and 4.5, we again consider 10 APs and assume that

the number of pilots used for MMSE estimation is 300. In Figs. 4.6 and 4.7, the number of

pilots used for MMSE estimation is 300, and the SNR at each AP is 30dB.

In the numerical results, we analyze the performance of MMSE estimation and activity

detection considering different probabilities of each user being active. We plot the curves

of the mean square error of oracle and MMSE estimators as a function of the number of

pilots used for estimation and the SNR at each AP. The error probabilities of the likelihood

ratio test based on MMSE estimation is also analyzed in this section. Additionally, we study

the error probabilities of centralized and distributed detection in cell-free massive MIMO

systems versus the number of APs.

For the simplification of descriptions, we first introduce several abbreviations that will
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be used in the figures of the numerical results. “MSET
SMV” and “MSEN

SMV” stand for the

theoretical and numerical mean square errors of the MMSE estimation obtained with the

replica analysis result (4.47) and CB-AMP algorithm, respectively. “MSEN
MMV” denotes

the mean square error of MMSE estimation acquired with the AMP for MMV algorithm.

“OracleTSMV” and “OracleNSMV” indicate the theoretical and numerical mean square errors of

the oracle estimation obtained with the asymptotic result (4.31) and the numerical result

(4.22), respectively. “P T
err” and “PN

err” denote the theoretical and numerical error probabilities

of the likelihood ratio test based on the decoupled scalar model (4.37) and the AWGN

corrupted scalar model (4.14) involved with the CB-AMP algorithm, respectively. Similarly,

“P c,SMV
err,T ” and “P c,SMV

err,N ” stand for the theoretical and numerical error probabilities for the

centralized likelihood ratio test with SMV based MMSE estimation results in cell-free massive

MIMO systems. “P d
err,T” and “P d

err,N” designate the theoretical and numerical results of error

probabilities of the distributed likelihood ratio test under the optimal fusion rule (4.74)

in cell-free massive MIMO systems. “P c,SMV
err,T ” and “P d

err,T” are evaluated with the scalar

Gaussian noise corrupted linear model (4.56), while “P c,SMV
err,N ” and “P d

err,N” are obtained with

the CB-AMP algorithm and its state evolution equations (4.14). “P c,MMV
err,N ” denotes the error

probability of centralized activity detection based on the MMSE estimates of the effective

channel coefficients via AMP for MMV algorithm and the corresponding state evolution

equations.

Fig. 4.2 plots the mean square error of the oracle, SMV and MMV based MMSE esti-

mation in cell-free massive MIMO networks with massive connectivity as a function of the

number of pilots L. These curves show that the numerical and theoretical results of oracle

and SMV based MMSE estimation match well with each other. The mean square error

decreases as the number of pilots increases, and the rate of decay in the curves increases as

the probability of user being active decreases. Furthermore, compared with the MMV based

MMSE estimation, the decay rate of the mean square error of SMV based estimation is

smaller. The former has larger mean square error when L is small while it has smaller values
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Figure 4.2: Mean square error of the oracle, SMV and MMV based MMSE estimation in
cell-free Massive MIMO networks with massive connectivity versus the number of pilots L.

when L is larger than 75. Moreover, we observe that as a consequence of the uncertainty

in users’ activities, compared with the oracle estimation, under the same settings, the mean

square error of SMV based MMSE estimation is larger, and the gap between them increases

as λ decreases from 0.1 to 0.05.

Fig. 4.3 plots the mean square error of oracle, SMV and MMV based MMSE estimation

in cell-free Massive MIMO networks with massive connectivity versus SNR at each AP.

When SNR is small, the mean square errors diminish as SNR increases. However, when

SNR is large enough, the tendency of the mean square error becomes different. Since the

total number of users is 4000, the expected number of active users is 400 when λ = 0.1,

and this becomes 200 when λ = 0.05. Recall that the number of pilots used for estimation

is 300. Therefore, when λ = 0.1, the received signal which is comprised of the transmitted

signal from all active users constitutes an underdetermined linear system. Thus, the mean

square error of the oracle estimation becomes flat when SNR becomes large enough. As a

consequence of the system being underdetermined and the uncertainty of users’ activities,

the mean square errors of both SMV and MMV based MMSE estimation also flatten out
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Figure 4.3: Mean square error of the oracle, SMV and MMV based MMSE estimation in
cell-free Massive MIMO networks with massive connectivity versus SNR at each AP.

when SNR becomes large enough. On the contrary, the received signal from all active users

constitutes an overdetermined linear system when λ = 0.05. Therefore, the mean square

error of oracle estimation keeps decreasing as SNR increases, and tends to zero as SNR grows

without bound. However, since users’ activities are unknown to the APs, the mean square

error of both SMV and MMV based MMSE estimation still flatten out after SNR reaches

a certain high level when λ = 0.05. Moreover, we have also noticed that the theoretical

mean square error of oracle and SMV based MMSE estimation match well with that of the

numerical results. These curves also show that the mean square error of the MMV based

MMSE estimation is always smaller than that of SMV based results under the same settings.

Fig. 4.4 plots the theoretical and numerical results for the error probability of the likeli-

hood ratio test based on the received pilot signals at only one AP versus the number of pilots

used in the MMSE estimation. We see that the error probabilities diminish as the number of

pilots increases. We also note that when λ decreases, the error probabilities diminish more

quickly.

Fig. 4.5 plots the theoretical and numerical results for the error probabilities of the
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Figure 4.4: Error probability of likelihood ratio test based on the received pilot signals at
only one AP versus the number of pilots used during the MMSE estimation.
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Figure 4.5: Error probability of likelihood ratio test based on the received pilot signals at
only one AP versus SNR.
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likelihood ratio test based on the received pilot signals at only one AP versus SNR. From

the analysis of Fig. 4.3, we know that the mean square error of MMSE estimation diminishes

as SNR initially grows starting from small values. After SNR becomes large enough, the mean

square error flattens out. Since the likelihood ratio test is based on the MMSE estimation

result, as SNR increases, error probabilities should also decrease with SNR initially, and then

become flat when the SNR is beyond a certain threshold. Comparing Figs. 4.3 and 4.5, we

can see that the mean square errors and error probabilities becomes flat at the same SNR

value within the same numerical simulation settings, which is consistent with our theoretical

analysis.
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Figure 4.6: Error probability of centralized detection in cell-free Massive MIMO networks
with massive connectivity versus the number of APs.

Figs. 4.6 and 4.7 plot the Error probabilities of centralized and distributed detection

in cell-free massive MIMO networks with massive connectivity versus the number of APs,

respectively. The error probabilities diminish as the number of APs increases, confirming

our conclusion that the error probabilities of both centralized and distributed detection tend

to zero when the number of AP tends to infinity while the ratio between the number of users

and pilots is kept constant. When the user activity probability decreases from 0.2 to 0.1, the
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Figure 4.7: Error probability of distributed detection with the optimal fusion rule in cell-free
massive MIMO networks with massive connectivity versus the number of APs.

error probabilities decrease, and the rate of decrease becomes larger. Furthermore, in Fig.

4.6, we plot the curves for centralized detection with both SMV and MMV based MMSE

estimation results of the effective channel coefficients. The gaps between the SMV and MMV

based results show the performance loss due to disregarding the correlation between different

columns of the received pilot signals when performing channel estimation.
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Chapter 5

Performance Analysis of Cell-Free

Massive MIMO Systems with Massive

Connectivity

In this chapter, we investigate the achievable rate of cell-free massive MIMO systems with

massive connectivity. Our analysis is divided into two parts. First, we analyze the joint

activity detection and channel estimation using the pilots transmitted from active users

via GAMP algorithm and likelihood ratio test. MMSE estimates of the effective channel

coefficients from all users to all APs can be obtained with the GAMP algorithm. With

the decoupling properties of MMSE estimation for large linear systems [61], the received

pilot signals are decomposed into scalar additive complex Gaussian noise corrupted versions.

We determine the variance of the scalar additive complex Gaussian noise (which is also

subsequently referred to as the converged noise variance) with the help of the state evolution

equations of the GAMP algorithm. Then, we identify the variances of both the estimated

channel and the corresponding channel estimation error. Secondly, we address the uplink

data transmission from active users. With the results in [76], we analyze the achievable

uplink data transmission rates in cell-free massive MIMO systems with massive connectivity
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when ZF detector is employed. In this setting, we demonstrate the impact of the accuracy

of activity detection on the achievable rates via numerical results.

5.1 System Model

We consider a cell-free massive MIMO system that consists of M APs and N single antenna

users. All the APs and users are uniformly distributed in a circular area with radius Rr, and

all the APs are connected to the CPU through a backhaul network. Let us denote by dij the

distance from the ith user to the jth AP. The probability density function (PDF) of dij is

p(dij) =
4dij

πRr
2

[
cos−1

(
dij
2Rr

)
− dij

2Rr

(
1− d2ij

4R2
r

) 1
2

]
(5.1)

for 0 < dij < 2Rr and p(dij) = 0 otherwise [129].

We consider flat fading channel between all the users and APs in this chapter. Besides,

massive connectivity and sparse activity are assumed, i.e., there is a large number of users

uniformly distributed in the area, while the number of active users at a given time instant is

small. We call the probability of each user being active at a given time instant as the activity

probability, and assume that the activity probability of all the users is the same and denoted

by λ. Moreover, the activities of all the users keep unchanged during each channel coherence

interval. At a given time instant, we denote the activity of the ith user by the binary-valued

ai. Specifically, ai = 1 stands for the ith user being active, while ai = 0 denotes inactivity.

Then, the activity probability is p(ai = 1) = 1− p(ai = 0) = λ.

The channel coefficient from the ith user to the jth AP is

gij = β
1/2
ij hij (5.2)

where βij is the large-scale fading coefficient which can be expressed as βij = min
(
d−α
ij , d

−α
0

)
,

d0 is the reference distance, and α is the path loss decay exponent [65]. Since βij changes
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slowly over time, it can be measured in advance and we assume that it is known at the CPU

and all the APs. With the PDF of dij as given in (5.1), we can obtain the PDF of βij and

denote it by p(β). hij ∼ CN (0, 1) is the small scale fading coefficient.

We assume that there are T symbols in each channel coherence interval. During each

channel coherence interval, L symbols are used for joint activity detection and channel

estimation, and the remaining T − L symbols are used for uplink data transmission from

the users to APs. We call the former as the joint activity detection and channel estimation

phase, and the latter as the data transmission phase. Furthermore, we assume the total

bandwidth of the system is B Hz.

We denote the combination of the ith user’s activity and the channel coefficient from the

ith user to the jth AP as the effective channel coefficient θij , i.e., θij = aigij. In order to

simplify the description, we represent the effective channel coefficients from all the users to

the jth AP by the N × 1 dimensional vector θj , whose ith element is θij . Then, in the joint

activity detection and channel estimation phase, the received pilot signal at the jth AP can

be expressed as

yp,j = Φθj + np,j (5.3)

where Φ is the pilot matrix, and np,j ∈ CN (0, σ2
0IL) is the independent and identically

distributed additive white Gaussian noise at the jth AP. We assume that the elements of

the L×N complex pilot matrix Φ are independent and circularly symmetrically distributed

with zero mean and variance 1/L. We further assume that both the number of pilots and

number of users grow without bound with their ratio kept constant, i.e., lim
N→∞

N
L
= γ.

Let us also denote the activity support of all the users, i.e., the set of the indices of active

users, by S. Moreover, we represent the channel coefficients from the ith user to all the

APs by the M × 1 dimensional vector ϕi, whose jth element is gij. Now, in the uplink data

transmission phase, the received signals at all the APs form an M × 1 vector and can be

96



expressed as

yd =
∑

i∈S
ϕixi + nd (5.4)

where xi is the data transmitted from the ith user, and nd ∈ CN (0, σ2
0IM) is the noise

vector whose components represent the independent and identically distributed Gaussian

noise terms at the APs. We assume that the transmitted signals from all the users satisfy

E
{
|xi|2

}
= 1.

5.2 Performance Analysis

The GAMP algorithm proposed in [56] is used for joint activity detection and channel estima-

tion in this chapter. Specifically, with GAMP algorithm, we obtain the MMSE estimates of

the channel coefficients. We note that GAMP algorithm decomposes the received pilot signal

into scalar Gaussian noise corrupted versions, and the noise variance can be obtained with

the state evolution equations of the GAMP algorithm. Following this approach, we identify

the statistical characterizations of the estimated channel coefficients and the corresponding

channel estimation error.

In the data transmission phase, the estimated channel coefficients are used for ZF de-

tection. With the results in [76], we analyze the achievable rate of cell-free massive MIMO

systems with massive connectivity.

5.2.1 Joint Activity Detection and Channel Estimation

In this section, we address the decoupling principle of the GAMP algorithm, and analyze

the joint activity detection and channel estimation phase.

Using the replica symmetric postulated MMSE decoupling properties given in [61] and

[127], we can obtain the following decoupling principle of the GAMP algorithm for cell-free

massive MIMO systems:

ŷp,ij = θij + σeffn (5.5)
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where ŷp,ij is the GAMP decoupled pilot signal, and n ∼ CN (0, 1) is the additive white

Gaussian noise.

Since θij = aigij, the PDF of θij is

p(θij) = (1− λ)δ(θij) + λCN (θij; 0, βij) (5.6)

where δ(·) is the Dirac delta function, and CN (·; a, b) denotes the PDF of a circularly sym-

metric complex Gaussian random variable with mean a and variance b. Then, the MMSE

estimate of θij is

θ̂ij = G
(
|ŷp,ij|2; σ2

eff, λ, βij
) βijŷp,ij
βij + σ2

eff

(5.7)

where

G
(
|ŷp,ij|2; σ2

eff, λ, βij
)
=

1

1 +
(1−λ)(βij+σ2

eff
)

λσ2
eff

exp
(
− βij|ŷp,ij|2

σ2
eff

(βij+σ2
eff

)

) . (5.8)

The state evolution equation of the GAMP algorithm is

r̂tij = θij +
√
ξtn (5.9)

where r̂tij is the decoupled received pilot signal at the tth iteration of the GAMP algorithm,

and the noise variance ξt satisfies the following state evolution equation [56]:

ξt+1 = σ2
0 + γE

{∣∣∣θij − θ̂tij
∣∣∣
2
}

(5.10)

where the expectation (denoted by E{·}) is over both large-scale and small-scale channel

fading, and θ̂tij is the MMSE estimate of θij based on r̂tij in (5.9), which can be obtained using

the formulation in (5.7). When the GAMP algorithm converges, we have ξt+1 = ξt = σ2
eff.
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Thus, we can obtain

E

{∣∣∣θij − θ̂tij
∣∣∣
2
}

= λ


E{β} −

βmax∫

βmin

∞∫

0

F (σeff, β, t)dtdβ


 (5.11)

where

F (σeff, β, t) =
λtp(β)e−tσ2

eff
/β

(
β
σ2
eff

+ 1
)2 (

λ
β+σ2

eff

+ (1−λ)e−t

σ2
eff

) , (5.12)

βmin = (2Rr)
−α, and βmax = d−α

0 . Then, we have the following fixed point equation when

the GAMP algorithm converges:

σ2
eff = σ2

0 + γE

{∣∣∣θij − θ̂tij
∣∣∣
2
}
. (5.13)

By solving the fixed point equation in (5.13), we can find the noise variance σ2
eff of the

GAMP decoupled pilot signal. With this, we can determine the MMSE estimate of the

effective channel coefficients, θij, using (5.7). Now for active users, it is immediate that

var
(
θ̂ij

)
= E1

{(
θ̂ij −E1

{
θ̂ij

})(
θ̂ij −E1

{
θ̂ij

})∗}

=
β2
ij

βij + σ2
eff

(5.14)

where var(z) is the variance of z, and E1{·} stands for the expectation over small-scale

channel fading. We define the channel estimation error as

εij = θ̂ij − θij. (5.15)

Then,

cov
(
εij, θ̂ij

)
= E1

{
(εij − E1 {εij})

(
θ̂ij −E1

{
θ̂ij

})∗}

= 0 (5.16)
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where cov (z1, z2) denotes the covariance of z1 and z2. Therefore, εij and θ̂ij are uncorrelated.

Recall that we assume the error probability of activity detection is zero in this chapter,

which equals to the case that the user activities are known as priori. Since only active users

are considered during the data transmission phase (λ can be regarded as 1), εij and θ̂ij are

complex Gaussian random variables based on the results in (5.7) and (5.15). Thus, εij and

θ̂ij are independent of each other. Then, we can obtain

var(εij) =
βijσ

2
eff

βij + σ2
eff

. (5.17)

As noted in the introduction, the error probability in activity detection with GAMP

algorithm and likelihood ratio test tends to zero asM tends to infinity and lim
N→∞

N
L
= γ, which

is assumed to be satisfied in this chapter. Thus, we will not consider the effect of activity

detection errors on the performance analysis in terms of achievable rates in uplink data

transmission in the next subsection, while the influence is studied via numerical simulations

subsequently. Due to space limitations, we refer to [135] for more details on the activity

detection with the GAMP algorithm and likelihood ratio test.

5.2.2 Achievable Rates of Uplink Data Transmission

For active users, we have θij = gij. Therefore, gij = θij = θ̂ij − εij. Substituting gij into (5.4),

we can obtain

yd =
∑

i∈S
θ̂ixi −

∑

i∈S
εixi + nd (5.18)

where θ̂i = [θ̂i1, θ̂i2, · · · , θ̂iM]T and εi = [εi1, εi2, · · · , εiM]T .

Let us denote the estimated effective channel coefficients from all active users to the

entire AP set by the |S| ×M matrix B, i.e., the element on the ith row and jth column of

B, bij, equals θ̂ij for i ∈ S. For uplink data transmission, we employ the ZF receiver at the
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CPU, i.e., the detector matrix is Ω = B
(
BHB

)−1
. Then, the detected signal is

x̂k = ωH
k yd

=
∑

i∈S
ωH

k θ̂ixi −
∑

i∈S
ωH

k εixi + ωH
k nd (5.19)

where ωk is the kth column of Ω. Now, using the fact that Gaussian noise is the worst-case

noise [136], the achievable uplink rate can be obtained as

R =
T − L
T

BR̃ (5.20)

where

R̃ =
∑

i∈S
E1




log2


1 +

1∑
j∈S
|ωij|2

∑
k∈S

var (εjk) + ‖ωk‖22







. (5.21)

Next, we can determine a lower bound R̂ for the achievable uplink rate as follows [76]:

R̂ =
T − L
T

B
∑

i∈S
log2

(
1 +

1

εmax + 1
ςi (ξi − 1)

)
(5.22)

where

εmax = max
∑

i∈S
var (εij), (5.23)

ςi =

∑
m∈Mk

(
var
(
θ̂im

))2

∑
m∈Mk

var
(
θ̂im

) , (5.24)

ξi =

(
∑

m∈Mk

var
(
θ̂im

))2

∑
m∈Mk

(
var
(
θ̂im

))2 , (5.25)

Mk =M/Ak,M = {m|∀m = 1, 2, · · · ,M}, Ak = Unique
({
m∗

i = argmax
m

var(θ̂ij) |∀m 6= k
})

,

and Unique (T ) returns the same values as in set T but with no repetitions.
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5.3 Numerical Analysis

As discussed in the introduction, the achievable rates in massive MIMO system with massive

connectivity have been addressed in [137]. With the state evolution equations of AMP

algorithm and large SNR approximation, the converged noise variance of the decoupled

received pilot signal is determined as

τ 2∞ =
σ2
0

1−K/L (5.26)

where K is the number of active users. Then, based on τ 2∞ and the MMSE channel estimate,

uplink achievable rates with different detectors at the base station are identified. τ 2∞ obtained

in [137] is in the same position as σ2
eff in (5.5). However, the use of (5.26) requires the

satisfaction of two conditions, namely large SNR and K < L, while our method to obtain

σ2
eff with the fixed point equation in (5.13) does not need these conditions and hence is

applicable more generally.

In this section, we compare the achievable uplink rates with both τ 2∞ and σ2
eff. Moreover,

we can also obtain the noise variance of the decoupled received pilot signal numerically, and

we refer to the achievable uplink rate with this method as the GAMP simulation result.

Additionally, if the user activity is known a priori, we can assign orthogonal pilots to all the

active users, and activity detection phase is not needed. It is obvious that the achievable

uplink rate with prior knowledge on user activity provides an upper bound for the achievable

rate without such information on user activity. As we discussed before, when M tends to

infinity, the error rates in activity detection tend to zero, which is equivalent to the case in

which the prior information for user activity is available. Therefore, as M grows without

bound, the achievable uplink rate with σ2
eff should overlap with the achievable rate with

known user activities. Indeed, numerical results in this section verify this conclusion.

We assume that there are 1000 users uniformly distributed in a circular region with

radius 500m. The path-loss decay exponent is α = 2.5. There are 1000 symbols in a channel
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coherence interval, and the bandwidth of the system is 1 MHz. The sum rate is averaged

over 105 realizations of this setting.
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Figure 5.1: Achievable uplink rate versus the number of pilots

Fig. 5.1 plots the curves for the achievable uplink rate versus the number of pilots used

in the activity detection and channel estimation phase, for different activity probabilities

with 100 APs uniformly distributed in the circular region and SNR = 30 dB. Since we can

obtain τ 2∞ only when L > K, the sum rates based on τ 2∞ are plotted after L = 75 when

λ = 0.05 and L = 125 when λ = 0.1. Since the number of symbols in a channel coherence

interval is fixed, fewer symbols will be used in the uplink data transmission phase if more

symbols are used for activity detection and channel estimation. Therefore, the sum rate of

the system decreases with increasing L when user activities are known at the CPU. On the

other hand, a tradeoff exists when user activity needs to be detected. Specifically, when L is

small, error probability in activity detection is relatively high, leading to low achievable sum

rates. Hence, a reduction in the sum rate is experienced due to uncertainty in user activity

detection. Since the error probability in activity detection diminishes as L increases, sum

rates initially increase. However, as L exceeds a threshold, smaller duration of time being

available for uplink data transmission starts being the dominant factor and sum rates start
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decreasing. Therefore, there exists a tradeoff between sum rate and the number of pilots

in the design of practical cell-free massive MIMO systems with massive connectivity and

uncertainty in user activity. Comparing the curves for λ = 0.05 and λ = 0.1, we observe

that the performance gap due to user activity uncertainty is smaller in the former case (due

to smaller error rates in the presence of lower activity probabilities), while larger sum rates

are achieved in the latter case (with λ = 0.1) due to generally higher number of active users.

We also notice that when L is sufficiently large, the achievable sum rates based on σ2
eff and

τ 2∞ and also the sum rate obtained via GAMP simulations all start overlapping with that

achieved when user activities are perfectly known a priori. Hence, in all cases, performance

upper bound is approached as L grows.
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Figure 5.2: Achievable uplink rate versus the number of APs.

Fig. 5.2 plots the curves for achievable uplink rates versus the number of APs, for

different activity probabilities with L = 300 and SNR = 30 dB. These curves demonstrate

that the sum rates based on σ2
eff and τ 2∞ overlap with that achieved with prior information

on user activities (labeled as “activity known”) and also with GAMP simulation results.

This shows that the influence of user activity uncertainty on the achievable sum rate can be

safely disregarded under assumption of relatively large M , L and N (e.g., L = 300 in this
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figure), i.e., having no errors in activity detection is a valid assumption. We also see that the

achievable sum rates linearly increase as the number of APs grows, and the slope becomes

higher as the activity probability increases. Furthermore, the achievable sum rates, similarly

as before, diminish when λ is decreased from 0.1 to 0.05.
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Figure 5.3: Achievable uplink rate versus SNR at APs.

Fig. 5.3 plots the curves for the achievable uplink rates versus SNR at APs for different

activity probabilities with L = 300 and M = 100. When SNR is small, the error probability

in activity detection is relatively large, which leads to the gaps between achievable sum rates

with prior information on user activities and those achieved with σ2
eff, τ

2
∞ and GAMP algo-

rithm. These performance gaps can be regarded as the cost of uncertainty in the detection

of user activity. We also notice that the achievable sum rates obtained with σ2
eff and GAMP

algorithm overlap, while a smaller sum rate is achieved with τ 2∞ when SNR is low. This

verifies that σ2
eff predicts the converged noise variance of GAMP algorithm better than τ 2∞

at low SNR levels, which is expected due to the fact that τ 2∞ is derived under the large SNR

assumption. We further observe in the figure that the achievable sum rates increase and

the cost of uncertainty in the detection of user activity diminishes as SNR grows. Indeed,

when SNR is sufficiently large, the sum rates based on σ2
eff, τ

2
∞ and GAMP algorithm overlap
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with that achieved with prior information on user activities. Similarly as before, when λ is

decreased from 0.1 to 0.05, both the achievable sum rates and the performance gap due to

user activity uncertainty diminish.
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Chapter 6

Channel Estimation for Intelligent

Reflecting Surface Assisted Wireless

Communications

In the prior work on channel estimation in IRS assisted wireless communication systems,

proposed methods generally have high costs in terms of the computational complexity and

number of pilot symbols. In this chapter, we focus on finding an efficient channel estimation

method for IRS assisted wireless communication systems. By considering the equivalent

channel from the BS to the users, we can address the channel estimation problem employing

conventional methods for wireless networks. With this approach, we determine that each

row vector of the equivalent channel has a Bessel K distribution, and all the rows are

independent of each other. By introducing a GSM model, we obtain the MMSE estimate

of the equivalent channel, and identify analytical upper and lower bounds on the mean

square error. Applying the central limit theorem, we perform an asymptotic analysis of the

channel estimation, through which we show that the upper bound on the mean square error

of the MMSE estimation equals the asymptotic mean square error of the MMSE estimation

when the number of reflecting elements at the IRS tends to infinity. Compared with prior

107



work on channel estimation in IRS assisted wireless communication systems, our proposed

channel estimation method is completed in one stage via transmitting orthogonal pilots

from the users, and enables us to obtain analytical expressions for the MMSE estimate of

the equivalent channel coefficients through a more efficient scheme with low computational

complexity.

6.1 System Model

We consider an IRS assisted wireless communication system as depicted in Fig. 6.1, which

is comprised of one BS equipped with M antennas, an intelligent reflecting surface with M1

reflecting elements, and N users. All the users are uniformly distributed in a circle with

radius Rr and the IRS is located at the center of the circle. G1 ∈ CN×M1 , G2 ∈ CM1×M and

V ∈ CM1×M1 denote the channel coefficients in the link from the IRS to the users, channel

coefficients from the BS to the IRS, and the scattering matrix at the IRS, respectively.

We assume that the direct link between the BS and users is not operational as a result of

unfavorable propagation conditions (e.g., due to blockages) [87, 115].

IRS

BS Users

2
G 1

G

Figure 6.1: IRS assisted wireless communication systems.

Furthermore, we assume flat fading channels between the BS, IRS and users, i.e., G1 =

diag
(√

β1

)
H1 and G2 =

√
β2H2, where diag (·) is the diagonalization operation for a given
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vector [47, 138]. β1 = [β1,1, β1,2, · · · , β1,N ] is the path-loss vector from the IRS to the entire

set of users, where β1,i = β10 +10α1 log10

(
d1,i
d10

)
is the path-loss from the IRS to the ith user

in dB, where d1,i is the distance from the IRS to the ith user, d10 is the reference distance for

the path-loss between the IRS and users, β10 is the corresponding path-loss at d10, and α1

is the path-loss decay exponent. H1 ∈ CN×M1 is the small-scale fading channel coefficients

from the IRS to all the users, and all the elements of H1 are independent and identically

distributed (i.i.d.) complex Gaussian random variables with zero mean and unit variance.

Similarly, the path-loss between BS and IRS is β2 = β20+10α2 log10

(
d2
d20

)
in dB, where d2 is

the distance between the BS and IRS, d20 is the reference distance for the path-loss between

the BS and IRS, β20 is the corresponding path-loss at d20, and α2 is the path-loss decay

exponent. All the elements of the small-scale fading matrix H2 are i.i.d. complex Gaussian

random variables with zero mean and unit variance. Since path-loss changes slowly over

time, it can be measured in advance and we assume β1 and β2 are known at the BS.

As noted in the literature, we assume that the scattering matrix V is reconfigurable and

known at the BS [93, 139]. We have V = diag (v1 exp(jθ1), v2 exp(jθ2), · · · , vM1 exp(jθM1)),

where vi ∈ [0, 1] and θi ∈ [0, 2π] represent the amplitude and the phase coefficient for the

ith element of the IRS, respectively. For the sake of simplicity in the analysis, we assume

v1 = v2 = · · · = vM1 = v in this chapter.

6.2 Statistics of the equivalent channel from the BS to

the users

In order to perform channel estimation at the BS, we need to know the distribution of the

equivalent channel matrix from the BS to the users, which is denoted as G = G1VG2. We

denote gik as the element on the ith row and kth column of G, and gi ∈ C1×M as the ith

row of G. Additionally, h1,ik, h2,ik, h1,i and h2,i represent the elements on the ith row and

kth column of H1 and H2, and the ith row of H1 and H2, respectively.
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6.2.1 Distribution of gik

With the definitions given above, gik can be expressed as

gik = v
√
β1,iβ2

M1∑

m=1

h1,imh2,mk exp(jθm)

= v
√
β1,iβ2

M1∑

m=1

h1,imh3,mk (6.1)

where h3,mk = h2,mk exp(jθm), and h3,mk ∼ CN (0, 1) as a result of the distribution of h2,mk.

Since h1,im and h2,mk are independent of each other, h1,im is also independent of h3,mk.

Let us denote gik = g1 + jg2 and t = t1 + jt2. Then, the characteristic function of gik

is [140]

Ψgik(t1, t2) =
1

(
1 +

β1,iβ2v2

4
(t21 + t22)

)M1
. (6.2)

Thus, the probability density function of gik can be obtained as

pgik(g1, g2)

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Ψgik(t1, t2) exp (−j (g1t1 + g2t2)) dt1dt2

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

exp (−j (g1t1 + g2t2))(
1 +

β1,iβ2v2

4
(t21 + t22)

)M1
dt1dt2

=
1

4π2

∫ ∞

0

∫ 2π

0

r exp (−jr (g1 cos(θ) + g2 sin(θ)))(
1 +

β1,iβ2v2r2

4

)M1
dθdr

=
1

2π

∫ ∞

0

r
(
1 +

β1,iβ2v2r2

4

)M1
J0

(
r
√
g21 + g22

)
dr

=
2(g21 + g22)

M1−1
2

πΓ(M1)(β1,iβ2v2)
M1+1

2

KM1−1

(
2

v
√
β1,iβ2

√
g21 + g22

)
(6.3)

where J0(·) represents zeroth-order Bessel function of the first kind, and Kn(·) denotes nth-

order modified Bessel function of the second kind.
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6.2.2 Distribution of gi

From (6.1), we can obtain that

gij1gij2 = β1,iβ2v
2

M1∑

m1=1

M1∑

m2=1

h1,im1h1,im2h3,m1k1h3,m2k2. (6.4)

Therefore, E {gij1gij2} = 0, where E{·} stands for the expectation of the random variable. As

E{gij1} = E{gij2} = 0, we have cov (gij1, gij2) = E {gij1gij2} = 0, where cov(a, b) represents

the covariance between random variables a and b. Therefore, all the elements of gi are

uncorrelated with each other. Moreover, p(gik|h1,i) ∼ CN
(
0, β1,iβ2v

2
M1∑
m=1

|h1,im|2
)
. Thus,

p(gi|h1,i) ∼ CN
(
0,

(
β1,iβ2v

2
M1∑
m=1

|h1,im|2
)
IM

)
, where IM denotes the identity matrix with

dimension M . Then, we can obtain the joint probability density function of gi and h1,i as

p(gi,h1,i)

=p(gi|h1,i)p(h1,i)

=
1

πM+M1

(
β1,iβ2v2

M1∑
m=1
|h1,im|2

)M
exp (ϕ(β1,i, β2, v,gi,h1,i)) (6.5)

where

ϕ(β1,i, β2, v, gi,h1,i) = −
‖gi‖2

β1,iβ2v2
M1∑
m=1

|h1,im|2
− ‖h1,i‖2. (6.6)

Now, the probability density function of gi can be obtained as

pg(gi)

=

∫

CM1

p(gi,h1,i)dh1,i

=
2

πMΓ(M1)(β1,iβ2v2)
M
∗
∫ ∞

0

r2M1−2M−1 exp

(
− ‖gi‖2
β1,iβ2v2r2

− r2
)
dr

=
2‖gi‖M1−M

πMΓ(M1)(β1,iβ2v2)
M+M1

2

KM1−M

(
2

v
√
β1,iβ2

‖gi‖
)
. (6.7)
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6.2.3 Asymptotic distribution of gi as M1 →∞

Let us denote himk = h1,imh3,mk. From (6.3), we can obtain that p(himk) =
2
π
K0 (2 |himk|).

Since h1,im and h3,mk are both complex Gaussian random variables with zero mean and

unit variance and they are independent of each other, the components of the summation

in (6.1) are independent and identically distributed with zero mean and variance β1,iβ2v
2.

Therefore, according to central limit theorem, gik ∼ CN (0,M1β1,iβ2v
2) as M1 grows. As

noted above, all the elements of gi are uncorrelated with each other. Thus, we approximately

have gi ∼ CN (0,M1β1,iβ2v
2IM) for sufficiently large M1.

6.3 MMSE channel estimation

We assume that the channel estimation is performed at the BS, and N symbols are used for

pilot transmission during each channel coherence interval. We denote the pilot matrix as P,

and assume that P is a unitary matrix. The received pilot signal at the BS can be expressed

as

Y = PG+N (6.8)

where N denotes the complex additive white Gaussian noise at the BS whose elements are

independent and identically distributed with zero mean and variance σ2. Then, multiplying

both sides of (6.8) with PH , we can obtain

Ỹ = PHY

= G+PHN. (6.9)

Since P is a unitary matrix, Ñ = PHN has the same Gaussian distribution as N with zero

mean and variance σ2.

We have derived the probability density function for each row of G in the previous

section, and it is obvious that different rows of G are independent of each other. Besides,
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the distribution of gi can be equivalently represented as a GSM model [141]

gi = av
√
β1,iβ2xi (6.10)

where xi ∼ CN (0, IM), and a is a scalar gamma random variable whose probability density

function can be expressed as

pA(a) =
2a2M1−1

Γ(M1)
exp(−a2), a > 0. (6.11)

Then, we can obtain

Ỹ = av diag
(√

β1β2

)
X+ Ñ (6.12)

where X =
[
xT
1 ,x

T
2 , · · · ,xT

N

]T
, and xi ∼ CN (0, IM). For a given a, the two components of

Ỹ, av diag
(√

β1β2
)
X and Ñ, are both complex Gaussian random variables. Therefore, the

conditional MMSE estimate of G is

Ĝ(a) = diag

(
β1β2a

2v2

β1β2a2v2 + σ2

)
Ỹ. (6.13)

Then, we can obtain the MMSE estimate of G which can be expressed as

Ĝ =

∫ ∞

0

Ĝ(a)pA(a)da =M1 diag

((
σ2

β1β2v2

)M1

Γ1

(
−M1,

σ2

β1β2v2

)
exp

(
σ2

β1β2v2

))
Ỹ

(6.14)

where Γ1 (a, z) =
∫∞
z
ta−1 exp(−t)dt is the upper incomplete gamma function.

Now, let us consider the mean square error of the MMSE estimate Ĝ, which we denote

as mse
(
Ĝ
)
. For brevity in the description, we denote the ith row of Ĝ as ĝi, and the

corresponding mean square error as mse (ĝi). From (6.10), we know that given a, gi is

conditionally distributed as CN (0, β1,iβ2a
2v2IM), and the probability density function of a

is pA(a). In this case, mse
(
Ĝ
)
has no simple analytical expression, and we can only obtain
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the following upper and lower bounds [142]:

∫ ∞

0

β1,iβ2a
2v2σ2

β1,iβ2a2v2 + σ2
pA(a)da ≤ mse (ĝi) ≤

β1,iβ2v
2σ2
∫∞
0
a2pA(a)da

β1,iβ2v2
∫∞
0
a2pA(a)da+ σ2

. (6.15)

Substituting (6.11) into (6.15), we can further obtain

M1
σ2(M1+1)

(β1,iβ2v2)
M1

Γ1

(
−M1,

σ2

β1,iβ2v2

)
exp

(
σ2

β1,iβ2v2

)
≤ mse (ĝi) ≤

M1β1,iβ2v
2σ2

M1β1,iβ2v2 + σ2
. (6.16)

Finally, we can determine the upper and lower bounds of mse
(
Ĝ
)
as

1

N
sum

[
M1

σ2(M1+1)

(β1β2v2)
M1

Γ1

(
−M1,

σ2

β1β2v2

)
exp

(
σ2

β1β2v2

)]
≤

mse
(
Ĝ
)
≤ 1

N
sum

[
M1β1β2v

2σ2

M1β1β2v2 + σ2

]
(6.17)

where sum [·] represents the summation of all the elements in a vector.

In Section 6.2.3, we have shown that gi ∼ CN (0,M1β1,iβ2v
2IM) asM1 gets larger. There-

fore, the MMSE estimate of G for large M1 is

G̃ = diag

(
M1β1β2v

2

M1β1β2v2 + σ2

)
Ỹ, (6.18)

and the correspond mean square error is

mse
(
G̃
)
=

1

N
sum

[
M1β1β2v

2σ2

M1β1β2v2 + σ2

]
(6.19)

which is equal to the upper bound of mse
(
Ĝ
)
in (6.17).
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6.4 Numerical Analysis

We assume that there are 20 users in the IRS assisted wireless communication system, and

all the users are uniformly distributed in a circular region with radius 1000m. The minimum

distance between the IRS and a user is 500m. There are 20 antennas equipped at the BS.

The reference distance for the path-loss between the BS, IRS and users are d10 = d20 = 1m,

and the correspond path-loss decay exponents are α1 = 2 and α2 = 2.8, respectively. The

path-loss at the reference distance is 30 dB, and the distance from the BS to the IRS is

d2 = 100m. The phase coefficients of the IRS reflecting elements are uniformly distributed

in [0, 2π].
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Figure 6.2: Mean square error of the MMSE estimate mse(Ĝ), and the corresponding ana-
lytical upper and lower bounds versus the number of reflecting elements at IRS when SNR=0
dB and v = 1.

Fig. 6.2 plots the mean square error of the MMSE estimate mse(Ĝ), and the correspond-

ing analytical upper and lower bounds versus the number of reflecting elements at the IRS

when SNR= 0 dB and v = 1. mse(Ĝ) represents the Monte Carlo simulation results of

the mean square error for the MMSE estimate in (6.14). The “Upper bound” and “Lower

bound” denote the numerical results of the analytical bounds presented in (6.17). These
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curves show that the gap between the upper and lower bound are very small. When M1 is

larger than 4, the upper bound overlaps with mse(Ĝ), which matches well with our asymp-

totic analysis in (6.19). We also note that since larger M1 will introduce more uncertainties

in the equivalent channel matrix G, the mean square error increases as M1 grows.

Fig. 6.3 plots the mean square error of the MMSE estimate mse(Ĝ), and the correspond-

ing analytical upper and lower bounds versus SNR when the number of reflecting elements

at the IRS is 10 and v = 1. These curves show that the mean square error decreases dra-

matically as SNR increases. In particular, mean square error in dB decays linearly with

increasing SNR in dB when SNR is larger than 0 dB. We also observe that the upper and

lower bounds, and mse(Ĝ) again almost overlap with each other.
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Figure 6.3: Mean square error of the MMSE estimate mse(Ĝ), and the corresponding ana-
lytical upper and lower bounds versus SNR when the number of reflecting elements at IRS
is 10 and v = 1.

Fig. 6.4 plots the mean square error of the MMSE estimate mse(Ĝ), and the correspond-

ing analytical upper and lower bounds versus the scattering amplitude at IRS when the

number of reflecting elements at the IRS is 10 and SNR= 0 dB. These curves show that the

mean square error increases as the scattering amplitude at the IRS grows, which could also
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be derived considering the monotonicity of the upper and lower bound expressions in (6.17).

The mean square error of the MMSE estimation overlaps with the upper bound, which fur-

ther verifies our asymptotic characterization in (6.19). As noted above, these curves also

exhibit a very small gap between the upper and lower bounds.
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Figure 6.4: Mean square error of the MMSE estimate mse(Ĝ), and the corresponding ana-
lytical upper and lower bounds versus the scattering amplitude at IRS when the number of
reflecting elements at IRS is 10 and SNR=0 dB.
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Chapter 7

Sparse Activity Detection in

Intelligent Reflecting Surface Assisted

Wireless Networks

In this chapter, we consider the sparse activity detection problem in IRS assisted wireless

networks. The sparse activity detection is performed by employing the GAMP algorithm

[56, 143], likelihood ratio test and the optimal fusion rule. Via the GAMP algorithm, the

received pilot signals at the BS are decoupled into scalar Gaussian noise corrupted versions

of the effective channel coefficients. Subsequently, we obtain the MMSE estimate of the

effective channel coefficients and identify a threshold detection rule. The optimal fusion rule

is used to acquire final decisions on the activity of each user.

7.1 System Model

As depicted in Fig. 7.1, we consider the uplink of an IRS assisted wireless communi-

cation system, which consists of one BS equipped with M antennas, an IRS comprised

of M1 reflecting elements, and N users. All the users are uniformly distributed within

a circle of radius Rr, and the IRS is located at the center of the circle. The distance
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from the BS to the IRS is d1. We assume that the scattering matrix at the IRS is re-

configurable and is known at the BS [93, 139]. We can express the scattering matrix as

V = diag (v1 exp(jθ1), v2 exp(jθ2), · · · , vM1 exp(jθM1)), where diag (·) is the diagonalization

operation for a given vector, vi ∈ [0, 1] and θi ∈ [0, 2π] represent the amplitude and the phase

coefficient of the ith element of the IRS, respectively. We assume v1 = v2 = · · · = vM1 = v

in this chapter.

Figure 7.1: Uplink of the IRS assisted wireless network.

We further assume flat fading channels between the BS, IRS and users in this chapter,

i.e., G1 = diag
(√

β1

)
H1, G2 =

√
β2H2, and G3 = diag

(√
β3

)
H3, where G1, G2 and G3

are the channel coefficients from the IRS to users, from the BS to IRS, and from the BS to

users, respectively. β1 = [β1,1, β1,2, · · · , β1,N ] is the path-loss vector from IRS to the entire

set of users, where β1,i = max
(
β1,0, β1,0 + 10α1log10

(
d1,i
d1,0

))
is the path-loss from the IRS to

the ith user in dB, where d1,i is the distance from the IRS to the ith user, d1,0 is the reference

distance for the path-loss between IRS and users, β1,0 is the corresponding path-loss at d1,0,

and α1 is the path-loss decay exponent. H1 is the small-scale fading channel coefficients from

IRS to all users, and all the elements ofH1 are independent and identically distributed (i.i.d.)

complex Gaussian random variables with zero mean and unit variance. Similarly, β2 and β3 =

[β3,1, β3,2, · · · , β3,N ] denote the path-loss between the BS and IRS and the path-loss between

the BS and all users, respectively. We further have β2 = max
(
β2,0, β2,0 + 10α2log10

(
d1
d2,0

))
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and β3,i = max
(
β3,0, β3,0 + 10α3log10

(
d3,i
d3,0

))
, where d2,0 and d3,0 are the reference distances

for the corresponding path-loss, β2,0 and β3,0 are the path-loss at the corresponding reference

distance, α2 and α3 are the corresponding path-loss decay exponents, and d3,i is the distance

from the BS to the ith user. H2 and H3 are the corresponding small-scale fading channel

coefficients in G2 and G3, and all the elements of H2 and H3 are i.i.d. complex Gaussian

random variables with zero mean and unit variance as well. We assume β1, β2 and β3 are

known at the BS.

Sparsity is considered among the users in this chapter, i.e., not all the users are active

simultaneously. At a given time instant, only a fraction of the users are active, while the

remaining users stay inactive. We use activity probability, which is denoted as λ, to represent

the sparsity of the activity of the users, and we assume that the activity probability is the

same for all users, and users become active independently of each other. Moreover, we

assume that the user activity remain unchanged during each channel coherence interval. At

a given time instant, we use binary-valued ai to describe the state of the ith user, namely,

ai = 1 represents that the ith user is active, while ai = 0 denotes that it is inactive. Thus,

p(ai = 1) = 1− p(ai = 0) = λ.

We denote the equivalent channel coefficients from the BS to the entire set of users as G,

and use gik to represent the element on the ith row and kth column of G. Then, it is obvious

that G = G1VG2 +G3. Besides, we denote bik = aigik as the equivalent effective channel

coefficient from the kth antenna at the BS to the ith user, and represent the aggregated

equivalent effective channel coefficient from the BS to all users as B, whose element on the

ith row and kth column is bik.

Within each channel coherence interval, L symbols are used for uplink pilot transmission.

Then, the received pilot signal at the BS can be expressed as

Y = ΦB+N (7.1)
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where Φ is the pilot matrix whose elements are i.i.d. complex Gaussian random variables

with zero mean and variance 1/N , and N ∼ CN (0, σ2IL) is the additive Gaussian noise at

the BS. Following pilot transmission, the sparse activity detection is performed based on the

received pilot signals at the BS.

7.2 Sparse activity detection

The GAMP algorithm, likelihood ratio test and the optimal fusion rule are employed to

perform sparse activity detection in this section. With the GAMP algorithm, we determine

the MMSE estimate for each element of the equivalent effective channel matrix, and acquire

additive Gaussian noise corrupted versions of the equivalent effective channel coefficients.

Then, multiple decisions on the activity of each user can be made using the likelihood ratio

test and the Gaussian noise corrupted equivalent effective channel coefficients. At last, final

decisions on the activity of all users are acquired based on the previous likelihood ratio test

results, the corresponding detection reliabilities and the optimal fusion rule.

7.2.1 MMSE channel estimation with GAMP algorithm

We use h1,ik, h2,ik and h3,ik to denote the elements on the ith row and kth column of H1,

H2 and H3, respectively. Then, the equivalent channel coefficient gik can be expressed as

gik = v
√
β1,iβ2

M1∑

m=1

h1,imh2,mk exp(jθm) +
√
β3,ih3,ik

= g̃ik +
√
β3,ih3,ik. (7.2)

Since h1,im and h2,mk are both circularly symmetric complex Gaussian random variables

with zero mean and unit variance and they are independent of each other, the components

of the summation in (7.2) are independent and identically distributed with zero mean and

variance β1,iβ2v
2. Therefore, according to the central limit theorem, the distribution of
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1√
M1
g̃ik tends to CN (0, v2β1,iβ2) as M1 grows without bound. Thus, we approximately have

g̃ik ∼ CN (0,M1v
2β1,iβ2) asM1 gets large. Then, gik ∼ CN (0,M1v

2β1,iβ2+β3,i) asM1 grows.

In this chapter, we assume thatM1 is sufficiently large and we use CN (0,M1v
2β1,iβ2+β3,i) to

approximate the distribution of gik. Then, the probability density function of the equivalent

effective channel coefficient is

pbik(b) = (1− λ)δ(b) + λCN (b; 0,M1v
2β1,iβ2 + β3,i). (7.3)

With the GAMP algorithm, the received pilot signals are decomposed into scalar Gaus-

sian noise corrupted versions which can be expressed as [56, 143]

rtik = bik +
√
ξtikñ (7.4)

where rtik is the estimated scalar additive Gaussian noise corrupted equivalent effective chan-

nel coefficient during the tth iteration of the GAMP algorithm, ξtik is the corresponding noise

variance and ñ ∼ CN (0, 1) is the complex Gaussian noise.

It is obvious that bik = 0 when ai = 0. Then, the probability density function of rtik can

be expressed as

prt
ik
(r|ai = 0) =

1

πξtik
exp

(
−|r|

2

ξtik

)
. (7.5)

When ai = 1, the probability density function of rtik is

prt
ik
(r|ai = 1) =

λ

π (M1v2β1,iβ2 + β3,i + ξtik)
exp

(
− |r|2
M1v2β1,iβ2 + β3,i + ξtik

)
. (7.6)

Therefore, the probability density function of rtik can be expressed as

prt
ik
(r) =

1− λ
πξtik

exp

(
−|r|

2

ξtik

)
+

λ

π (M1v2β1,iβ2 + β3,i + ξtik)
exp

(
− |r|2
M1v2β1,iβ2 + β3,i + ξtik

)
.

(7.7)
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From (7.4), we can obtain that

prt
ik
(r|bik) =

1

πξtik
exp

(
−|r − bik|

2

ξtik

)
. (7.8)

Therefore, the MMSE estimate of bik is

b̂tik =E
{
bik|rtik

}

=

∫
bikpbik

(
b|rtik

)
db

=
1

prt
ik
(r)

∫
bikprt

ik
(r|b) pbik (b) db

=
(M1v

2β1,iβ2 + β3,i) r
t
ik

(M1v2β1,iβ2 + β3,i + ξtik)φ1 (rtik)
(7.9)

where φ1 (r
t
ik) can be expressed as

φ1

(
rtik
)
= 1 +

(1− λ) (M1v
2β1,iβ2 + β3,i + ξtik)

λξtik
exp

(
− (M1v

2β1,iβ2 + β3,i) |rtik|2
ξtik (M1v2β1,iβ2 + β3,i + ξtik)

)
.

(7.10)

The first order derivative of b̂tik is

∂

∂rtik
b̂tik =

(M1v
2β1,iβ2 + β3,i)ω1 (r

t
ik)

(M1v2β1,iβ2 + β3,i + ξtik)φ1 (rtik)
(7.11)

where

ω1

(
rtik
)
= 1 +

(φ1 (r
t
ik)− 1) (M1v

2β1,iβ2 + β3,i) |rtik|2
ξtik (M1v2β1,iβ2 + β3,i + ξtik)φ1 (r

t
ik)

. (7.12)

We can perform sum-product GAMP algorithm to acquire the MMSE estimate of the equiv-

alent effective channel coefficients by substituting (7.9) and (7.11) into [143, equations (12a)

and (12b)], and acquire the additive Gaussian noise corrupted versions of the equivalent

effective channel coefficients when the GAMP algorithm converges.
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7.2.2 Likelihood ratio test and the optimal fusion rule

By now, we have determined the MMSE estimates and the additive Gaussian noise corrupted

versions of the equivalent effective channel coefficients with the GAMP algorithm. Next,

we employ a threshold detection rule to obtain decisions on the activity of all users and

the corresponding reliabilities based on the likelihood ratio test and the additive Gaussian

noise corrupted versions of the equivalent effective channel coefficients. Since the threshold

detection rule is performed on every element of the equivalent effective channel matrix, and

each row of the matrix corresponds to the equivalent effective channel coefficients from the

BS to the same user, we can obtain M activity detection results for each user. Then, the

final decisions on the activity of all users are made with the optimal fusion rule based on the

detection results with likelihood ratio test for each user and the corresponding reliabilities.

The GAMP algorithm converges to a fixed point after sufficient number of iterations

[52, 144]. We assume that the noise variance ξtik in (7.4) converges to ξ0 within the GAMP

algorithm. Thus, the scalar additive Gaussian noise corrupted model in (7.4) can be ex-

pressed as

r0ik = bik +
√
ξ0ñ (7.13)

where r0ik stands for the converged value of rtik via the GAMP algorithm. Then, the likelihood

ratio test rule can be expressed as

Λ =
p (r0ik|ai = 1)

p (r0ik|ai = 0)

ai=1

≷
ai=0

1− λ
λ

. (7.14)

Substituting (7.5) and (7.6) into (7.14), we can obtain the following threshold detection rule:

∣∣r0ik
∣∣2 ai=1

≷
ai=0

r0 (7.15)
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where r0 can be expressed as

r0 =
ξ0 (M1v

2β1,iβ2 + β3,i + ξ0)

M1v2β1,iβ2 + β3,i
log

(1− λ) (M1v
2β1,iβ2 + β3,i + ξ0)

λξ0
. (7.16)

Then, we can obtain the corresponding false alarm and miss detection probabilities as follows:

Pik,F = exp

(
−r0
ξ0

)
(7.17)

and

Pik,M = 1− exp

(
− r0
M1v2β1,iβ2 + β3,i + ξ0

)
. (7.18)

The optimal fusion rule proposed in [145] is used at the BS to acquire the final decisions

on the activity of all users based on the likelihood ratio test results for each user and the

corresponding reliabilities. Since the optimal fusion rule is similar for all users, for the sake

of simplicity in description, we only consider the ith user here.

We denote the decisions that are made based on r0ik by âik (k = 1, ...,M). Then, we

divide the indices of the antennas into two sets, S0 = {k|âik = 0} and S1 = {k|âik = 1}.

Finally, the optimal fusion rule is expressed as [145]

log

(
λ

1− λ

)
+
∑

S1

log

(
1− Pik,M

Pik,F

)
+
∑

S0

log

(
Pik,M

1− Pik,F

)
ai=1

≷
ai=0

0. (7.19)

By substituting (7.17) and (7.18) into (7.19), we can acquire the final detection rule for the

activity of the ith user, which can be expressed as

log

(
λ

1− λ

)
+
r0
ξ0

∑

S1

M1v
2β1,iβ2 + β3,i

M1v2β1,iβ2 + β3,i + ξ0
+
∑

S0

log



1− exp

(
r0

M1v2β1,iβ2+β3,i+ξ0

)

1− exp
(
− r0

ξ0

)


 ai=1

≷
ai=0

0.

(7.20)
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7.3 Numerical Analysis

We assume that there are 500 users uniformly distributed in a circle with radius 500m. The

IRS is located at the center of the circle, and the distance from the BS to the IRS is 100m.

The reference distance for the path-loss between the BS, IRS and users is 50m. The path-

loss values at the reference distance are 20dB, 15dB and 30dB for the channel coefficients

between IRS and users, BS and IRS, and BS and users, respectively. And the corresponding

path-loss decay exponents are 2, 2.5 and 5.

In this section, we use Perr to denote the error probability of the sparse activity detection

method proposed in this chapter, i.e., Perr = λPM +(1−λ)PF , where PM represents the miss

detection probability, and PF stands for the false alarm probability. In certain scenarios,

the direct link between the BS and users may not exist due to the unfavorable propagation

conditions (e.g., blockages) [115]. Therefore, we also consider the IRS assisted network

without a direct link from the BS to the users in the numerical results. In the figures, we

use “without DL” to stand for numerical results of IRS assisted network without direct link,

and “with DL” to represent the network scenario in which direct link exists.
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P e
rr

SNR [dB]

Figure 7.2: Average error probability of sparse activity detection versus SNR at the BS,
M = 50, M1 = 10, L = 200, v = 1.
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Fig. 7.2 plots the curves for the average error probability of sparse activity detection

versus SNR at the BS. The error probabilities expectedly diminish as the SNR increases.

We note that more users become inactive on average when the activity probability decreases

from 0.1 to 0.05, and the uncertainty in the equivalent effective channel coefficients becomes

smaller. Consequently, as we observe in Fig. 2, the error probabilities get smaller as the

activity probability decreases. Similarly, compared with the IRS assisted network without

direct link, the case of IRS with direct link has larger uncertainty in the equivalent effective

channel coefficients, leading to larger error probabilities in sparse activity detection.
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 =0.1, with DL
 =0.05, without DL
 =0.05, with DL

Figure 7.3: Average error probability of sparse activity detection versus number of pilots,
SNR=10 dB, M = 50, M1 = 10, v = 1.

Fig. 7.3 plots the average error probability versus the number of pilots used for sparse ac-

tivity detection. The BS receives more pilot signals and it is more informed on the equivalent

effective channel coefficients when L becomes larger. Thus, the error probabilities decrease

as the number of pilots increases. When L is sufficiently large, the logarithm of the error

probability diminishes linearly as L increases.

Fig. 7.4 plots the curves for the average error probability of sparse activity detection

versus the number of antennas at the BS. For each user, we can obtain more activity detec-
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Figure 7.4: Average error probability of sparse activity detection versus number of antennas
at the BS, SNR=10 dB, M1 = 10, L = 200, v = 1.

tion results based on the MMSE estimate of the corresponding equivalent effective channel

coefficients and the likelihood ratio test as M becomes larger. Thus, the final decision can

be made with the optimal fusion rule based on increased knowledge. Therefore, the error

probabilities diminish as M increases. On the other hand, more antennas at the BS will

lead to more channel uncertainty which will increase the error probability. Consequently,

the decay rate of error probability decreases as M increases, indicating diminishing returns

as the number of antennas at the BS grows.

The curves for the average error probability of sparse activity detection versus the scat-

tering amplitude of the elements at IRS are plotted in Fig. 7.5. We observe in this figure

that the error probabilities almost keep unchanged as v increases for IRS assisted network

without direct link, while the error probabilities decrease for IRS assisted network with direct

link.

The curves for the error probabilities of sparse activity detection versus the number of

elements at IRS are shown in Fig. 7.6. We notice that the error probabilities get smaller as

M1 increases for both cases of IRS assisted network with and without direct link. Compared
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Figure 7.5: Average error probability of sparse activity detection versus the scattering am-
plitude of the elements at IRS, SNR=10 dB, M = 50, M1 = 10, L = 200.
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Figure 7.6: Average error probability of sparse activity detection versus the number of
elements at IRS, SNR=10 dB, M = 50, L = 200, v = 1.
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with the direct link, the IRS link becomes more and more significant asM1 increases, and the

difference between the error probabilities of these two cases becomes smaller as M1 grows.
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Chapter 8

Asymptotic Analysis of Weighted

Sum Rate Maximization in Intelligent

Reflecting Surface Assisted Wireless

Networks

In this chapter, we conduct the asymptotic analysis of maximizing weighted sum rate under

transmit power and QoS constraints in IRS assisted wireless networks. Utilizing the asymp-

totic results of the max-min SINR problem, we show that the transmit power constraint can

be equivalently represented with an equality constraint on the SINR. Then, instead of opti-

mizing over the beamforming matrix directly, the original problems are converted into the

optimization over SINR, which dramatically promotes the solution of the original problems.

After a transformation of the optimization variables, the weighted sum rate maximization

problem is converted into a concave-convex optimization problem and it can be solved with

the iterative approach of the concave-convex fractional programming algorithm proposed

in [116]. Moreover, we show that the optimal power allocation scheme always makes full use

of the available transmit power.
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8.1 System Model

We consider the downlink of IRS assisted wireless network as shown in Fig. 8.1, which is

comprised of one BS equipped with M antennas, one IRS and N single-antenna users. All

users are uniformly distributed in a circle with radius Rr and the IRS is located at the center

of the circle. The distance from the BS to the IRS is d0. We assume that the direct link

between the BS and users is neglected as a result of the unfavorable propagation conditions

(e.g., due to blockages) [87].

BS Users

IRS

2
G

1
G

BS Users

IR

2
G

1
G

IRS

2
G

1
G

Figure 8.1: Downlink of the IRS assisted wireless network.

There areM1 passive scattering elements at the IRS, and the scattering coefficients can be

represented with a diagonal matrix V = diag(v1e
jθ1, v2e

jθ2, · · · , vM1e
jθM1 ), where vi ∈ [0, 1]

and θi ∈ [0, 2π] are the amplitude and phase of the scattering coefficient at the ith element

of IRS, respectively. We assume that V is reconfigurable and known at the BS [14, 93].

Moreover, we assume that the amplitude of the scattering coefficients at different elements

are equal to each other, i.e., v1 = v2 = · · · = vM1 = v.

We assume that flat fading channels are experienced between the BS, IRS and users. G1 =

diag(
√
β1)H1 ∈ CN×M1 and G2 =

√
β2H2 ∈ CM1×M stand for the channel coefficient matrices

from the IRS to users and the BS to IRS, respectively. β1 = [β1,1, β1,2, · · · , β1,N ], where

β1,i = max
(
β1,0, β1,0 + 10α1log10

(
d1,i
d1,0

))
stands for the path-loss (in dB) from the IRS to the

ith user, d1,0 denotes the reference distance for the path-loss between the IRS and users, β1,0 is
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the path-loss at d1,0, α1 is the corresponding path-loss decay exponent and d1,i is the distance

from the IRS to the ith user. Similarly, β2 = max
(
β2,0, β2,0 + 10α2log10

(
d2
d2,0

))
represents

the path-loss (in dB) from the BS to IRS, d2,0, β2,0, α2 and d2 denote the corresponding

reference distance, minimum path-loss, path-loss decay exponent and the distance from

the BS to IRS, respectively. H1 and H2 are the corresponding small-scale fading channel

coefficient matrices whose elements are independent and identically distributed complex

random variables with zero mean and unit variance.

We denote the equivalent channel coefficient matrix from the BS to all users as G =

G1VG2. Then the received signal at the ith user is represented as

yi = gis + ni (8.1)

where gi ∈ C1×M is the ith row of G, which represents the equivalent channel coefficients

from the BS to the ith user. s =
N∑
j=1

wjxj ∈ CM×1 is the transmitted signal at the BS, where

xj is the transmitted message intended for the jth user and wj stands for the corresponding

beamforming vector. ni ∼ CN (0, σ2) denotes the additive Gaussian noise at the ith user,

where σ2 is the corresponding noise variance. We assume that the transmitted message

power is E
{
|xj |2

}
= 1. The transmit power towards the jth user is denoted as

pj
N
. The

beamforming vector can be represented as wj, and the amplitude of wj satisfies ‖wj‖2 = pj
N
,

where ‖·‖ stands for the Frobenius norm. Then the aggregated beamforming matrix is

W = [w1,w2, · · · ,wN ], and the total transmit power is tr
(
WWH

)
, where tr(·) stands for

the trace operation. We use gij to denote the element on the ith row and jth column of G.

Even for moderate number of IRS elements M1, the distribution of gij can be approximated

with a complex Gaussian distribution CN (0, βe
i ), where β

e
i =M1v

2β1,iβ2 can be regarded as

the equivalent path-loss from the BS to the ith user [146].
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The SINR at the ith user is

γi =
|giwi|2∑N

j=1,j 6=i |giwj |2 + σ2
, (8.2)

and the corresponding achievable rate in bps/Hz can be expressed as

Ri = log2(1 + γi). (8.3)

8.2 Preliminaries

For the completeness of this chapter, we provide several preliminary results here. The max-

min weighted SINR problem under a given transmit power constraint can be expressed as

follows:

max
W

min
i

γi
γ0i

s.t. tr
(
WWH

)
6 Pmax (8.4)

where 1
γ0
i

(i = 1, 2, · · · , N) denotes the weight of the SINR of the ith user, and Pmax represents

the maximum transmit power.

The optimal solution of problem (8.4) is as following [114, 147]:

w∗
i =

(
N∑

j=1,j 6=i

q∗j
N
gH
j gj + σ2IM

)−1

gH
i (8.5)

where {q∗i } are the unique positive solutions to the following fixed point equations:

q∗i =
γ0i τ

∗

1
N
gi

(
N∑

j=1,j 6=i

q∗
j

N
gH
j gj + σ2IM

)−1

gH
i

(8.6)
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and

τ ∗ =
NPmax

N∑
i=1

γ0i


 1

N
gi

(
N∑

j=1,j 6=i

q∗j
N
gH
j gj + σ2IM

)−1

gH
i




−1 . (8.7)

The optimal objective function value in (8.4) satisfies

γ∗i
γ0i

= τ ∗, i = 1, 2, · · ·N (8.8)

with

γ∗i =

p∗i
N

|giw
∗
i |2

‖w∗
i‖2

∑N
j=1,j 6=i

p∗j
N

|giw
∗
j |2

‖w∗
j‖2

+ σ2

. (8.9)

Let us denote p∗ = [p∗1, p
∗
2, · · · , p∗N ]T , then

p∗ = σ2τ ∗(IN − τ ∗ΓF)−1Γ1N (8.10)

where Γ = diag

(
Nγ0

i ‖w∗
1‖2

|g1w
∗
1|2

,
Nγ0

2‖w∗
2‖2

|g2w
∗
2|2

, · · · , Nγ0
N‖w∗

N‖2
|gNw∗

N |2
)
, F ∈ CN×N whose elements are given

by:

[F]i,j =





0 if i = j

1
N

|giw
∗
j |2

‖w∗
j‖2

if i 6= j

(8.11)

and 1N stands for a N × 1 vector whose elements equal to 1.

We assume that the estimated channel after the channel estimation phase can be ex-

pressed as

ĝi =
√

1− η2ergi +
√
βe
i ηerei (8.12)

where ηer ∈ [0, 1] describes the quality of channel estimation, and ei ∼ CN (0, IM) is the

channel estimation error which is independent of gi.

As described in [114], when only imperfect CSI is available at the BS, we cannot obtain

the optimal solutions of the original problem. Instead, we simply replace {gi} in the solutions
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of (8.4) with {ĝi}, and denote the corresponding results of w∗
i , q

∗
i , γ

∗
i , p

∗
i and τ ∗ as ŵi, q̂i,

γ̂i, p̂i and τ̂ .

Let us introduce the following assumptions for the asymptotic analysis performed in this

chapter:

Assumption 1: We assume that both M and N grow without bound while their ratio is

kept as a constant that is larger than 1, i.e., lim
M,N→∞

M
N

= δ > 1. Hence, this assumption

addresses the massive MIMO setting with a large number of users.

Assumption 2: The equivalent path-loss of all users are upper bounded, i.e., 0 < βe
i <∞.

Theorem 1 [114]: Denote the asymptotic results of τ̂ , p̂i, q̂i, γ̂i and ŵi as τ , pi, qi, γi and

wi, respectively. Then, under the settings of Assumptions 1 and 2, |τ̂ − τ | → 0, |p̂i − pi| → 0,

|q̂i − qi| → 0, |γ̂i − γi| → 0 and |ŵi −wi| → 0, where τ is the unique positive solution to

the following fixed point equation:

τ =
Pmax

σ2

N

∑N
i=1

γ0
i

βe
i

(
δ − 1

N

N∑

i=1

γ0i τ

1 + γ0i τ

)
, (8.13)

where pi can be expressed as

pi =
γ0i
βe
i

τ

ξ

(
βe
iPmax

(1 + γ0i τ )
2 + σ2

)
(8.14)

with

ξ = δ − 1

N

N∑

i=1

(γ0i τ )
2

(1 + γ0i τ)
2 , (8.15)

qi can be expressed as

qi =
γ0i
βe
i

Pmax

1
N

∑N
i=1

γ0
i

βe
i

, (8.16)

γi can be represented with

γi =
pi(1− η2er)ξ
µiPmax +

σ2

βe
i

(8.17)
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with

µi =
1 + 2η2erγ

0
i τ + (ηerγ

0
i τ)

2

(1 + γ0i τ )
2 , (8.18)

and wi can be represented as

wi =

√
pi
N

vi

‖vi‖
(8.19)

with

vi =

(
N∑

j=1

qj
N
ĝH
j ĝj + σ2IM

)−1

ĝH
i . (8.20)

Theorem 1 provides the asymptotic results for the weighted max-min SINR problem

under a given transmit power constraint, and establishes the theoretical foundation of our

asymptotic analysis of maximizing the weighted sum rate under transmit power and QoS

constraints in IRS assisted wireless networks.

8.3 Asymptotic Analysis of Weighted Sum Rate Max-

imization in IRS Assisted Wireless Networks

As it is difficult to solve the original problem (given in (8.21) below) by optimizing over the

beamforming matrix directly, we seek to find an equivalent representation for the achievable

SINR region under the transmit power constraint in this section, and then address the

original problem via maximization over the SINR region.

8.3.1 Asymptotic Achievable SINR Region

The asymptotic expression of τ ∗, τ , is the solution of the fixed point equation in (8.13),

and the achievable SINR region under the transmit power constraint can be equivalently

represented with the inverse weight sets, {γ0i }, under which the optimal value of the objective

function in (8.4) satisfies τ ∗ ≥ 1, i.e., for a given set of {γ0i }, SINR region is achievable if

τ ∗ ≥ 1, and otherwise, it is not achievable [111]. In this section, we will show that the
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achievable SINR region under the transmit power constraint can be further equivalently

represented with the weight sets of the weighted max-min SINR problem under the same

constraint, leading to the result that the optimal value of the objective function in (8.4)

satisfies τ = 1, as illustrated in Theorem 2 below.

Theorem 2: The achievable SINR region with joint beamforming and power allocation

under a given transmit power constraint can be equivalently represented with the inverse

weight sets of the max-min problem in (8.4) under the same constraint that makes its optimal

objective function value satisfy τ = 1.

Proof 8.1 The proof of Theorem 2 is conducted with the following three different cases:

τ < 1, τ = 1 and τ > 1.

First, since the minimum value of γi
γ0
i

(i = 1, 2, · · · , N) is maximized in (8.4), it is obvious

that there exists at least one γi (minimum value of γi
γ0
i

) which could not achieve γ0i when τ < 1,

i.e., the weighted sets {γ0i } could not be achieved by joint beamforming and power allocation

under the same average transmit power constraint when τ < 1.

Second, since the optimal objective function value in (8.4) satisfies
γ∗
i

γ0
i

= τ (i = 1, 2, · · · , N),

it is obvious that γ∗i = γ0i when τ = 1, i.e., the weighted sets {γ0i } could be achieved by joint

beamforming and power allocation under the same average transmit power constraint when

τ = 1.

Third, let us denote γ00i = γ0i τ (i = 1, 2, · · · , N) when τ > 1. Since τ satisfies the fixed

point equation in (8.13), which can be expressed as

σ2

N

N∑

i=1

γ0i τ

βe
i

= Pmax

(
δ − 1

N

N∑

i=1

γ0i τ

1 + γ0i τ

)
,

i.e.,

σ2

N

N∑

i=1

γ00i
βe
i

= Pmax

(
δ − 1

N

N∑

i=1

γ00i
1 + γ00i

)
,

and it is obvious that τ ′ = 1 is one solution of the fixed point equation in (8.13) when we

regard {γ00i } as the weighted set in (8.4).
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Denote the fixed point equation in (8.13) as a function of τ , namely,

f(τ ) =
Pmax

σ2

N

N∑
i=1

γ0
i

βe
i

(
δ − 1

N

N∑

i=1

γ0i τ

1 + γ0i τ

)
− τ .

Then, the solution of the fixed point equation in (8.13) satisfies f(τ) = 0. Since the derivative

of f(τ) is negative, i.e.,

f ′(τ) = − Pmax

σ2
N∑
i=1

γ0
i

βe
i

N∑

i=1

γ0i

(1 + γ0i τ)
2 − 1 < 0,

there exists at most one solution for the fixed point equation in (8.13). Therefore, the unique

solution of the fixed point equation in (8.13) is τ ′ = 1 when we regard {γ00i } as the weighted

set in (8.4).

Above all, we can find another set of weights {γ00i } which makes the optimal objective

function value of (8.4) equals to one to equivalently represent the results leading by the

weighted set {γ0i } when τ > 1.

In summary, the achievable SINR region with joint beamforming and power allocation

under average transmit power constraint could be equivalently represented with the weighted

sets of the max-min problem in (8.4) under the same constraint that makes its optimal

objective function value satisfies τ = 1. Theorem 2 is proved.

The condition under which the solution of the fixed point equation in (8.13) satisfies

τ = 1 is given in the following Theorem.

Theorem 3: Under the settings of Assumption 1 and 2, the solution of the fixed point

equation in (8.13) satisfies τ = 1 if and only if 1
N

N∑
i=1

γ0
i

βe
i
= Pmax

σ2

(
δ − 1

N

N∑
i=1

γ0
i

1+γ0
i

)
.

Proof 8.2 Sufficiency: From (8.13), it is easy to obtain that

1

N

N∑

i=1

γ0i
βe
i

=
Pmax

σ2

(
δ − 1

N

N∑

i=1

γ0i τ

1 + γ0i τ

)
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when τ = 1. Then, we can acquire

1

N

N∑

i=1

γ0i
βe
i

=
Pmax

σ2

(
δ − 1

N

N∑

i=1

γ0i
1 + γ0i

)
.

Necessity: If 1
N

N∑
i=1

γ0
i

βe
i
= Pmax

σ2

(
δ − 1

N

N∑
i=1

γ0
i

1+γ0
i

)
, we can acquire

τ =
Pmax

σ2

N

N∑
i=1

γ0
i

βe
i

(
δ − 1

N

N∑

i=1

γ0i τ

1 + γ0i τ

)

=

(
δ − 1

N

N∑

i=1

γ0i τ

1 + γ0i τ

)(
δ − 1

N

N∑

i=1

γ0i
1 + γ0i

)−1

.

Then,

τ

(
δ − 1

N

N∑

i=1

γ0i
1 + γ0i

)
= δ − 1

N

N∑

i=1

γ0i τ

1 + γ0i τ
.

Therefore,

(τ − 1)

(
δ − 1

N

N∑

i=1

(γ0i )
2
τ

(1 + γ0i )(1 + γ0i τ )

)
= 0.

Since we assume that δ > 1 (Assumption 1) in this chapter,

δ − 1

N

N∑

i=1

(γ0i )
2
τ

(1 + γ0i )(1 + γ0i τ )
> 0.

Thus,

τ − 1 = 0, i.e., τ = 1.

Theorem 3 provides an explicit condition for the achievable SINR sets {γ0i } under a given

transmit power constraint, and the corresponding transmit power and beamforming vectors

for the achievable target SINR set {γ0i } could be acquired by substituting {γ0i } into (8.14)

and (8.19), respectively.

Theorem 4: Under the settings of Assumption 1 and 2, the optimal average transmit
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power of joint beamforming and power allocation equals Pmax, i.e.,
1
N

N∑
i=1

pi = Pmax.

Proof 8.3 From (8.16), we can obtain that

1

N

N∑

k=1

γ0k
βe
k

=
γ0i Pmax

βe
i qi

.

Substituting into (8.13), we can acquire

γ0i τσ
2

βe
i

= qi

(
δ − 1

N

N∑

k=1

γ0kτ

1 + γ0kτ

)
.

Then,

pi =
Pmax

ξ

γ0i τ

(1 + γ0i τ )
2 +

1

ξ

γ0i τσ
2

βe
i

=
Pmax

ξ

γ0i τ

(1 + γ0i τ )
2 +

qi
ξ

(
δ − 1

N

N∑

k=1

γ0kτ

1 + γ0kτ

)
.

Finally,

1

N

N∑

i=1

pi

=
Pmax

Nξ

N∑

i=1

γ0i τ

(1 + γ0i τ )
2 +

1

ξ

(
δ − 1

N

N∑

k=1

γ0kτ

1 + γ0kτ

)
1

N

N∑

i=1

qi

=
Pmax

ξ

(
1

N

N∑

i=1

γ0i τ

(1 + γ0i τ )
2 + δ − 1

N

N∑

k=1

γ0kτ

1 + γ0kτ

)

=
Pmax

ξ
· ξ

=Pmax.

In this section, we have shown that the asymptotic results for the average transmit power

constraint for joint beamforming and power allocation could be equivalently represented with

a correspond nonlinear equality constraint. Then, with the help of these results, we will per-
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form some asymptotic analysis for the maximizing weighted sum rate by joint beamforming

and power allocation under average transmit power and QoS constraints for both perfect

and imperfect CSI at BS in the following sections.

8.3.2 Asymptotic Analysis of Weighted Sum Rate Maximization

with Perfect CSI

In this subsection, we assume the availability of perfect CSI at the BS. As noted above,

the transmit power constraint could be equivalently represented with a nonlinear equality

constraint, and the variables of the optimization problem considered in this chapter are

converted from the beamforming matrix to the SINR region, which dramatically promotes

the solution process of the original problem.

The weighted sum rate maximization by joint beamforming and power allocation under

transmit power and QoS constraints can be expressed as

max
W

∑N

i=1
uiRi (8.21a)

s.t. tr
(
WWH

)
≤ Pmax (8.21b)

γi ≥ γmin
i , i = 1, 2, · · · , N (8.21c)

where ui stands for the weight of the rate of the ith user.

As noted before, the transmit power constraint in (8.21b) can be equivalently represented

with a nonlinear equality constraint as described in Theorem 3. Then, the optimization

problem (8.21) can be converted into

max
γ

∑N

i=1
uilog2(1 + γi) (8.22a)

s.t.
1

N

N∑

i=1

γi
βe
i

=
Pmax

σ2

(
δ − 1

N

N∑

i=1

γi
1 + γi

)
(8.22b)

γi ≥ γmin
i , i = 1, 2, · · · , N (8.22c)
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where γ = [γ1, γ2, · · · , γN ]T denotes the set of SINR values for all users. By now, we have

converted the optimization variable from the beamforming matrix W to the SINR set γ.

By changing the optimization variable to xi =
1

1+γi
, problem (8.22) can be converted to the

following:

max
x

∑N

i=1
uilog2

(
1

xi

)
(8.23a)

s.t.
1

N

N∑

i=1

1− xi
xiβ

e
i

− Pmax

σ2

(
δ − 1 +

1

N

N∑

i=1

xi

)
= 0 (8.23b)

xi −
1

1 + γmin
i

≤ 0, i = 1, 2, · · · , N. (8.23c)

It is easy to determine that (8.23b) and (8.23c) are convex constraints. Since (8.23a) is the

summation of a sequence of non-decreasing functions of 1
xi
, the optimization problem (8.23)

is equivalent to [116]

max
x,y

∑N

i=1
uilog2

(
2yi − xiy2i

)
(8.24a)

s.t.
1

N

N∑

i=1

1− xi
xiβe

i

− Pmax

σ2

(
δ − 1 +

1

N

N∑

i=1

xi

)
= 0 (8.24b)

xi −
1

1 + γmin
i

≤ 0, i = 1, 2, · · · , N (8.24c)

yi ∈ R, i = 1, 2, · · · , N. (8.24d)

Now, the maximization problem in (8.24) can be efficiently solved with the iterative approach

of the concave-convex fractional programming algorithm proposed in [116]. We denote the

optimal set of SINR values for (8.22) as γ̃.

By now, we have obtained the optimal set of SINR values for (8.22) as γ̃. Then, we need

to find the optimal transmit power and beamforming vectors which could achieve the SINR

set γ̃ under the given transmit power constraint. The problem of finding the optimal transmit

power and beamforming vectors under the given transmit power constraint can be regarded
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as a max-min weighted SINR problem under the same transmit power constraint, and the

correspond solutions for the optimal transmit power and beamforming vectors are given in

(8.14) and (8.19). Therefore, we can acquire the optimal transmit power and beamforming

vectors for all users by substituting γ̃ into (8.14) and (8.19), respectively.

8.3.3 Asymptotic Analysis of Weighted Sum Rate Maximization

with Imperfect CSI

Heretofore, we have investigated the asymptotic performance of the weighted sum rate max-

imization under transmit power and QoS constraints with perfect CSI at the BS in IRS

assisted wireless networks. However, it is difficult to obtain the perfect CSI in practice.

Therefore, we consider imperfect CSI at the BS in this subsection, and the estimated chan-

nel is described as in (8.12).

Theorem 1 shows that τ , pi, qi and wi are independent of ηer, while γi is determined by

ηer. When perfect CSI is available at the BS, we can obtain the optimal set of SINR values

which maximize the weighted sum rate by solving the corresponding optimization problem

in (8.24), and then acquire the corresponding optimal transmit power and beamforming

vectors. However, as noted in Section III, we simply replace {gi} with {ĝi} to acquire ŵi, q̂i,

τ̂ , γ̂i and p̂i when there is channel estimation error at the BS, which leads to the result that

γi 6= γ0i τ in this situation. Therefore, instead of substituting the solution of (8.24) into (8.14)

directly to obtain the optimal transmit power, we need to solve an optimization problem

which regards the transmit power levels as the optimization variables when imperfect CSI is

acquired at the BS. Then the optimal beamforming vectors could be obtained by substituting

the optimal transmit power into (8.19).

Assuming that the optimal solution of (8.24) is γ̃ = [γ̃1, γ̃2, · · · , γ̃N ]T , and substituting it

into (8.15) and (8.18), we can obtain the corresponding ξ̃ and µ̃i. Then, substituting ξ̃ and

µ̃i into (8.17), we can acquire the SINR of the ith user under imperfect CSI which can be
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expressed as

γ̂i =
p̂i(1− η2er)ξ̃
µ̃iPmax +

σ2

βe
i

. (8.25)

Then, the weighted sum rate maximization under transmit power and QoS constraints can

be formulated as

max
p̂

∑N

i=1
uilog2

(
1 +

p̂i(1− η2er)ξ̃
µ̃iPmax +

σ2

βe
i

)
(8.26a)

s.t.
1

N

N∑

i=1

p̂i ≤ Pmax (8.26b)

p̂i(1− η2er)ξ̃
µ̃iPmax +

σ2

βe
i

≥ γmin
i , i = 1, 2, · · · , N (8.26c)

where p̂ = [p̂1, p̂2, · · · , p̂N ]T stands for the transmit power vector for all users. It is easy to

determine that (8.26a) is a concave function, while (8.26b) and (8.26c) are convex constraints.

If we regard p̂i as a fractional function whose denominator equals to 1, (8.26a) can be regarded

as the summation of non-decreasing functions of p̂i. Similarly, with the results in [116], (8.26)

is equivalent to

max
p̂,y

∑N

i=1
uilog2

[
1 +

(1− η2er)ξ̃
µ̃iPmax +

σ2

βe
i

(
2yi
√
p̂i − y2i

)]
(8.27a)

s.t.
1

N

N∑

i=1

p̂i ≤ Pmax (8.27b)

p̂i(1− η2er)ξ̃
µ̃iPmax +

σ2

βe
i

≥ γmin
i , i = 1, 2, · · · , N (8.27c)

yi ∈ R, i = 1, 2, · · · , N. (8.27d)

Then, the maximization problem in (8.27) can be efficiently solved with the iterative ap-

proach of the concave-convex fractional programming algorithm proposed in [116]. Similar

to the case for perfect CSI, the optimal beamforming vector under imperfect CSI can be

acquired by substituting the optimal transmit power vector, p̂∗, into (8.19).
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8.4 Numerical Analysis

In this section, we conduct a numerical analysis. We assume that all users are uniformly

distributed in a circle with radius 500m. There are 10 passive scattering elements at the IRS,

and the reflecting coefficient amplitudes of all elements are equal to 1. The minimum SINR

requirement for each user is -20 dB. The maximum transmit power is Pmax = 10 Watts. The

reference distance for the channel coefficients is d1,0 = d2,0 = 50m, and the path-loss at the

reference distance is 20 dB and 15 dB for the channel coefficients from the IRS to the users

and from the BS to the IRS, respectively. The path-loss decay exponents for the channel

coefficients from the IRS to the users and from the BS to the IRS are 2 and 2.5, respectively.

The weights for each user are assumed to be one. We consider the performance in terms of

the weighted sum rate here, and the sum rate is normalized over the bandwidth (and has

the units of bps/Hz) in this chapter.
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Figure 8.2: Weighted sum rate versus the number of users under perfect and imperfect CSI,
M = 100 and SNR=20 dB.

Fig. 8.2 depicts the relationship between the weighted sum rate and the number of

users under perfect and imperfect CSI1. We observe that the weighted sum rate initially

1Note that in Fig. 8.2, M is fixed and N varies. In such a case, analytical characterizations are applied
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increases at small number of users and then starts decreasing as N grows beyond a certain

threshold. For small values of N , the given transmit power is large enough to support all

users and the weighted sum rate increases at first as N grows. However, the limited available

transmit power presents a challenge when the user number is large. In order to fulfill the

QoS requirements of all users, transmit power is partially allocated to the users with worse

channel conditions instead of being assigned to users with better channels, leading to the

decrease in the weighted sum rate when the user number is large. Additionally, these curves

also show that under the same settings, the achievable weighted sum rate decreases as the

channel estimation error grows. Indeed, the loss in the weighted sum rate is seen to get

worse as ηer increases.
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Figure 8.3: Average rate per user versus the number of users under perfect and imperfect
CSI, M = 100 and SNR=20 dB.

Fig. 8.3 plots the curves illustrating the relationship between the achievable average rate

per user and the number of users under perfect and imperfect CSI. In order to fulfill the QoS

requirements of all users, the transmit power allocation becomes more and more inefficient

and the achievable average rate per user diminishes as the number of users grows. Under

with different δ = M

N
to each point in the plot.
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the same settings, we again note that the achievable average rate per user decreases as the

channel estimation error increases.
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Figure 8.4: Weighted sum rate versus the number of antennas at the BS under perfect and
imperfect CSI, N = 40 and SNR=20 dB.

Fig. 8.4 plots the weighted sum rate vs. the number of antennas at the BS under perfect

and imperfect CSI. Higher degrees of freedom and larger diversity gains are obtained and

the achievable weighted sum rate increases as the number of antennas at the BS increases.

Similarly as before, the achievable weighted sum rate decreases with the increasing channel

estimation error, and degradation in the weighted sum rate is observed to accelerate as the

estimation quality drops.

Fig. 8.5 depicts the relationship between the weighted sum rate and SNR under perfect

and imperfect CSI. These curves show that the weighted sum rate increases with growing

SNR while it expectedly decreases as the channel estimation error increases.
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Figure 8.5: Weighted sum rate versus SNR at user side under perfect and imperfect CSI,
N = 40 and M = 50.
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Chapter 9

Conclusion

9.1 Summary

In this thesis, we have studied the performance of wireless networks with massive connectiv-

ity. The contributions of this thesis are summarized below.

In Chapter 2, we proposed a novel joint antenna and user selection method for single-

cell massive MIMO communication systems. With the two-step iterative procedure, we can

obtain the EE-optimal subset of antennas and users, based on the bisection search, random

selection and cross-entropy algorithms. We have demonstrated that with joint antenna and

user selection, the EE of the system could be improved significantly, especially when M and

K are large.

In Chapter 3, Algorithm 3.2 is proposed to solve the joint uplink and downlink EE

maximization problem with joint antenna selection and user scheduling in single-cell massive

MIMO systems, under a limitation on the number of available RF chains. With Jensen’s

inequality and the power consumption model, the original joint antenna selection and user

scheduling problem is converted into a combinatorial optimization problem, and we have

shown that it can be solved efficiently with the developed learning-based stochastic gradient

descent algorithm. We have also employed the rare event simulation method in the learning-
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based stochastic gradient descent algorithm to generate samples with very small probabilities.

We have considered both perfect and imperfect CSI at the BS. Via numerical results, we have

provided insightful observations that are poised to be beneficial in the design of practical

single-cell massive MIMO systems.

In Chapter 4, we have derived a decoupling principle for SMV based MMSE estimation of

sparse signal vectors with i.n.i.d. non-zero components in cell-free massive MIMO networks

with massive connectivity. With this decoupling principle and the likelihood ratio test, we

have obtained a detection rule for the activity of users based on the received pilot signals

at only one AP. Subsequently, with the decoupling principle of the SMV based MMSE

estimation, likelihood ratio test and the optimal fusion rule, we have determined detection

rules for the activity of users based on the cooperation with the received pilot signals at all

APs for centralized and distributed detection. We have also demonstrated that the error

probabilities of both centralized and distributed detection tend to zero when the number of

AP tends to infinity while the asymptotic ratio between the number of users and pilots is kept

constant. Moreover, we have analyzed oracle estimation in cell-free massive MIMO networks

with massive connectivity, and the asymptotic behavior of oracle estimation is identified

via random matrix theory. Via numerical analysis, we have investigated the impact of the

number of pilots, SNR, and the number of APs on mean square error and error probabilities

of different schemes. We have also observed that the theoretical analysis with the decoupling

principle of SMV based MMSE estimation matches well with the numerical results of the

CB-AMP algorithm.

Performance of cell-free massive MIMO systems with massive connectivity is analyzed in

Chapter 5. In the joint activity detection and channel estimation phase, MMSE estimates of

the effective channel coefficients from all users to the entire set of APs are obtained via the

GAMP algorithm. Then, the effective noise variance is determined with the state evolution

equations of the GAMP algorithm. Following this characterization, the variances of both the

estimated channel and channel estimation error are identified. Finally, the achievable uplink
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rates in the data transmission phase with ZF detector deployed at the CPU are analyzed and

the impact of the number of pilots, the number of APs, SNR, and the user activity detection

and channel estimation results on the performance is determined.

In Chapter 6, we have analyzed the MMSE channel estimation in IRS assisted wireless

communication systems. We have first identified statistics of the end-to-end channel matrix.

Specifically, we have first shown that each row vector of the equivalent channel matrix from

the BS to the users has a Bessel K distribution, and all the rows are independent of each

other. Following this characterization, we have employed a GSM model, and obtained an

analytical closed-form expression of the MMSE estimate of the equivalent channel. Further-

more, we have derived analytical upper and lower bounds of the mean square error. We have

also provided an asymptotic analysis of the MMSE estimation, and shown that the upper

bound of the mean square error of the MMSE estimate equals the asymptotic mean square

error of the MMSE estimation as M1 gets large. Furthermore, from the derived expressions

of the MMSE estimate of the equivalent channel and the corresponding upper and lower

bound expressions, we notice that the mean square error is independent of the number of

antennas at the BS. Moreover, since the row vectors of the equivalent channel are indepen-

dent of each other and orthogonal pilots are used during the channel estimation process, the

mean square error does not depend on the number of users either. Via numerical analysis,

we have identified how the mean square error varies as a function of SNR, the number of

elements and the scattering amplitudes at the IRS. We have also demonstrated that the

upper and lower bounds lead to very accurate approximations of the mean square error.

The sparse activity detection in IRS assisted wireless network is considered in Chapter 7.

Via the GAMP algorithm, we have obtained the MMSE estimates and the additive Gaussian

noise corrupted versions of the equivalent effective channel coefficients. Subsequently, we

have obtained multiple decisions on the activity of each user based on the Gaussian noise

corrupted equivalent effective channel coefficients and the likelihood ratio test. Finally, the

decisions on the activity of all users are made by employing the optimal fusion rule. Following
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the theoretical characterizations, we conducted a numerical analysis. Via numerical results,

we have investigated the impact of system and network parameters, such as SNR, the number

of pilots, number of BS antennas, number of IRS elements, on the average error probability

of sparse activity detection. In particular, we observe that the average error probability

diminishes as the SNR, number of pilots, number of antennas at the BS or number of

elements at the IRS increases.

In Chapter 8, we have conducted the asymptotic analysis of weighted sum rate maximiza-

tion under transmit power and QoS constraints in IRS assisted wireless networks. Making

use of the asymptotic results on the max-min weighted SINR problem, the transmit power

constraint is equivalently represented with a nonlinear equality constraint, and the original

problem is optimized over the SINR region instead of being optimized over the beamforming

vectors directly, which dramatically promotes the solution process of the original problems.

Finally, the optimization problem is converted into a concave-convex optimization problem

via a transformation of the variables, after which it can be efficiently solved with the iterative

method of the concave-convex fractional programming algorithm.

9.2 Future Research Directions

9.2.1 Joint Antenna Selection and User Scheduling in Multi-Cell

Massive MIMO Networks

In Chapters 2 and 3, we have studied the EE maximization problem by joint antenna selection

and user scheduling in single-cell massive MIMO systems. However, since a single cell could

support only a limited area, it is more practical to consider the joint antenna selection and

user scheduling in multi-cell massive MIMO networks. When multiple cells are considered,

inter-cell interference will be introduced, potentially leading to additional power consumption

for multi-cell cooperation. These aspects will make the analysis more challenging.
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9.2.2 Joint Activity Detection and Channel Estimation in Cell-

Free Massive MIMO Networks With User-Dependent and

Temporally Correlated Activity Probabilities

In Chapters 4 and 5, we assume that the users’ activity probabilities are independent and

equal to each other to perform the joint activity detection and channel estimation. With

these assumptions, the CB-AMP algorithm is employed to obtain the MMSE estimate of the

effective channel coefficients. Finally, users’ activities are obtained with the likelihood ratio

test and the optimal fusion rule, and the channel coefficients are acquired with the results

of users’ activities and the MMSE estimates of the effective channel coefficients.

In practice, there might be different types of users in IoT networks, and the users’ activity

probabilities are not equal to each other. Moreover, some of the users’ activity probabilities

might be correlated as a result of their characteristics or being physically close to each other.

Furthermore, users might have temporal correlations in their activities, i.e., activity proba-

bility can depend on the previous state of the user, and can be described via a Markovian

model. These are some practical settings for the users’ activity probabilities in IoT networks,

and the joint activity detection and channel estimation will become more challenging when

these conditions are considered.

9.2.3 Performance Analysis of IRS Assisted Wireless Networks

with Different Reflecting Amplitudes at the Scattering Ele-

ments

In Chapters 6, 7 and 8, we have studied the performance analysis of IRS assisted wireless

networks, e.g., MMSE channel estimation, asymptotic analysis and joint activity detection

and channel estimation. In these works, we assumed that the reflecting amplitudes at the

passive scattering elements of IRS are equal to each other. Then, we find that the equivalent

channel coefficients follow a Bessel K distribution, and it can be equivalently represented
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with a GSM model. However, when the passive scattering elements at IRS have different

reflecting amplitudes, it is challenging to find the distribution of the equivalent channel

coefficients, which is a fundamental result needed for the further performance analysis in

IRS assisted wireless network. We leave this as a topic of our future research work.
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