1,029 research outputs found

    Multi-faceted Structure-Activity Relationship Analysis Using Graphical Representations

    Get PDF
    A core focus in medicinal chemistry is the interpretation of structure-activity relationships (SARs) of small molecules. SAR analysis is typically carried out on a case-by-case basis for compound sets that share activity against a given target. Although SAR investigations are not a priori dependent on computational approaches, limitations imposed by steady rise in activity information have necessitated the use of such methodologies. Moreover, understanding SARs in multi-target space is extremely difficult. Conceptually different computational approaches are reported in this thesis for graphical SAR analysis in single- as well as multi-target space. Activity landscape models are often used to describe the underlying SAR characteristics of compound sets. Theoretical activity landscapes that are reminiscent of topological maps intuitively represent distributions of pair-wise similarity and potency difference information as three-dimensional surfaces. These models provide easy access to identification of various SAR features. Therefore, such landscapes for actual data sets are generated and compared with graph-based representations. Existing graphical data structures are adapted to include mechanism of action information for receptor ligands to facilitate simultaneous SAR and mechanism-related analyses with the objective of identifying structural modifications responsible for switching molecular mechanisms of action. Typically, SAR analysis focuses on systematic pair-wise relationships of compound similarity and potency differences. Therefore, an approach is reported to calculate SAR feature probabilities on the basis of these pair-wise relationships for individual compounds in a ligand set. The consequent expansion of feature categories improves the analysis of local SAR environments. Graphical representations are designed to avoid a dependence on preconceived SAR models. Such representations are suitable for systematic large-scale SAR exploration. Methods for the navigation of SARs in multi-target space using simple and interpretable data structures are introduced. In summary, multi-faceted SAR analysis aided by computational means forms the primary objective of this dissertation

    Computational Methods for Structure-Activity Relationship Analysis and Activity Prediction

    Get PDF
    Structure-activity relationship (SAR) analysis of small bioactive compounds is a key task in medicinal chemistry. Traditionally, SARs were established on a case-by-case basis. However, with the arrival of high-throughput screening (HTS) and synthesis techniques, a surge in the size and structural heterogeneity of compound data is seen and the use of computational methods to analyse SARs has become imperative and valuable. In recent years, graphical methods have gained prominence for analysing SARs. The choice of molecular representation and the method of assessing similarities affects the outcome of the SAR analysis. Thus, alternative methods providing distinct points of view of SARs are required. In this thesis, a novel graphical representation utilizing the canonical scaffold-skeleton definition to explore meaningful global and local SAR patterns in compound data is introduced. Furthermore, efforts have been made to go beyond descriptive SAR analysis offered by the graphical methods. SAR features inferred from descriptive methods are utilized for compound activity predictions. In this context, a data structure called SAR matrix (SARM), which is reminiscent of conventional R-group tables, is utilized. SARMs suggest many virtual compounds that represent as of yet unexplored chemical space. These virtual compounds are candidates for further exploration but are too many to prioritize simply on the basis of visual inspection. Conceptually different approaches to enable systematic compound prediction and prioritization are introduced. Much emphasis is put on evolving the predictive ability for prospective compound design. Going beyond SAR analysis, the SARM method has also been adapted to navigate multi-target spaces primarily for analysing compound promiscuity patterns. Thus, the original SARM methodology has been further developed for a variety of medicinal chemistry and chemogenomics applications

    Computational Methods Generating High-Resolution Views of Complex Structure-Activity Relationships

    Get PDF
    The analysis of structure-activity relationships (SARs) of small bioactive compounds is a central task in medicinal chemistry and pharmaceutical research. The study of SARs is in principle not limited to computational methods, however, as data sets rapidly grow in size, advanced computational approaches become indispensable for SAR analysis. Activity landscapes are one of the preferred and widely used computational models to study large-scale SARs. Activity cliffs are cardinal features of activity landscape representations and are thought to contain high SAR information content. This work addresses major challenges in systematic SAR exploration and specifically focuses on the design of novel activity landscape models and comprehensive activity cliff analysis. In the first part of the thesis, two conceptually different activity landscape representations are introduced for compounds active against multiple targets. These models are designed to provide an intuitive graphical access to compounds forming single and multi-target activity cliffs and displaying multi-target SAR characteristics. Further, a systematic analysis of the frequency and distribution of activity cliffs is carried out. In addition, a large-scale data mining effort is designed to quantify and analyze fingerprint-dependent changes in SAR information. The second part of this work is dedicated to the concept of activity cliffs and their utility in the practice of medicinal chemistry. Therefore, a computational approach is introduced to search for detectable SAR advantages associated with activity cliffs. In addition, the question is investigated to what extent activity cliffs might be utilized as starting points in practical compound optimization efforts. Finally, all activity cliff configurations formed by currently available bioactive compounds are thoroughly examined. These configurations are further classified and their frequency of occurrence and target distribution are determined. Furthermore, the activity cliff concept is extended to explore the relation between chemical structures and compound promiscuity. The notion of promiscuity cliffs is introduced to deduce structural modifications that might induce large-magnitude promiscuity effects

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network.

    Get PDF
    Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we present an Herb-Target Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional feature representations. HTINet obtains performance improvement over a well-established random walk based herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interactions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous information to predict novel herb-target interactions

    Methods for the Analysis of Matched Molecular Pairs and Chemical Space Representations

    Get PDF
    Compound optimization is a complex process where different properties are optimized to increase the biological activity and therapeutic effects of a molecule. Frequently, the structure of molecules is modified in order to improve their property values. Therefore, computational analysis of the effects of structure modifications on property values is of great importance for the drug discovery process. It is also essential to analyze chemical space, i.e., the set of all chemically feasible molecules, in order to find subsets of molecules that display favorable property values. This thesis aims to expand the computational repertoire to analyze the effect of structure alterations and visualize chemical space. Matched molecular pairs are defined as pairs of compounds that share a large common substructure and only differ by a small chemical transformation. They have been frequently used to study property changes caused by structure modifications. These analyses are expanded in this thesis by studying the effect of chemical transformations on the ionization state and ligand efficiency, both measures of great importance in drug design. Additionally, novel matched molecular pairs based on retrosynthetic rules are developed to increase their utility for prospective use of chemical transformations in compound optimization. Further, new methods based on matched molecular pairs are described to obtain preliminary SAR information of screening hit compounds and predict the potency change caused by a chemical transformation. Visualizations of chemical space are introduced to aid compound optimization efforts. First, principal component plots are used to rationalize a matched molecular pair based multi-objective compound optimization procedure. Then, star coordinate and parallel coordinate plots are introduced to analyze drug-like subspaces, where compounds with favorable property values can be found. Finally, a novel network-based visualization of high-dimensional property space is developed. Concluding, the applications developed in this thesis expand the methodological spectrum of computer-aided compound optimization

    Application and Development of Computational Methods for Ligand-Based Virtual Screening

    Get PDF
    The detection of novel active compounds that are able to modulate the biological function of a target is the primary goal of drug discovery. Different screening methods are available to identify hit compounds having the desired bioactivity in a large collection of molecules. As a computational method, virtual screening (VS) is used to search compound libraries in silico and identify those compounds that are likely to exhibit a specific activity. Ligand-based virtual screening (LBVS) is a subdiscipline that uses the information of one or more known active compounds in order to identify new hit compounds. Different LBVS methods exist, e.g. similarity searching and support vector machines (SVMs). In order to enable the application of these computational approaches, compounds have to be described numerically. Fingerprints derived from the two-dimensional compound structure, called 2D fingerprints, are among the most popular molecular descriptors available. This thesis covers the usage of 2D fingerprints in the context of LBVS. The first part focuses on a detailed analysis of 2D fingerprints. Their performance range against a wide range of pharmaceutical targets is globally estimated through fingerprint-based similarity searching. Additionally, mechanisms by which fingerprints are capable of detecting structurally diverse active compounds are identified. For this purpose, two different feature selection methods are applied to find those fingerprint features that are most relevant for the active compounds and distinguish them from other compounds. Then, 2D fingerprints are used in SVM calculations. The SVM methodology provides several opportunities to include additional information about the compounds in order to direct LBVS search calculations. In a first step, a variant of the SVM approach is applied to the multi-class prediction problem involving compounds that are active against several related targets. SVM linear combination is used to recover compounds with desired activity profiles and deprioritize compounds with other activities. Then, the SVM methodology is adopted for potency-directed VS. Compound potency is incorporated into the SVM approach through potencyoriented SVM linear combination and kernel function design to direct search calculations to the preferential detection of potent hit compounds. Next, SVM calculations are applied to address an intrinsic limitation of similarity-based methods, i.e., the presence of similar compounds having large differences in their potency. An especially designed SVM approach is introduced to predict compound pairs forming such activity cliffs. Finally, the impact of different training sets on the recall performance of SVM-based VS is analyzed and caveats are identified

    Computational Methods for the Integration of Biological Activity and Chemical Space

    Get PDF
    One general aim of medicinal chemistry is the understanding of structure-activity relationships of ligands that bind to biological targets. Advances in combinatorial chemistry and biological screening technologies allow the analysis of ligand-target relationships on a large-scale. However, in order to extract useful information from biological activity data, computational methods are needed that link activity of ligands to their chemical structure. In this thesis, it is investigated how fragment-type descriptors of molecular structure can be used in order to create a link between activity and chemical ligand space. First, an activity class-dependent hierarchical fragmentation scheme is introduced that generates fragmentation pathways that are aligned using established methodologies for multiple alignment of biological sequences. These alignments are then used to extract consensus fragment sequences that serve as a structural signature for individual biological activity classes. It is also investigated how defined, chemically intuitive molecular fragments can be organized based on their topological environment and co-occurrence in compounds active against closely related targets. Therefore, the Topological Fragment Index is introduced that quantifies the topological environment complexity of a fragment in a given molecule, and thus goes beyond fragment frequency analysis. Fragment dependencies have been established on the basis of common topological environments, which facilitates the identification of activity class-characteristic fragment dependency pathways that describe fragment relationships beyond structural resemblance. Because fragments are often dependent on each other in an activity class-specific manner, the importance of defined fragment combinations for similarity searching is further assessed. Therefore, Feature Co-occurrence Networks are introduced that allow the identification of feature cliques characteristic of individual activity classes. Three differently designed molecular fingerprints are compared for their ability to provide such cliques and a clique-based similarity searching strategy is established. For molecule- and activity class-centric fingerprint designs, feature combinations are shown to improve similarity search performance in comparison to standard methods. Moreover, it is demonstrated that individual features can form activity-class specific combinations. Extending the analysis of feature cliques characteristic of individual activity classes, the distribution of defined fragment combinations among several compound classes acting against closely related targets is assessed. Fragment Formal Concept Analysis is introduced for flexible mining of complex structure-activity relationships. It allows the interactive assembly of fragment queries that yield fragment combinations characteristic of defined activity and potency profiles. It is shown that pairs and triplets, rather than individual fragments distinguish between different activity profiles. A classifier is built based on these fragment signatures that distinguishes between ligands of closely related targets. Going beyond activity profiles, compound selectivity is also analyzed. Therefore, Molecular Formal Concept Analysis is introduced for the systematic mining of compound selectivity profiles on a whole-molecule basis. Using this approach, structurally diverse compounds are identified that share a selectivity profile with selected template compounds. Structure-selectivity relationships of obtained compound sets are further analyzed

    Development and Interpretation of Machine Learning Models for Drug Discovery

    Get PDF
    In drug discovery, domain experts from different fields such as medicinal chemistry, biology, and computer science often collaborate to develop novel pharmaceutical agents. Computational models developed in this process must be correct and reliable, but at the same time interpretable. Their findings have to be accessible by experts from other fields than computer science to validate and improve them with domain knowledge. Only if this is the case, the interdisciplinary teams are able to communicate their scientific results both precisely and intuitively. This work is concerned with the development and interpretation of machine learning models for drug discovery. To this end, it describes the design and application of computational models for specialized use cases, such as compound profiling and hit expansion. Novel insights into machine learning for ligand-based virtual screening are presented, and limitations in the modeling of compound potency values are highlighted. It is shown that compound activity can be predicted based on high-dimensional target profiles, without the presence of molecular structures. Moreover, support vector regression for potency prediction is carefully analyzed, and a systematic misprediction of highly potent ligands is discovered. Furthermore, a key aspect is the interpretation and chemically accessible representation of the models. Therefore, this thesis focuses especially on methods to better understand and communicate modeling results. To this end, two interactive visualizations for the assessment of naive Bayes and support vector machine models on molecular fingerprints are presented. These visual representations of virtual screening models are designed to provide an intuitive chemical interpretation of the results
    • …
    corecore