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A b s t r a c t :  T h e  u s e  o f  a  p r i ma l  d u a l  i n t e r i o r  p o i n t  me t h o d  ( P D )  b a s e d  
optimizer as a robust linear programming (LP) solver is now well established. 
Instead of replacing the sparse simplex algorithm (SSX), the PD is 
increasingly seen as complementing it .  The progress of PD iterations is not 
hindered by the degeneracy or the stalling problem of the SSX, indeed it  
reaches the 'near optimum' solution very quickly. The SSX algorithm, in 
contrast,  is not affected by the boundary conditions which slow down the 
convergence of the PD. If the solution to the LP problem is non unique, the 
PD algorithm converges to an interior point of the solution set while the 
SSX algorithm finds an extreme point solution. To take advantage of the 
attractive properties of both the PD and the SSX, we have designed a hybrid 
framework whereby cross over from PD to SSX can take place at any stage 
of the PD optimization run. The cross over to SSX involves the partit ion of 
the PD solution set to active and dormant variables. In this paper we 
examine the practical difficulties in partitioning the solution set, we discuss 
the reliabili ty of predicting the solution set partition before optimality is 
reached and report the results of combining exact and inexact prediction with 
SSX basis recovery. 

 

Keywords:  primal dual interior point methods, simplex algorithm, basis 
recovery 
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1. Introduction 
The use of the primal dual interior point method (PD) for the solution of linear programs 

provides a number of benefits which are summarized below. For large or highly degenerate 

LPs PD is in many cases faster than the SSX solver. Whereas SSX based algorithms require 

considerable adaptation and control parameter tuning from one model class to another, 

default settings of PD (predictor corrector and barrier) are sufficient to process a wide class 

of LPs. PD is not only robust in this way, its progress is not hindered by the degeneracy       

or the stalling problem of the SSX; indeed it reaches the "near optimal" solution very 

quickly. SSX algorithms, in contrast, are not affected by the boundary conditions which 
slow down the convergence of PD. 

There are three well known and well exercised extensions of traditional LP namely, 

successive linear programming, integer programming, and post-optimal analysis. In all 

these cases optimum solutions for a family of problems need to be computed which in turn 

involves reoptimization from the last computed primal and dual optimum basis (extreme 

point solution). The extreme point solution is the corner stone of SSX algorithms and the 

use of the corresponding basis as starting point is naturally applied in this context to solve 

efficiently a family of similar problems. PD algorithms, on the other hand, usually converge 

to a point in the interior of the optimal face. This property and the behaviour of the PD 

algorithm near the boundary (Megiddo 89) make it difficult to apply PD in the same way 

for a family of similar LP's. Although some extension to LP and in particular sensitivity and 
post optimality analysis were developed for PD (Adler 89) (Guler 92), an extreme point 

solution is still preferable for many applications which require warm start. For these 

applications, the fast initial convergence of PD to a near optimal solution can be followed   

up by the superior near optimal to optimal convergence of SSX algorithms. This strategy 

combines the fast initial convergence of the PD with the basis representation of the SSX. 

Many researchers (see for example (Megiddo 88,91), (Bixby 92), (Mitra 88)) consider this 

latter approach to be a promising computational scenario. This hybrid approach, however, 

requires a substantial performance superiority of PD and an efficient PD-SSX integration to 

make it worthwhile. 

The PD optimal solution can be used either for PD post-optimality analysis or to cross over 

to SSX. In both cases, a clear partition between the variables that are dormant at the PD 

optimal solution (variables that are either at their upper or lower bound) and those which 

are 
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active at the PD optimal solution is needed. In general, if the active and dormant sets are 

known an optimal solution can be easily retrieved. 

The research issues reported in this paper are mainly concerned with efficiently finding 

such a partition, either from a near optimal point or from an intermediate solution, and with 

using this partition to warm start SSX via basis recovery. In section 2 of this paper we give 

some theoretical background and establish the termination criteria for which a partition can 

be determined, in section 3 we describe and review methods for predicting the partition 

from an intermediate solution, develop a heuristic for finding such a partition and asses the 

quality of the results. In section 4 we present a basis recovery technique that was designed 

to take advantage of exact and near exact partitions. Our conclusions are summarized in 

section 5. 

 

2. Termination criteria and complementarity in the PD solution 

 

Consider the following primal and dual LP problems:  

(Primal) Min cTx  S.T. Ax=b, x≥0 

(Dual) Max bTy S.T. ATy+z=c, z≥0

 (2.1) 

  AЄRm×n, x,z,cЄRn, y,bЄRm 

 

(Upper bounds are omitted for simplicity) 

A PD algorithm applied to these problems generates a sequence of strictly interior primal 

(dual) intermediate solution points. This sequence theoretically converges to an optimal 

primal (dual) solution which is a boundary point of the primal (dual) feasible polyhedron.

The actual termination of the algorithm, however, is not on the boundary of the polyhedron 
but in the interior close to an optimal solution. 

At the optimal solution, complementarity is enforced, mat is : 

cTx-bTy=xTz=0 and XZe=0

 (2

.2) 

Where X, Z are diagonal matrices whose diagonals are the vectors x and z respectively and 

e=(l1,….1n)T. 

We define the indicator sets σ(v), σ (v) of indices of active (positive) and dormant (non 

positive) variables of a non negative vector v as: 
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{ } { } )(,...1)(,0,)(,0, vnvvjvvRv j
n σσσ −=>=≥∈  

 (2

.3) 

Of all the primal optimal solutions and the dual optimal solutions of (2.1) there exists at 

least one solution pair (x*), (y*z*) where the strict complementarity of (2.2) applies, or in 

terms      of the indicator set σ defined in (2.3): 

{ }nzxandzx ,...1)()()()( *** == σσφσσ UI

 (2

.4) 

We call this solution a strictly complementary solution. 

Guler and Ye (91) show that a class of interior point methods which also contains the 

predictor corrector and barrier PD algorithms (Mehrotra 90) generates a sequence of 

feasible pairs (xk, zk) such that: 

)1(
)(

)min(
nzx

eZX
kkk

kk

Ω>

 (2

.5) 

(where )1(
n

Ω  is the order of at least 
n
1 ).  

For this class of algorithms, they also proved the following theorem: 

Theorem 2.1: At iteration k, let { }k
j

k
j

k zxj ≥= :σ  and assume the LP data is rational. If L is 

the input length of the problem then for all algorithms that satisfy (2.5) if (xk)T zk ≤2-

3L, 

σk=σ (x). 

Theorem 2.1 shows that when an the intermediate solution point is close enough to 

the optimal solution, the set σ(x*) of active primal variable indices can be identified. 

The dormant variables can be set to zero and a smaller problem can be solved to retrieve 

the 'exact' optimal solution on a boundary of the polyhedron. 

Although theorem 2.1 gives a theoretical stopping criterion for the PD , in practice, a more 

realistic criterion is needed. In most PD algorithms, the termination criteria are based on    

the feasibility and the duality gap. The algorithm terminates successfully if the following 

criteria are satisfied: 
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For convenience and simplicity,Є1, Є 2, Є 3 , are set to the same value, that is: Є 1= Є 2= Є 3= 
Є. Different implementations of PD algorithms use different values for this Є. This makes 
the comparison between algorithms performance difficult and can result in non-
complementary solution and wrong partition of the solution set. The following table 
summarize the value  of some reported e values. 

 

 

< < Table 2.1 should come here > > 

 

 

It is important to find a proper termination value since a very small Є maybe difficult 
to reach due to numerical software and hardware difficulties and a too large Є value, can 
result in a wrong partition of the active and dormant variable sets. In order to find the 
proper termination e in PD we introduce the following three definitions: 

Let )(),( ** zx σσ  define the set of all the dormant primal and dual variables in the PD optimal 
solution then 

Definition 2.1: 
We say that the optimal solution set as found by the PD can be determined if by applying 
the following criteria we are able to retrieve )(),( ** zx σσ : 

 
{ }njxjx j ,..,,1,~|)(* =∈<=σ  

{ }njzjz j ,..,,1,~|)(* =∈<=σ  

 

That is, for every variable j, either zj, xj or both are clearly converging to 0 as determined    
by a small tolerance parameter 0>∈ . 
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Definition 2.2: 



Following theorem 2.1 we say that the optimal solution set can be recognized if we can  
retrieve )(),( ** zx σσ  by using the following criteria: 

{ })(|)( 1
*

jjj xzandxorxjx >∈>∈<=σ  

{ })(|)( 1
*

jjj zxandzorzjz >∈>∈<=σ  

 

Definition 2.3: 

If )(),( ** zx σσ  can be found by applying some approximation functions we say that the

solution set can be predicted. We call these functions predicting function. 

 

It is clear from Theorem 2.1 that 

 

)(),( ** zx σσ can be determined or recognized if we are in   

a close enough neighbourhood of the optimal solution. Below, we try to establish the 
termination criteria Є for which definition 2.1 and 2.2 apply. 

 

Practical termination Criteria 

 

We extend our PD predictor corrector solver (Levkovitz 92) to establish a practical 
termination criterion value that gives a proper solution partition for a range of real life LP 
problem (see also Mehrotra (90) for a general description of high order primal dual interior 
point methods). The solver produces an intermediate solution at every PD iteration starting 
from the iteration for which the relative duality gap is reduced below 0.1. The solution set 
is partitioned using the recognizable set criteria (definition 2.2) and compared to the 
partition achieved for Є=10-16. In addition, we try to find the relative duality gap for 
which the solution set can be fully determined (definition 2.1). For both cases we set 
~ε =10-10.  In the following table, every primal variable that is found to be dormant by the 
recognizing criteria is considered as hit. If a variable is found to be dormant by the 
recognizing criteria but is active in the optimal solution set, it is considered as a miss. This 
procedure is applied to some NETLIB problems with and without scaling. Typical 
results are given in tables 2.2 and 2.3.  

The first column of the tables gives the value of the relative duality gap, the second 
column 
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the number of true dormant primal variables and the third column the number of wrongly 
recognized primal dormant variables. 

 

 

< < Table 2.2 should come here > > 

 

 

 

 

< < Table 2.3 should come here > > 

 

 

From the above tables it is easy to see that while a solution set can be determined in 

both problems for Є<10-11, in the problem ORNA3 (as in many other problems) it can not 

be recognized earlier. The reason for such a behaviour is demonstrated in two typical 

patterns  of behaviour as presented in Figures 2.1 and 2.2. In figure 2.1, only when 

the relative duality gap is reduced below 10-11 it is clear that the primal variable is 

active and the dual variable is dormant. In figure 2.2, both primal and dual variables seem 

to converge to zero but while the dual variable actually converges to zero, the primal 

variable stabilizes on low but positive value. These figures demonstrate that although the 

duality gap is almost monotonically reduced, the value of a single variable can vary 

considerably from one iteration to another. The behaviour observed in Figure 2.1 can be 

attributed to the large step size taken in the PD algorithm (0.9995 in our case, see Levkovitz 

(92) or Lustig et al. (90)  for further details). By limiting the step size, the convergence of 

the variables to their final value can become more orderly. Any gains, however, are 

unlikely since the number of iterations also grows. 

 

 

< < Figure 2.1 should come here > > 
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< < Figure 2.2 should come here > > 

 

3. Predicting the partition of the optimal primal and dual solution sets 
From results of the previous section we conclude that if a proper partition of the solution set    
is to be made, the relative duality gap should be at least 10-12 – 10-14 before )(),( ** zx σσ  
can be confidently determined. Also, it is clear that applying the recognition criterion 
before this duality gap is reached can be misleading. However, it is still desirable to
terminate PD before reaching a relative duality gap of Є<10

 
 
 

(i) at an early stage of the PD search procedure, namely 50% of the total number of 
iterations, PD finds a near optimum solution which is often within 80-90% of the final 
solution. 

-12 or alternatively to identify
at least some of the active and dormant variables, some of the reasons for this are listed
below: 

(ii) the numerical stability of the algorithm deteriorates when the algorithm gets close to the 
boundary, the computation of the trajectory in the kth iteration of PD includes 
the computation of the diagonal matrix Dk=Xk(Zk)-1 and the solution for λ of the 
symmetric system of equations ADKATλ=ρ. The diagonal matrix can have some very high 
value entries for active variables and some near zero entries for dormant variables. 
Although equation 2.5 limits the possible variation, in practice the matrix ADKAT can 
still become ill conditioned and cause numerical errors. 

(iii) As dormant or active variables are identified, the size of the problem can be reduced by 
removing them. In particular, the removal of dormant variables maintains primal feasibility 
and reduces the computation work of every iteration. Also, the removal of primal variables 
that converge to zero can partially resolve the numerical difficulties. 

 As a result, there is considerable interest in establishing if reliably predicted solution sets 
can be obtained earlier. Karmarkar, Gay (89), Mehrotra (91), Zhang et al. (91), El-
Barki et al. (91), Levkovitz (91) and others have put forward heuristics based on indicator  
functions which are calculated at every iteration. These heuristics attempt to predict the 
partition to act ive and dormant  var iable  sets  in  the opt imal  solut ion.  
Broadly,  we can  
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classify these indicator functions to three groups: indicators that are based on either 
the primal or the dual variables, indicators that are based on both primal and dual 
variables and indicators that also take into account the changes in the values of variables 
from one iteration of the PD algorithm to another. 

In their comprehensive survey of indicator functions El-Barki et al. (91) define 
the properties of the ideal indicator functions: 

(i) Sharp separation: the indicator functions should clearly determine which of the 
primal variables is dormant and which is active. 

(ii) Uniform separation: the indicators of all the dormant variables should converge to the 
same value. Similarly, the indicators of all active variables should converge to the same 
value. 

(iii) Inexpensive to compute: the indicators are typically calculated after every PD 
iteration, therefore, the calculation of the indicator value must be of lower 
complexity than the complexity of the PD iteration. 

(iv) Quick convergence: the indicator function value converges to its limit faster then the 
LP intermediate solution converges to the optimal one. 

(v) Reliable 

(vi) Scale independent 

It is easy to see that if the above requirements (and in particular requirement (iii) and 
(iv) together) are satisfied then there is a lower complexity algorithm hidden inside 
the PD, however , no researcher to-date has presented such an algorithm.  

From the results published by various researchers (see for example El-Barki et al. (91) and 
Gay (89) ) it seems that although the complexity of calculating most indicator functions is 
lower then the PD complexity by orders of magnitudes (typically O(n) or O(mn) compared 
to 0(n2.5) of the PD iteration), the number of iterations that is saved by using predictions is 
marginal. This behaviour can be attributed to the difficulty of finding a general parameter 
setting that suits large number of problems. Further, if the indicator functions give a wrong 
prediction (as often happens), the resulted active set may not include an optimal solution set 
and lead to extra computational work. El-Barki, Tapia and Zhang (91) find mat the 
most successful indicators are those based on the primal and dual variables. In particular, 
they use a combination of the following indicator functions: 
(i) primal dual indicators for the j'th variable in the k+1 iterate 
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The indicator goes to infinity if the variable is active in the solution, otherwise, it goes to

0. 

(ii) The sum of the primal and dual Tapia indicators for the j'th variable in the k+1 iterate 
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The indicator goes to 2 if the variable is active in the solution, otherwise it goes to 0. 

For our investigation we use the following primal and dual indicator functions:  

(i) Primal dual indicators for the j'th variable in the k+1 iterate  
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 (ii) Iteration dependent primal dual indicator for the j'th variable in the k+1 iterate:  

k
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j zz
xx

|
|

1

1
1

+

+
+ =δ  

 

The first set of indicators gives the ratio of the primal and dual variables in the current  

iterate, it is clear that when the solution is close to optimal then: 

⎪⎩

⎪
⎨
⎧
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zjQ

xjQ
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j

k

k
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σ
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The second set of indicators, in contrast, measures the changes in the primal and dual 

values from iteration to iteration. The following figures demonstrate the different behaviour 

of the three indicators on four variables of the NETLIB problem Stair: 

 

< < Figure 3.1 should come here > > 
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< < Figure 3.2 should come here > > 

 

< < Figure 3.3 should come here > > 

 

As can be seen from the above figures, the behaviour of the indicator functions assumes a 

meaningful pattern only after the relative duality gap and infeasibility are below a certain 

tolerance. Therefore, in our experiments, we calculate the values of the indicators only 
when the relative duality gap is reduced below 0.1. Our prediction is based on the 
observation that in the majority of the variables, if the reduction in the δ indicator for a 

particular variable j is strong enough and happens in no less than two consecutive iterations 

then the variable is going to be dormant in the optimal solution. In addition, the current 
value of the primal dual indicator is also taken into consideration.  

These are utilized by incorporating the following procedure into our PD code: 

Let S(1..n) be an array of integer variables, for all) set S(j)=0,  

Let PI and P2 be the criteria parameters: 

 If Є<0.1 then 

In the k+I iteration do if )(1)()
1

12( 11 jSjSthan
P

andPQ k
j

k
j +−=<< ++ δ  

Endif 

It is easy to see that the computational and space complexity of calculating the indicator 

function in any iteration is in O(n), this incurs a relatively small overhead on the 

computation. If we decide to terminate and predict the solution set we use the following 

procedure: 

Let P3 be the dormant threshold parameter 

for j=1,n do 

if }{)()(3 ** jxxthenPS k
j Uσσ =−<  

enddo 

In the subsequent experiments, the value of P3 is set to 2, the values of PI and P2 

are calibrated on certain NETLIB problems. 

For a particular problem, by setting PI and P2 to appropriate values, a reliable 

prediction 
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can be guaranteed. Values that are suitable for one problem, however, can result in wrong 

prediction in another model. A very conservative setting, on the other hand, can guarantee 
that no active variables will be chosen as 0 but is likely to reduce the advantage of 

prediction to marginal at best. 

Tables 3.1-3.3 demonstrate this difficulty, in table 3.1 the parameter setting is sufficient to 
find most dormant variables. Until the last iteration, however, a small number of active 

variables are also identified as dormant. In tables 3.2 and 3.3, two sets of parameters are 
used, the first set was calibrated to the problem GANGES and the second set to the problem 

MAROS. It is clear that parameters that give a reliable prediction for the first problem give 
an unreliable prediction for the second one and vice versa. Since this happens in many other 

problems we could not find a parameter settings that give consistently reliable predictions. 
Our results indicate that the use of indicators to terminate PD or reduce the size of the 
model is risky. On many models, a meaningful reduction can be done only when the duality 

gap is fairly small and the corresponding computational savings are minimal. 

 

< < Table 3.1 should come here > > 

 

 

 

< < Table 3.2 should come here > > 

 

 

 

< < Table 3.3 should come here > > 

 

 

4. Cross over to SSX and basis recovery 

In non degenerate LP problems, the optimal solution point set is restricted to a single  

extreme point of both primal and dual feasible polyhedrons. In most 
practical cases, 
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however, the LP problem is primal or dual degenerate (or both) and the optimal solution     

point set describes a face of the feasible polyhedron. It is well known that the optimal    

solution generated by the PD algorithm converges to an interior point of this face (Megiddo 

89). In many cases, however, an optimal extreme point solution is required. This optimal 

extreme point solution and the corresponding primal and dual optimal basis provide

a powerful representation which arises in LP and its duality theory. Consider the LP 

problem of (2.1) and assume that the constraint matrix A is of full rank. For our 

purposes it is sufficient to state that the optimal basis of this LP problem is a submatrix B, 

BЄRm×m such that (x*)T=[(B-1b)T,0],x*ЄRn is an optimal solution of the primal problem 

and y*=(BT)-1cB is the optimal solution for the dual problem. A primal (non degenerate) 

basic solution requires exactly m primal variables to be active and their corresponding 

dual slack variables to be 0. Compared to optimal SSX solution for a given LP, the PD 

solution has more active variables if the problem is dual degenerate or less if it is primal 

degenerate. In the integration of PD and SSX a basis recovery procedure has to be 

constructed which applies to both these cases. Megiddo (91), Bixby et al. (91), and 

Bixby and Saltzman (92) among others put forward methods for retrieving the basis from 

an interior point solution. In particular, Megiddo's methods is based on the existence of 

both primal and dual optimal and complementarity solutions. The algorithm uses these 

solutions to retrieve a basic solution (in a strongly polynomial time) while maintaining 

the complementarity and optimality of the intermediate solutions. Other basis recovery 

algorithms use either the primal or the dual solutions to retrieve the basis solution. 

Usually, the LP problem in its general form has a combination of equality and inequality 

constraints. To suit the requirements of the PD algorithm, the original problem is converted 
to a standard LP problem with only equality constraints. 

We now describe a method that we have developed for the crossover procedure. This 

procedure was especially developed to utilize the prediction of the optimal solution

partition. 

 

Given the original LP problem P we create a related problem P  in the following way: 

We define a subproblem that corresponds to the columns and rows of the original matrix 
which are active in the PD optimal solution. The column index sets CS,CN correspond to 
the variables of the original matrix which are active and dormant in the solution. RE RF 
row index sets such that corresponding logical variables take zero or positive 

values 
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respectively. 
We construct the related problem P  as shown below by fixing variables in the set CN to 
their respective (lower) bounds and making the rows in the set RF free rows. We note that if
the PD prediction is correct then the appropriate subset of the given optimum solution to P 

 is  a feasible solution to x̂ P . 
 
< < Figure 4.1 should come here > > 
 

Let Min  be the original LP problem P. mnnmT RbRcxRAxbxATSxc ∈∈∈≥=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
≥
≤

× ,ˆ,ˆ,ˆ,0ˆ,ˆˆ..,ˆˆ ˆˆ

This problem is translated to the standard form primal LP problem of (2.1) by the addition 
of up to m new variables that correspond to the inequality constraints. 
Let { }iT

ji
T
j bxAorbxAiIIl ≥≤== **

ˆˆ|:  (where  is the i'th row of the matrix ) then l 

denotes the number of logicals (slacks and surplus variables) introduced whereby 
*

ˆ
jA Â

nln ˆ+= . 
Let 1≤iq ≤l be the index of the logical variable for the row index i∈I (that is, the row  
is the i

iÂ

q th non equality row in the matrix ), then the basis recovery procedure is defined   
as follows: 

Â

 
1. Store the PD predicted solution for the standard form LP problems. If the solution is 
optimal the value of all the dormant variables is set to zero. Similarly, if the solution is 
intermediate, the value all the variables that are predicted to be dormant is set to zero. 
 
2.  Build restricted problem in the following way 
 
 
for all structural variables  njxp ˆ,..,1=

 if(xj>0 or (xj=0 and zj=0))then  
 set xj as a candidate for the basis 
 else 
 do not include xj it in the restricted problem) 
 endif  
endfor 
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for all the constraints rp, i=1,…,m 
 if hen )0,( ˆ >∈ +nixandIi  t
 the constraint is non-binding, make row ri a free row 
 in the restricted problem 
 else 
 make row ri an equality row. 
 endif  
endfor 
 
3. build the initial basis: take an initial unit basis and introduce variables from the 
candidate list according to their distance from the (lower) bound. A starting basis is 
obtained when  
 
(i) the candidate list is exhausted 
or 
(ii) no more variables can be introduced. 
 
4. Solve the restricted problem using the primal simplex algorithm and save the basis. 
 
5. Restore the original problem and use the saved basis from step 4 
  if the solution is optimal STOP. 
 
6. if the solution is primal feasible then 
 use the primal simplex algorithm to obtain a solution and STOP 
 
7. if the solution is not primal feasible then 
 use the dual simplex algorithm to obtain primal feasibility goto step 6. 
 

If the prediction of the optimal basis is slightly wrong (this can happen if PD is terminated 
before an optimal solution is reached) then step 2 is terminated with a 'no feasible solution' 
status. The resulting basis, however, is usually near optimal and thus requires a low 
number of iterations in step 3 to reach optimality (see tables 4.1-4.5). The basis recovery 
algorithm is applied either from an optimal or an intermediate PD solution. If the 
solution is optimal, the solution set is correct and thus the restricted problem has a feasible 
and an optimal solution. Otherwise, the restricted problem can be infeasible, unbounded or 
may not include the proper optimal solution. 

In table 4.1 we present the results of using the optimal PD solution in the basis recovery 
procedure. The basis recovery procedure is implemented within our general LP solver 
FORTLP. In the first four columns of this table we present the problem name and its 
statistics, in the fifth and sixth columns we give the number of PD and basis recovery
iterations respectively. For comparison, the last column gives the iteration count of 
CPLEX 
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for these problems (Bixby 90) (this comparison can be slightly misleading since CPLEX 
uses pricing strategies that are not implemented in FORTLP). 
In tables 4.2 and 4.3 we use the prediction criteria together with basis recovery in two 
representative problems. The headers of the tables give the problem name and parameter 
settings for the prediction heuristic. The first column of the tables give the relative duality 
gap, the second and the third columns the number of prediction hits and misses respectively 
and the last column the total number of basis recovery iterations. From the tables it can be 
seen that after a sufficient number of dormant variables is identified, the number of basis 
recovery iterations is greatly reduced, from that point to optimality, the reduction is the 
number of iteration is gradual and in general does not justify the extra number of PD 
iterations. It is interesting to notice that the existence of a small number of wrongly 
predicted dormant variables has little influence on the number of crossover iterations. 
 
<  < Table 4.1 should come here> > 
 
 
<  < Table 4.2 should come here > > 
 
 
<  < Table 4.3 should come here > > 
 
 
Finally, we investigate utilizing the prediction for a family of problems. Tables 4.4-4.5 
contain the corresponding results. The prediction parameters calibrated for the NETLIB
staircase problem SCFXM1 are then applied to other problems in this family. In Table 4.4 
the problem names and statistics are given, the prediction hits and misses and the number of 
basis recovery iterations from intermediate solutions are summarized in table 4.5. It is clear 
that for this family of problems, the parameter settings is sufficient to produce a near exact 
partition for all problems when the duality gap is reduced below 10-5. Thereafter, the 
number of basis recovery iterations is not greatly reduced. 
 
 
<  < table 4.4 should come here > > 
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< < table 4.5 should come here > > 
 

5. Conclusions 

In the report we investigate the PD to SSX crossover as well as the scope of utilizing an 
exact and near-exact partition of the optimal solution set. We have highlighted the fact that 
if the problem is degenerate, the PD and SSX optimal solution partitions are different. It is 

known that both partitions have their own merits and give alternative information. The SSX 

partition describes the strictly complementary exterior optimal solution point while

the PD partition describes the optimal face. We have showed that if the optimal PD 

partition is required, a relatively high precision solution is needed. We have demonstrated 

that if the SSX optimal solution or partition are needed, the optimal PD solution together 

with the optimal PD partition can be effectively utilized in a crossover procedure. Our 

results show that although this may not always be the best approach, in many cases, this 

approach is superior to running SSX from cold start. The hybrid PD-SSX framework can 

be enhanced by using a prediction of the optimal partition. Although we could not find a 

fully reliable prediction method we show that if a family of related problems is solved, a 

near exact prediction of the optimal partition combined with crossover scheme can 

outperform the standard approach. 
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Research Report Termination Criterion ∈  
Mehrotra (90) 10-14

Levkovitz (92) 10-10

Aaltman (92) 10-6-10-8

Lustig et al. (90) 10-8

 Table 2,1 Termination Criterion Values 
 
Relative 
Duality Gap 

Hits Misses 

8.3E-3 1488 11 
6.4E-3 1157 10 
2.7E-3 1198 9 
9.0E-4 1248 5 
3.8E-4 1267 4 
1.2E-4 1313 3 
9.4E-6 1375 2 
5.0E-7 1429 0 
2.5E-10 1453 0 
6.2E-13 
Determined 
Solution set 

1454 0 

Table 2.2 Applying the recognizable and determined set criteria to the problem MAROS: 
 
Relative Duality Gap Hits Misses
2.7E-7 864 562 
1.3E-10 864 5 
6.0E-12 
Determined solution set 

864 0 

Table 2.3 Applying the recognizable and determined set criteria to the problem ORNA3 
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Figure 2.1: The NETLIB problem GROW22, behaviour of variable 506 

Net I i b  Mode I   Ganges 
Variable 627 

 

Figure 2.2: The NFTLIB problems ganges, behaviour of variable 627 
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Figure 3.1 the primal dual indicators on four variables of the problem Stair 

 

Figure 3.2 the sum of Tapia's indicators on four variables of the problem Stair 
 
 
 
 

22 



 
 
 

 

Figure 3.3 the 5 indicators on four variables of the problem Stair 
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Problem Ship 121 Rows 1152 Columns 5427 nonzeros 21597:
P1=2, P2=100 
Duality Gap Hits Misses 
1.2 E-2 4539 14 
4.2 E-3 4736 16 
6.2 E-4 4751 18 
1.2 E-4 4792 4 
4.6 E-5 4793 5 
2.6 E-6 4805 5 
2.5 E-9 4805 1 
1.8 E-12 4805 0 
Table 3.1 Prediction of the partition in the problem SHIP12L 
 
Problem Maros Rows 847 Columns 1443 nonzeros 10006 
 Pl = 10, P2 = 10000 Pl=5, P2=100 
Duality Gap Hits Misses Hits Miss 
1.3 E-3 1148 11 462 0 
6.4 E-3 1157 10 464 0 
2.7 E-3 1198 9 467 0 
9.0 E-3 1248 5 473 0 
3.8 E-4 1267 4 475 0 
1.2 E-4 1313 3 479 0 
9.4 E-6 1375 2 484 0 
5.0 E-7 1429 0 1429 0 
2.5 E-10 1453 0 1453 0 
6.2 E-13 1454 0 1454 0 
 Table 3.2 Prediction of the partition in the problem MAROS 
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Problem Ganges Rows 1125 Columns 1522 nonzeros 6569 
 Pl = 10, P2 = 10000 Pl=5, P2=100 
Duality Gap Hits Misses Hits Miss 
1.3 E-3 1 0 56 74 
1.8 E-4 10 0 86 174 
2.8 E-5 11 0 87 175 
1.3 E-5 11 0 87 175 
3.5 E-6 47 0 109 173 
7.5 E-7 187 0 249 170 
8.5 E-7 201 0 259 158 
5.1 E-9 259 0 259 25 
6.0 E-12 259 0 259 0 
 Table 3.3 Prediction of the partition in the problem GANGES 
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Figure 4.1 construction of the restricted problem 
 
Model Rows Cols. Non 

Zeros 
PD 
Iterations 
(Duality 
gap 10-12) 

Recovery
Iterations

CPLEX 
simplex 

Stocfor1 118 111 474 17 89 31 
Israel 175 142 2358 18 52 168 
e226 224 282 2767 18 88 336 
car2 400 1200 33000 15 100 4000+

degen2 445 534 4449 12 1300 800 
agg3 517 302 4531 18 100 129 
fffff80 525 854 6235 23 203 735 
bn11 644 1175 6129 28 800 3197 
25fv47 822 1571 11127 24 252 2576 
orna3 883 764 4869 15 100 1200+

truss 1001 8806 36642 16 400 9487 
Ship121 1152 5427 21597 16 90 897 
ganges 1310 1681 7021 17 240 598 
stocfor2 2158 2031 9492 24 300 1072 
bn12 2325 3489 16124 29 1500 5418 
ken7 2427 3602 8404 14 434 - 
stocfor3 16676 15695 74004 34 1500 10740 
 Table 4.1 Basis recovery from optimal solution 
+ Solved with OSL version 2.0 (Forrest and Tomlin 90) 
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Problem Ship121 P1=2, p2=100 
Duality Gap Hits Misses Recovery Iterations 
1.2 E-2 4539 14 213 
4.2 E-3 4736 16 115 
6.2 E-4 4751 18 131 
1.2 E-4 4792 4 95 
4.6 E-5 4793 5 106 
2.6 E-6 4805 5 114 
2.5 E-9 4805 1 91 
1.8 E12 4805 0 90 

Table 4.2 Using prediction and basis recovery for the problem SHIP12L 
Problem Car2.mps P1=2, p2=100 
Duality Gap Hits Misses Recovery Iterations 
1.4 E-3 798 0 1123 
1.8 E-5 791 0 260 
7.9 E-7 798 0 150 
2.6 E-9 800 0 100 
1.4 E-12 800 0 100 

Table 4.3 Using prediction and basis recovery for the problem CAR2 
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Model Rows Columns Nonzeros Simplex 

iterations
SCFXM1 331 457 612 530 
SCFXM2 661 914 5229 1120 
SCTAP3 1481 2480 10734 1930 
SCTAP2 1091 1880 8124 1400 
SCFXM3 991 1371 7846 1650 
 Table 4.4 Problem statistics  

Table 4.5 Basis recovery results using prediction for a family of problems 

 Duality SCFXM1 SCFXM2 SCFXM1 SCTAP2 SCTAP3 
Gap Hit Miss Rec Hit Miss Rec Hit Miss Rec Hit Miss Rec Hit miss Rec
1.0 E-3 264 2 163 76 0 1006 357 30 615 1679 0 148 2314 0 205
1.0 E-4 276 2 155 458 4 550 812 8 462       
1.0 E-5 282 0 141 556 1 298 836 5 395 1679 0 148 2314 0 205
1.0 E-6 288 0 127 568 0 253 845 1 400       
1.0 E-7 292 0 119    845 1 400       
1.0 E-8    568 0 252    1679 0 148    
1.0 E-9             2314 0 205
1.0 E-10 272 0 119 568 0 252 846 0 416 1679 0 148 2314 0 205
1.0 E-11 272 0 119 568 0 252 846 0 416 1679 0 148 2314 0 205
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