6,363 research outputs found

    Convergence Analysis of an Inexact Feasible Interior Point Method for Convex Quadratic Programming

    Get PDF
    In this paper we will discuss two variants of an inexact feasible interior point algorithm for convex quadratic programming. We will consider two different neighbourhoods: a (small) one induced by the use of the Euclidean norm which yields a short-step algorithm and a symmetric one induced by the use of the infinity norm which yields a (practical) long-step algorithm. Both algorithms allow for the Newton equation system to be solved inexactly. For both algorithms we will provide conditions for the level of error acceptable in the Newton equation and establish the worst-case complexity results

    Experimental investigations in combining primal dual interior point method and simplex based LP solvers

    Get PDF
    The use of a primal dual interior point method (PD) based optimizer as a robust linear programming (LP) solver is now well established. Instead of replacing the sparse simplex algorithm (SSX), the PD is increasingly seen as complementing it. The progress of PD iterations is not hindered by the degeneracy or the stalling problem of the SSX, indeed it reaches the 'near optimum' solution very quickly. The SSX algorithm, in contrast, is not affected by the boundary conditions which slow down the convergence of the PD. If the solution to the LP problem is non unique, the PD algorithm converges to an interior point of the solution set while the SSX algorithm finds an extreme point solution. To take advantage of the attractive properties of both the PD and the SSX, we have designed a hybrid framework whereby cross over from PD to SSX can take place at any stage of the PD optimization run. The cross over to SSX involves the partition of the PD solution set to active and dormant variables. In this paper we examine the practical difficulties in partitioning the solution set, we discuss the reliability of predicting the solution set partition before optimality is reached and report the results of combining exact and inexact prediction with SSX basis recovery

    A sequential semidefinite programming method and an application in passive reduced-order modeling

    Full text link
    We consider the solution of nonlinear programs with nonlinear semidefiniteness constraints. The need for an efficient exploitation of the cone of positive semidefinite matrices makes the solution of such nonlinear semidefinite programs more complicated than the solution of standard nonlinear programs. In particular, a suitable symmetrization procedure needs to be chosen for the linearization of the complementarity condition. The choice of the symmetrization procedure can be shifted in a very natural way to certain linear semidefinite subproblems, and can thus be reduced to a well-studied problem. The resulting sequential semidefinite programming (SSP) method is a generalization of the well-known SQP method for standard nonlinear programs. We present a sensitivity result for nonlinear semidefinite programs, and then based on this result, we give a self-contained proof of local quadratic convergence of the SSP method. We also describe a class of nonlinear semidefinite programs that arise in passive reduced-order modeling, and we report results of some numerical experiments with the SSP method applied to problems in that class

    Convergence analysis of an Inexact Infeasible Interior Point method for Semidefinite Programming

    Get PDF
    In this paper we present an extension to SDP of the well known infeasible Interior Point method for linear programming of Kojima,Megiddo and Mizuno (A primal-dual infeasible-interior-point algorithm for Linear Programming, Math. Progr., 1993). The extension developed here allows the use of inexact search directions; i.e., the linear systems defining the search directions can be solved with an accuracy that increases as the solution is approached. A convergence analysis is carried out and the global convergence of the method is prove
    • ā€¦
    corecore