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Abstract

A core focus in medicinal chemistry is the interpretation of structure-activity

relationships (SARs) of small molecules. SAR analysis is typically carried out

on a case-by-case basis for compound sets that share activity against a given

target. Although SAR investigations are not a priori dependent on compu-

tational approaches, limitations imposed by steady rise in activity informa-

tion have necessitated the use of such methodologies. Moreover, understanding

SARs in multi-target space is extremely di�cult. Conceptually di�erent com-

putational approaches are reported in this thesis for graphical SAR analysis in

single- as well as multi-target space. Activity landscape models are often used

to describe the underlying SAR characteristics of compound sets. Theoretical

activity landscapes that are reminiscent of topological maps intuitively repre-

sent distributions of pair-wise similarity and potency di�erence information as

three-dimensional surfaces. These models provide easy access to identi�cation

of various SAR features. Therefore, such landscapes for actual data sets are

generated and compared with graph-based representations. Existing graphical

data structures are adapted to include mechanism of action information for

receptor ligands to facilitate simultaneous SAR and mechanism-related anal-

yses with the objective of identifying structural modi�cations responsible for

switching molecular mechanisms of action. Typically, SAR analysis focuses on

systematic pair-wise relationships of compound similarity and potency di�er-

ences. Therefore, an approach is reported to calculate SAR feature probabilities

on the basis of these pair-wise relationships for individual compounds in a lig-

and set. The consequent expansion of feature categories improves the analysis

of local SAR environments. Graphical representations are designed to avoid a

dependence on preconceived SAR models. Such representations are suitable for

systematic large-scale SAR exploration. Methods for the navigation of SARs

in multi-target space using simple and interpretable data structures are intro-

duced. In summary, multi-faceted SAR analysis aided by computational means

forms the primary objective of this dissertation.
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Introduction

The development of compounds that speci�cally interact with given biological

targets is the central aspect of medicinal chemistry research. It is often as-

sumed that the chemical structures of these compounds determine their bioac-

tivity. The study of structure-activity relationships (SARs) is largely (but not

exclusively) based upon this premise. Furthermore, in accordance with an intu-

itive postulate, the similarity-property principle (SPP), one can also extrapolate

that compounds having similar chemical structures would most likely have sim-

ilar biological activities [1]. Consequently, minor modi�cations of the chemical

structure of an active compound would alter its activity only within a narrow

range. However, such straightforward assumptions are not always valid. In

many cases, simple structural modi�cations in a molecule are accompanied by

large changes in biological activity, either by dramatically increasing its exist-

ing activity or rendering it inactive [2]. Furthermore, despite being structurally

related, active compounds may interact di�erently with their targets [3]. Thus,

determining the underlying SARs of bioactive compounds remains a signi�cant

challenge in medicinal chemistry.

Computational Chemical Space and Similarity

Computational approaches are often favored while investigating SARs on a

large-scale as systematic comparisons of molecular structure and activity be-

come exceedingly di�cult. Such analyses often require a computationally ac-

cessible representation for molecular structures and a reference framework that

allows their comparison [4]. Mathematical formulations that encode physical

and chemical properties of active compounds, known as molecular descriptors,

are commonly used molecular representations. A chemical reference space, de-

�ned using a set of molecular descriptors, wherein each descriptor constitutes
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a dimension, would correspond to a coordinate-based chemical space. Thus,

compounds projected in such a chemical space would be represented by vec-

tors of their respective descriptor values [4]. Molecules that are structurally

similar would ideally be located in close proximity within this space, whereas

increasing distances between molecular positions would account for dissimilar

compounds. Therefore, construction of meaningful chemical reference spaces is

crucial to similarity assessment, and the selection of activity-relevant descrip-

tors is a major challenge [5].

A plethora of descriptors are available as molecular representations [6, 7].

Molecular �ngerprints, a popular type of molecular representation, are bit-

strings that encode the chemical structure and properties of the compounds [4].

Such �ngerprints usually are binary in nature and the bits indicate the pres-

ence or absence of speci�c structural features. Depending on how these features

are determined, the resulting �ngerprints may vary in their size and complex-

ity. For instance, fragment-based �ngerprints like MACCS [8] are generated

from a set of prede�ned structural features. Furthermore, atom environment

[9] and extended connectivity [10] �ngerprints are derived from all connectivity

pathways of speci�ed lengths that exist in a given molecule. Moreover, �n-

gerprints may also be designed to capture possible pharmacophore elements

within compounds [11]. Therefore, di�erent types of �ngerprints resolve molec-

ular structure at various levels [5].

In addition to generating computationally accessible molecular representa-

tions, one must also consider ways to compare them in a quantitative manner

and assess the similarity or distance between these representations (and con-

sequently the molecules) within the chemical reference space. However, the

concept of similarity in general is representation-dependent [12]. Besides, de-

velopment of methods that quantify the degree of similarity or dissimilarity

between compounds is also required. Many such similarity and distance mea-

sures have been reported [6].

Medicinal chemists often need to establish chemically interpretable trends

during exploration of SARs. Identifying structural determinants of activity

using molecular descriptors or �ngerprints is often di�cult. The concept of

matched molecular pairs (MMPs) has become popular as it provides a frame-
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work for studying the structural relatedness among bioactive compounds on a

large scale [13]. An MMP consists of a pair of compounds that can be inter-

converted by a well-de�ned structural modi�cation restricted to a single site.

In addition to single-point MMPs, multi-point MMPs with changes at more

than one site have also been de�ned [14]. Given that the primary objective of

MMP analyses is to account for all possible MMPs for given sets of compounds,

several algorithms have been reported for such pairwise molecular comparisons.

Two widely employed methodologies include maximum common substruc-

ture (MCS) based and systematic molecular fragmentation approaches [13]. A

popular fragmentation scheme reported by Hussain and Rea produces molecular

fragments through systematic deletion of up to three acyclic single bonds re-

sulting in single, double and triple cuts. Bond deletions result in larger common

substructures and smaller transformations. Each larger substructure fragment

and the corresponding transformation is indexed as a key and value pair, re-

spectively. The value fragments may have one (single cuts) or more (double and

triple cuts) attachment points [15]. Initially, the MMP concept was applied to

analyze bioisosteric replacements within drugs and drug-like compounds that

conserved the activity against their targets [16]. Several unique bioisosteric

transformations have been identi�ed after systematic examination of MMPs

formed within compound sets active against di�erent targets and target fami-

lies obtained from public repositories [17, 18]. Molecular transformations that

produce signi�cant variation in potency within and across target sets have also

been investigated [19�22]. In addition, MMP-based analyses have also been

performed to assess the e�ects of replacing various chemical groups on di�er-

ent experimentally determined and calculated properties [23�26]. MMP-based

analyses are devoid of the �black box� nature often associated with other compu-

tational approaches. In these cases, the association between biological activity

and molecular structure is evident and interpretable in an intuitive manner [13].

Methods for Dimension Reduction

Projection of compounds into a chemical reference space represented either by

molecular �ngerprints or descriptors is often a prerequisite for computational

analyses. However, such reference spaces are high-dimensional and as such
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their intuitive depiction is rather di�cult. Reduction of these multi-dimensional

spaces to two or three dimensions is often performed in order to ease their nav-

igation. The resulting low-dimensional data is used to represent bioactive com-

pounds which can then be readily visualized by routinely used methodologies.

However, molecular structures need to be examined separately and extraction

of pertinent SAR information requires chemical expertise [27]. Transformation

of multivariate data into a space of lower dimensionality is frequently referred

to as nonlinear mapping and represents one possible approach to dimension

reduction [28]. The primary objective of nonlinear mapping is the conservation

of neighborhood relationships such that proximity in multi-dimensional space

is reproduced in the lower dimensions [29]. To this end, several mathematical

techniques have been applied to perform dimension reduction [28, 30].

Another popular dimension reduction technique is principal component anal-

ysis (PCA), which generates linear orthogonal combinations of original descrip-

tor sets. The smaller set of novel variables generated by PCA is su�cient to

account for a certain degree of variance produced by the original descriptor

set [27]. PCA results in a coordinate-based low-dimensional reference space

and can be applied to large data sets. By contrast, multi-dimensional scaling

(MDS), a classical example of the nonlinear mapping technique, is used for

the transformation of the coordinate-free reference space obtained by pairwise

molecular �ngerprint comparisons. MDS is better suited for preserving similar-

ity relationships while decreasing dimensionality, although it is less favorable for

large compound sets due to computational challenges. This issue can be circum-

vented by using MDS in combination with feed-forward neural networks [30].

Alternate approaches to dimension reduction also include Kohonen networks

or self-organizing maps (SOMs) [31]. Irrespective of the dimension reduction

technique used to transform multi-dimensional data, one can only minimize but

never completely avoid the associated loss of information.

Attributes of Structure-Activity Relationships

SAR characteristics of bioactive compound sets are determined by the degree

of change in activity accompanied by their structural modi�cations [32]. When

clear trends in bioactivity arise due to systematic chemical changes of bioactive
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compounds, they represent �continuous� SARs [33]. The presence of structurally

similar compounds with comparable potencies is indicative of continuous SARs.

Therefore, such SARs are consistent with the SPP and constitute a global molec-

ular similarity perspective [32]. Additionally, structural modi�cations may also

lead to increasingly diverse compounds with conserved activity, a phenomenon

known as sca�old hopping [34]. In such cases, these compounds often have simi-

lar shapes or pharmacophores that represent local activity-relevant similarities.

Thus, sca�old hopping also falls within the spectrum of continuous SARs. Con-

versely, if minor chemical replacements induce large changes in activity within

a compound set, the underlying SAR is said to be �discontinuous� [33]. The

distinguishing feature of discontinuous SARs is the presence of structurally sim-

ilar compounds with signi�cantly di�erent potencies. Such pairs of compounds

are often referred to as activity cli�s [35]. Discontinuous SARs fall outside the

SPP applicability domain and often pose an impediment to molecular similarity

analysis. However, these two SAR categories do not necessarily occur indepen-

dently of each other. Rather, continuous and discontinuous SAR elements often

co-exist within compound sets and consequently, the ensuing SAR category is

�heterogeneous� [36]. In general, the global SAR for a set of compounds that

share activity against a given target, i.e. an activity class, can belong only to

one of the above mentioned categories [33].

Conventional SAR Analysis

In medicinal chemistry, SARs are typically investigated on a case-by-case ba-

sis and the analysis entails studying structurally similar compound series ac-

tive against a biological target. Exploration of closely related series is carried

out to understand how structural perturbations in�uence the bioactivity of

compounds. Such investigations usually involve manual comparison of the 2D

molecular graphs of bioactive analogs. The analogs are often represented in a

tabular format as core structures (or sca�olds) and various substituents, along

with their biological activities. Such R-group tables are intuitive tools most

commonly used in SAR analysis. These are also suitable to determine SAR

trends that aid in compound design and lead optimization [37].
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Despite their clear merits, these R-group tables become increasingly di�-

cult to interpret as the number of analogs increases. Moreover, such traditional

SAR analyses rely heavily on the experience and intuition of medicinal chemists.

As a result, the outcome is often subjective and prone to inconsistencies [38].

Generation of core and R-group matrices using a computational approach has

also been performed [39]. Numerous other representations, like tree maps and

radial clustergrams, that depict structural similarity and bioactivity distribu-

tion as well as other molecular properties have also been designed [40, 41].

Recently, MMP-based SAR matrices that capture SAR information content in

large compound sets in various intuitive ways have been reported [42]. Al-

though, computational methods can be utilized to organize large compound

sets into SAR tables, the chemical structures of individual molecules may still

require a thorough examination.

In order to facilitate derivation of quantitative SAR information, mathe-

matical functions are employed that relate structural features and properties of

compounds to their activity. Such methodologies follow the quantitative SAR

(QSAR) analysis paradigm [43, 44]. Despite variations in their design, the pri-

mary objective of QSAR methods is to facilitate activity prediction for novel

compounds. QSAR models were initially generated using linear 2D approaches,

but nonlinear as well as 3D modeling have also been attempted [44�48]. Recent

advances incorporating machine-learning techniques and arti�cial intelligence

have resulted in QSAR methodologies with improved prediction capabilities

[48, 49].

An inherent limitation common to all QSAR methodologies is that their

application is con�ned to congeneric compound series, i.e. compounds that bear

close structural resemblance. Thus, other compounds with dissimilar structures

fall outside the applicability domain of QSAR models [50]. Even within the

applicability domain, credibility of QSAR modeling is only ensured when the

underlying SAR of the compounds is continuous. Presence of activity cli�s often

impede the success of QSAR for which predictions can be inconsistent [35].

Nevertheless, activity cli�s are considered important by medicinal chemists as

they serve as centers on which hit-to-lead and lead optimizations studies can

be focused in order to obtain compounds with improved bioactivity [2, 35].
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Activity Landscape Representation

SARs for di�erent compound sets are often described using the activity land-

scape concept modeled after actual geographic landscapes [51]. An activity

landscape representation combines chemical similarities and activity di�erences

between compounds active against a given biological target. Compounds that

constitute the chemical reference space are positioned along the xy-plane in a

way that captures molecular similarity. Thus, structurally related compounds

are proximal in this two-dimensional projection while dissimilar compounds are

separated from each other. Activity information pertaining to every constituent

compound is incorporated as the third dimension.

The result can be envisioned as a topological surface with variable levels

of elevation [52]. Accordingly, structural alterations of compounds would con-

stitute transitions in the chemical space and the resulting e�ects on activity

may be perceived as variations in surface elevation. Therefore, small chemical

transformations accompanied by small potency changes, i.e. SAR continuity,

would produce a smooth activity landscape. Alternatively, SAR discontinuity,

which is typi�ed by minor structural modi�cations leading to large potency

di�erences, would generate a rugged landscape [35, 52]. An activity landscape

containing smooth regions interspersed with rugged topological features would

represent a heterogeneous SAR [32, 33].

These idealized activity landscapes are shown in Figure 1. It is, however,

important to note that representation of SARs as well as the rationalization of

their information content is far from trivial. For medicinal chemists, SARs with

predictable potency progression are of high interest in compound design. In

such cases, SAR continuity is an essential consideration. Moreover, continuous

SARs are also relevant when multiple starting points are required for hit-to-lead

studies. However, when the focus shifts to lead optimization, SAR discontinuity

is also important and activity cli�s are considered. Thus, methodologies that

link SAR continuity and discontinuity are an implicit requirement for SAR

exploration and exploitation [37, 38]. Such approaches are often referred to as

SAR pro�ling methods.
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Figure 1: Idealized activity landscapes. Hypothetical activity landscape representations
exhibiting (a) SAR continuity, (b) discontinuity and (c) heterogeneity are shown. These
hypersurfaces are generated by projecting compounds into xy-plane derived from chemical
reference space, followed by the addition of potency data as the z-axis. Here, increase in the
distances along the 2D plane re�ect decrease in chemical similarity and potency distribution
is related to surface elevation. (adapted from Wassermann et al.[38])

Numerical Functions for SAR Analysis

Numerical SAR analysis functions like the SAR index (SARI) and structure-

activity landscape index (SALI) quantify SAR features by taking into account

pairwise structural similarities and potency di�erences within compound sets

[53, 54]. By systematic evaluation of structural similarity and activity distri-

bution within data sets, these functions provide direct access to various SAR

relevant characteristics. SARI comprises of two separately calculated compo-

nents, the continuity and the discontinuity scores. Raw continuity scores are
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derived from potency weighted average of pairwise chemical similarities and

calculated as

rawcont = −

∑
compounds i6=j

wij × sim(i, j)∑
compounds i6=j

wij

where the weight wij for each compound pair (i,j ) is set to

wij =
pot(i)× pot(j)

1+ | pot(i)− pot(j) |

Raw discontinuity scores are generated as follows

rawdisc =

∑
{i,j|sim(i,j)>thres, i6=j}

| pot(i)− pot(j) | ×sim(i, j)

| {i, j | sim(i, j) > thres, i 6= j} |

Here, pot(i), pot(j) represent the potency values of compounds i and j, sim(i, j)

denotes their similarity value and thres corresponds to a prede�ned similarity

threshold. The raw scores are transformed to the value range [0,1] after sta-

tistical normalization. SARI is calculated as the mean between the continuity

score and the complement of the discontinuity score

SARI =
1

2
(contnorm + 1− discnorm)

where contnorm and discnorm are the normalized continuity and discontinuity

scores. Therefore, high, intermediate and low SARI scores are indicative of

global SAR continuity, heterogeneity and discontinuity, respectively.

The objective of SALI scoring function is to prioritize potency di�erences

of large magnitude between structurally similar compounds and the scores are

calculated as

SALI(i, j) =
pot(i)− pot(j)

1− sim(i, j)

SALI scores are designed to describe activity cli�s of varying magnitude in com-

pound data sets. Although, both SALI and SARI discontinuity scores encode

activity cli� information, unlike SARI discontinuity scores that can have a max-

imum value of unity, SALI scores may have a value range of [0,∞]. Moreover,

SALI scores are local in nature while SARI scores are global [27].
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SAR Visualization Techniques

Numerous attempts have been made in the SAR visualization area to system-

atically identify relevant features in large sets of compounds with activity an-

notations. Such tools also allow intuitive and interpretable representation of

SARs [27]. For example, structure-activity similarity (SAS) maps constitute a

2D graphical representation where pairwise structural and activity similarities

between compounds are plotted along x- and y-axes respectively [51]. A variant

of SAS maps that accounts for molecular properties has also been designed [55].

Molecular network representations such as network-like similarity graphs

(NSGs) also constitute a popular SAR visualization technique [56, 57]. Like SAS

maps, NSGs are graphical networks in which compounds are depicted as nodes

and similarity relationships between them as edges. Edges are drawn only if

pairwise similarities exceed a prede�ned threshold. Per-compound discontinuity

score calculated as

rawdisc(i) =

∑
{i,j|sim(i,j)>thres, i 6=j}

∆pot(i, j)× sim(i, j)

| {i, j | sim(i, j) > thres, i 6= j} |

determines the node size where sim(i, j), ∆pot(i, j) denote the chemical similar-

ity and potency di�erence between compounds i and j while thres corresponds

to the similarity threshold. Potency data is encoded as the node color. Ad-

ditionally, compound clustering is performed and cluster SARI discontinuity

scores calculated to identify individual groups with high SAR discontinuity.

NSGs have also been successfully used to automatically extract pertinent SAR

information from high-throughput screening data [58]. An exemplary NSG and

the various elements of its design are reported in Figure 2. These network-

based landscape models are designed to study both global as well as local SAR

characteristics [56]. Other network representations like similarity-potency trees

(SPTs) are centered on individual compounds and provide a local view of SARs

[59]. SPTs are generated for individual compounds in a data set and ranked ac-

cording to their local SAR information content. Such a systematic exploration

of SPTs limits the loss of SAR information in data analysis [38]. Similar analy-

ses of SARs in the vicinity of reference compounds can also be carried out with
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the help of chemical neighborhood graphs (CNGs) [60]. CNGs are very useful

for analyzing complex SAR features and provide multiple local SAR views [27].

Figure 2: Single-target activity landscape representation. An exemplary NSG for a
set of 71 squalene synthase inhibitors is shown. The principal design elements are described
in the legend below the graph. Compound subsets identi�ed by hierarchical clustering are
displayed against a light blue background and annotated with cluster discontinuity scores.
A compound pair forming an activity cli� is highlighted in the graph (labeled 1 and 2) and
their structures as well as potencies are reported. (taken from Wassermann et al.[38])

Most SAR visualization tools are designed to enable the analysis of large

sets of compounds. However, lead optimization approaches usually require the

exploration of analog series. For this purpose, combinatorial analog graphs

(CAGs) have been introduced. CAGs systematically organize analog series

according to substitution site combinations on the basis of R-group decompo-

sition [61]. Substitution patterns that produce SAR discontinuity and possible

yet unexplored analogs can be easily identi�ed.

Graphical SAR representations based on calculated structural similarities

often require close inspection of compound structures to rationalize the SAR

information content. This inherent limitation can be circumvented by utilizing
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well-de�ned substructure relationships instead of calculated similarities. Such

substructure relationships can be systematically generated for compounds com-

prising a data set using MMPs. Compounds that di�er by a single substructure,

are further organized into matching molecular series (MMS). These MMS are

represented in a network representation known as the bipartite matching molec-

ular series graph (BMMSG) [62].

Substructure-based approaches focus on compound design strategies that

associate structural fragments with bioactivity information. Substructures can

either be prede�ned or generated systematically from compounds sets by �rst

removing all side chains, followed by iterative pruning of rings. The latter

approach results in the generation of molecular frameworks or sca�olds that

can be annotated with activity information of the compounds from which they

were obtained and organized into a hierarchy [63, 64]. Chemical space traversal

using such sca�old hierarchies can aid in compound design [65].

Multi-Target SAR Analysis

SAR investigations routinely focus on sets of compounds that are active against

speci�c targets with the objective of yielding novel compounds with improved

potency [66]. Many compound sets are also active against more than one target,

thereby, forming multi-target SARs and techniques that aid in their analyses

need to be developed.

Adaptation of the activity landscape concept to systematically account for

dual target activities of compounds in the form of potency ratios has recently

been attempted using NSGs [67]. Thus, the resultant NSGs form a selectivity

landscape. Figure 3 illustrates the design as well as rationalization of se-

lectivity NSGs and indicates the conceptual di�erence with respect to NSGs

generated for single targets. SAS maps have also been extended to accommo-

date compound selectivity information [68]. Compound selectivity analysis has

also been carried out in analog series such that R-groups are expressed as pre-

de�ned pharmacophore features and similarity is assessed locally in the form

of pharmacophore edit distances [69]. Pairs of structurally similar compounds

with a large di�erence in their target selectivity, referred to as selectivity cli�s,

form the most prominent features of such landscapes.
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Figure 3: From activity to selectivity landscapes. An exemplary selectivity NSG for a
set of 234 inhibitors active against cathepsins K and L is shown. The principal design elements
are described in the legend below the graph. A selectivity cli� formed by a compound pair
(labeled 1 and 2) is highlighted and the structures are shown. In addition, selectivities (i.e.
potency ratios) are reported. (adapted from Wassermann et al.[38] and Peltason et al.[67])

E�orts to generate graphical activity landscape representations for com-

pound sets with activity against three or more targets have also been made.

Similarity relationships for such multi-target sets are depicted using a regular

NSG and a potency binning scheme is used to generate compound activity pro-

�les that are then provided as node annotations [70]. Multi-target discontinuity

scores that quantitatively compare the potency di�erences of compounds with

their structural neighbors across multiple targets in a pairwise manner are used

to scale the nodes. The elements of multi-target NSG generation as well as an

example is shown in Figure 4.

Compound activity pro�le encoding also facilitates the identi�cation of sin-

gle and multi-target cli�s and has been employed to systematically analyze such

cli�s in publicly available bioactive compounds [71].
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Figure 4: Multi-target activity landscape. Figure 4 (a) explains the details of various
features present in multi-target network-based landscape design. An exemplary multi-target
NSG for a set of 299 monoamine transporter inhibitors is displayed in (b). Selected compound
subsets with multi-target cli�s are encircled and numbered. An enlarged view of cluster 4
containing a dual-target cli� is shown in (c). Structures and activity pro�les of compounds
representing the dual-target cli� are also reported. (adapted from Dimova et al.[70])
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A second numerical function to assess the ability of compounds to distin-

guish between various targets within target families has recently been reported

[72]. In addition, SAS maps have been modi�ed to incorporate multi-target

activity information by calculating activity similarity between vectors of com-

pound potencies against multiple targets [73].

Multi-target activity landscapes designed so far have an inherent limitation

that they become increasingly di�cult to interpret with increasing numbers

of targets. Moreover, calculation of activity similarity potentially also results

in loss of SAR information. Second-generation multi-target activity landscape

models have been introduced in order to circumvent such limitations [74].

This 3D multi-target activity landscape combines chemical and target spaces

in circular representations supporting interactive analysis of projected com-

pounds. Compounds with clearly de�ned selectivity patterns and structure-

activity pro�les can be identi�ed. However, multi-target graphical represen-

tations require that compounds comprising the data sets have potency anno-

tations for all the targets under consideration. Thus, they are not capable

of handling incomplete activity matrices. In addition to various multi-target

graphical representations, various systematic analyses at the level of molecular

sca�olds have also been performed to account for multi-target activity infor-

mation. Such studies have led to the identi�cation of sca�olds selective for

closely related targets [75] as well as those that are promiscuously active across

multiple target families [76].

Thesis Outline

The primary objective of this dissertation is the development of methodologies

for systematic single and multi-target SAR analyses. The dissertation consists

of eight individual chapters that form a sequence of studies.

Chapter 1 of this dissertation reports the design of 3D activity landscapes for

compound data sets. Chapter 2 provides a comparison of 3D activity landscapes

with 2D landscape representations (NSGs). Chapter 3 reports the application of

conditional feature probability calculations for individual compounds in ligand

data sets to provide a higher resolution graphical analysis of SAR relevant

characteristics.
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Chapters 4 and 5 introduce graphical methodologies to analyze compounds

with di�erent mechanisms of action for a target receptor and identify structural

changes that lead to mechanistic changes.

A novel multi-target activity landscape representation generated using SOMs

that encodes target selectivity pro�les of compounds is presented in Chapter

6. Furthermore, the development of a second multi-target activity landscape

that is suitable for data sets with incomplete multi-target activity annotations

is introduced in Chapter 7. Assessment of di�erentiation potential of imidazole-

based inhibitors for various kinases is reported in Chapter 8.

16



Bibliography

[1] Johnson M., Maggiora G. M. Concepts and applications of molecular simi-

larity., John Wiley and Sons, New York, USA, 1990.

[2] Kubinyi H. Similarity and dissimilarity: a medicinal chemist's view. Per-

spect. Drug Discov. Des., 1998, 9-11, 225-252.

[3] Martin Y. C., Kofron J. L., Traphagen L. M. Do structurally similar

molecules have similar biological activity? J. Med. Chem., 2002, 45, 4350-

4358.

[4] Peltason L., Bajorath J. Molecular similarity analysis in virtual screening.

In Varnek A. and Tropsha A. (Eds.), Chemoinformatics: An Approach to

Virtual Screening, RSC Publishing, Cambridge, UK, 2008, 120-149.

[5] Bajorath J. Selected concepts and investigations in compound classi�cation,

molecular descriptor analysis, and virtual screening. J. Chem. Inf. Comput.

Sci., 2001, 41, 233-245.

[6] Willett P. Chemical Similarity Searching. J. Chem. Inf. Comput. Sci., 1998,

38 (6), 983-996.

[7] Xue L., Bajorath J. Molecular descriptors in chemoinformatics, computa-

tional combinatorial chemistry, and virtual screening. Combin. Chem. High

Throughput Screen., 2000, 3, 363-372.

[8] MACCS Structural keys. Symyx Software, San Ramon, CA, USA.

[9] Bender A., Mussa H. Y., Glen R. C., Reiling S. Molecular similarity search-

ing using atom environments, information-based feature selection, and a

naive bayesian classi�er. J. Chem. Inf. Comput. Sci., 2004, 44, 170-178.

[10] Rogers D., Hahn M. Extended-connectivity �ngerprints. J. Chem. Inf.

Model., 2010, 50, 742-754.

[11] McGregor M. J., Muskal S. M. Pharmacophore �ngerprinting. 1. Applica-

tion to QSAR and focused library design. J. Chem. Inf. Model., 1999, 39

(3), 569-574.

17



[12] Maggiora G. M., Shanmugasundaram V. Molecular similarity measures. In

Bajorath J. (Ed.),Methods in Molecular Biology, vol 275: Chemoinformatics:

Concepts, Methods and Tools for Drug Discovery, Humana Press, Totowa,

New Jersey, USA, 2004, 1-50.

[13] Wassermann A. M., Dimova, D., Iyer P. and Bajorath J. Advances in

computational medicinal chemistry: matched molecular pair analysis. Drug

Develop. Res., 2012, 73, 518-527.

[14] Papadatos G., Alkarouri M., Gillet V. J., Willett P., Kadirkamanathan

V., Luscombe C. N., Bravi G., Richmond N. J., Pickett S. D., Hussain J.,

Pritchard J. M., Cooper A. W., Macdonald S. J. Lead optimization using

matched molecular pairs: inclusion of contextual information for enhanced

prediction of hERG inhibition, solubility, and lipophilicity. J. Chem. Inf.

Model., 2010, 50, 1872-1876.

[15] Hussain J, Rea C. Computationally e�cient algorithm to identify matched

molecular pairs (MMPs) in large data sets. J. Chem. Inf. Model., 2010, 50,

339-348.

[16] Sheridan R. P. The most common chemical replacements in drug-like com-

pounds. J. Chem. Inf. Comput. Sci., 2002, 42, 103-108.

[17] Wassermann A. M., Bajorath J. Large-scale exploration of bioisosteric re-

placements on the basis of matched molecular pairs. Future Med. Chem.,

2011, 3, 425-436.

[18] Wassermann A. M., Bajorath J. Identi�cation of target family directed

bioisosteric replacements. Med. Chem. Commun., 2011, 2, 601-606.

[19] Wassermann A. M., Bajorath J. Chemical substitutions that introduce ac-

tivity cli�s across di�erent compound classes and biological targets. J. Chem.

Inf. Model., 2010, 50, 1248-1256.

[20] Stumpfe D., Bajorath J. Exploring activity cli�s in medicinal chemistry.

J. Med. Chem., 2012, 55, 2932-2942.

18



[21] Hu X., Hu Y., Vogt M., Stumpfe D., Bajorath J. MMP-cli�s: systematic

identi�cation of activity cli�s on the basis of matched molecular pairs. J.

Chem. Inf. Model., 2012, 52, 1138-1145.

[22] Hu Y., Bajorath J. Chemical transformations that yield compounds with

distinct activity pro�les. ACS Med. Chem. Lett., 2011, 2, 523-527.

[23] Leach A. G., Jones H. D., Cosgrove D. A., Kenny P. W., Ruston L, MacFaul

P, Wood J. M., Colclough N., Law B. Matched molecular pairs as a guide in

the optimization of pharmaceutical properties; a study of aqueous solubility,

plasma protein binding and oral exposure. J. Med. Chem., 2006, 46, 6672-

6682.

[24] Gleeson P., Bravi G., Modi S., Lowe D. ADMET rules of thumb II: a

comparison of the e�ects of common substituents on a range of ADMET

parameters. Bioorg. Med. Chem. Lett., 2009, 17, 5906-5919.

[25] Lewis M. L., Cuchurall-Sanchez L. Structural pairwise comparisons of HLM

stability of phenyl derivatives: introduction of P�zer metabolism index (PMI)

and metabolism-lipophilicity e�ciency (MLE). J. Comput. Aided. Mol. Des.,

2009, 23, 97-103.

[26] Schultes S., de Graaf C., Berger H., Mayer M., Ste�en A., Haaksma E.

E. J., de Esch I. J. P., Leurs R., Krämer O. A medicinal chemistry per-

spective on melting point: matched molecular pair analysis of the e�ects of

simple descriptors on the melting point of drug-like compounds. Med. Chem.

Commun., 2012, 3, 584-591.

[27] Wawer M., Lounkine E., Wassermann A. M., Bajorath J. Data structures

and computational tools for the extraction of SAR information from large

compound sets. Drug Discov. Today, 2010, 15, 630-639.

[28] Hair J. F., Anderson R. H., Tatham R. L., Black W. C. Multivariate data

analysis., Prentice Hall, New Jersey, USA, 1998.

[29] Gedeck P., Willett P. Visual and computational analysis of structure-

activity relationships in high-throughput screening data. Curr. Opin. Chem.

Biol., 2001, 5, 389-395.

19



[30] Agra�otis D. K., Lobanov V. S. Nonlinear mapping networks. J. Chem.

Inf. Comput. Sci., 2000, 40 (6), 1356-1362.

[31] Kohonen T. Self-organizing maps, Springer, Heidelberg, Germany, 1996.

[32] Eckert H., Bajorath J. Molecular similarity analysis in virtual screening:

foundations, limitations and novel approaches. Drug Discov. Today., 2007,

12 (5-6), 225-233.

[33] Peltason L., Bajorath J. Systematic computational analysis of structure-

activity relationships: concepts, challenges, and recent advances. Future Med.

Chem., 2009, 1 (3), 451-466.

[34] Böhm H. -J., Flohr A., Stahl M. Sca�old hopping. Drug Discov. Today:

Technol., 2004, 1, 217-224.

[35] Maggiora G. M. On outliers and activity cli�s - why QSAR often disap-

points. J. Chem. Inf. Model., 2006, 46, 1535.

[36] Peltason L., Bajorath J. Molecular similarity analysis uncovers heteroge-

neous structure-activity relationships and variable activity landscapes. Chem.

Biol., 2007, 14, 489-497.

[37] Stumpfe D., Bajorath J. Methods for SAR visualization. RSC Adv., 2012,

2, 369-378.

[38] Wassermann A. M., Waver M., Bajorath J. Activity landscape representa-

tions for structure-activity relationship analysis. J. Med. Chem., 2010, 53,

8209-8223.

[39] Agra�otis D. K., Shemanarev M., Connolly P. J., Farnum M., Lobanov,

V. S. SAR maps: a new SAR visualization technique for medicinal chemists.

J. Med. Chem., 2007, 50, 5926-2937.

[40] Kibbey C., Calvet A. Molecular Property eXloprer: a novel approach to

visualizing SAR using tree-maps and heatmaps. J. Chem. Inf. Model., 2005,

45 (2), 523-532.

20



[41] Agra�otis D. K., Bandyopadhyay D., Farnum M., Radial clustergrams:

visualizing the aggregate properties of hierarchical clusters. J. Chem. Inf.

Model., 2007, 47, 69-75.

[42] Wassermann A. M., Haebel P., Weskamp N., Bajorath J. SAR matrices:

automated extraction of information-rich SAR tables from large compound

data sets. J. Chem. Inf. Model., 2012, 52 (7), 1769-1776.

[43] van de Waterbeemd H., Rose S. Quantitative approaches to structure-

activity relationships. In Wermuth C. G. (Ed.), The Practice of Medicinal

Chemistry, 3rd ed., Academic Press, Burlington, MA, USA, 2008, 491-513.

[44] Esposito E. X., Hop�nger A. J., Madura J. D. Methods for applying the

quantitative structure-activity relationship paradigm. Methods Mol. Biol.,

2004, 275, 131-213.

[45] Kubinyi H. Quantitative structure-activity relationships. 7. The bilinear

model, a new model for nonlinear dependence of biological activity on hy-

drophobic character. J. Med. Chem., 1977, 20, 625-629.

[46] Manallack D. T., Eliis D. D., Livingstone D. J. Analysis of linear and

nonlinear QSAR data using neural networks. J. Med. Chem., 1994, 37, 3758-

3767.

[47] Kubinyi H. QSAR and 3D QSAR in drug design. Part 1: Methodology.

Drug Discov. Today, 1997, 2, 457-467.

[48] Michielan L., Moro S. Pharmaceutical perspectives of nonlinear QSAR

strategies. J. Chem. Inf. Model., 2010, 50, 961-978.

[49] Geppert H., Vogt M., Bajorath J. Current trends in ligand-based virtual

screening: molecular representations, data mining methods, new application

areas, and performance evaluation. J. Chem. Inf. Model., 2010, 50, 205-216.

[50] Dimitrov S., Dimitrova G., Pavlov T., Dimitrova N., Patlewicz G., Niemala

J., Mekenyan O. A stepwise approach for de�ning the applicability domain

of SAR and QSAR models. J. Chem. Inf. Model., 2005, 45, 839-849.

21



[51] Shanmugasundaram V., Maggiora G. M. Characterizing property and ac-

tivity landscapes using an information-theoretic approach. 222nd ACS Na-

tional Meeting., 2001, Division of Chemical Information, Abstract no. 77.

[52] Bajorath J., Peltason L., Wawer M., Guha R., Lajiness M. S., Van Dire J.

H. Navigating structure-activity landscapes. Drug Discov. Today., 2009, 14

(13-14), 698-705.

[53] Peltason L., Bajorath J. SAR index: quantifying the nature of structure-

activity relationships. J. Med. Chem., 2007, 50, 5571-5578.

[54] Guha R., Van Drie J. H. Structure-activity landscape index: identifying

and quantifying activity cli�s. J. Chem. Inf. Model, 2008, 48, 646-658.

[55] Yongye A. B., Byler K., Santos R., Martínez-Mayorga K., Maggiora G. M.,

Medina-Franco J. L. Consensus models of activity landscapes with multiple

chemical, conformer, and property representations. J. Chem. Inf. Model.,

2011, 51, 2427-2439.

[56] Wawer M., Peltason L., Weskamp N., Teckentrup A., Bajorath J.

Structure-activity relationship anatomy by network-like similarity graphs and

local structure-activity relationship indices. J. Med. Chem., 2008, 51, 6075-

6084.

[57] Wawer M., Peltason L., Bajorath J. Elucidation of structure-activity re-

lationship pathways in biological screening data. J. Med. Chem., 2009, 52,

1075-1080.

[58] Wawer M., Bajorath J. Extraction of structure-activity relationship infor-

mation from high-throughput screening data. Curr. Med. Chem., 2009, 16,

4049-4057.

[59] Wawer M., Bajorath J. Similarity-Potency Trees: a method to search for

SAR information in compound data sets and derive SAR rules. J. Chem. Inf.

Model., 2010, 50, 1395-1409.

[60] Wawer M., Sun S., Bajorath J. Computational characterization of SAR mi-

croenvironments in high-throughput screening data. Intl. J. High Throughput

Screen, 2010, 1, 15-27.

22



[61] Peltason L., Weskamp N., Teckentrup A., Bajorath, J. Exploration of

structure-activity relationship determinants in analogue series. J. Med.

Chem., 2009, 52, 3212-3224.

[62] Wawer M., Bajorath J. Local structural changes, global data views: graphi-

cal substructure-activity relationship trailing. J. Med. Chem., 2011, 54, 2944-

2951.

[63] Sch�enhauer A., Ertl P., Roggo S., Wetzel S., Koch M. A., Waldmann

H. The sca�old tree - visualization of the sca�old universe by hierarchical

sca�old classi�cation. J. Chem. Inf. Model., 2007, 47, 47-58.

[64] Agra�otis D. K., Wiener J. J. M. Sca�old Explorer: an interactive tool for

organizing and mining structure-activity data spanning multiple chemotypes.

J. Med. Chem., 2010, 53 (13), 5002-5011.

[65] Renner S., van Otterlo W. A. L., Dominguez Seoane M., Möcklingho� S.,

Hofman B., Wetzel S., Sch�enhauer A., Ertl. P., Oprea T. I., Steinhilber

D., Brunsveld L., Rauh D., Waldmann H. Bioactivity-guided mapping and

navigation of chemical space. Nat. Chem. Biol., 2009, 5, 585-592.

[66] Hopkins A. L. Network pharmacology: the next paradigm in drug discov-

ery. Nat. Chem. Biol., 2008, 4, 682-690.

[67] Peltason L., Hu Y., Bajorath J. From structure-activity to structure-

selectivity relationships: quantitative assessment, selectivity cli�s, and key

compounds. Chem. Med. Chem., 2009, 4, 1864-873.

[68] Perez-Villanueva J., Santos R., Hernandez-Campos A., Giulianotti M. A.,

Castillo R., Medina-Franco J. L. Structure-activity relationships of benzim-

idazole derivatives as antiparasitic agents: Dual-activity di�erence (DAD)

maps. Med. Chem. Commun., 2011, 2, 44-49.

[69] Wassermann A. M., Peltason L., Bajorath J. Computational analysis of

multi-target structure-activity relationships to derive preference orders for

chemical modi�cations toward target selectivity. Chem. Med. Chem., 2010,

5, 847-858.

23



[70] Dimova D., Wawer M., Wassermann A. M., Bajorath J. Design of multitar-

get activity landscapes that capture hierarchical activity cli� distributions.

J. Chem. Inf. Model., 2011, 51 (2), 258-266.

[71] Wassermann A. M., Dimova D., Bajorath J. Comprehensive analysis of

single- and multi-target activity cli�s formed by currently available bioactive

compounds. Chem. Biol. Drug. Des, 2011, 78, 224-228.

[72] Dimova D., Bajorath J. Computational chemical biology: identi�cation of

small molecular probes that discriminate between members of target families.

Chem. Biol. Drug. Des., 2012, 79, 369-375.

[73] Waddell J., Medina-Franco J. L. Bioactivity landscape modeling: chemoin-

formatic characterization of structure-activity relationships of compounds

tested across multiple targets. Bioorg. Med. Chem., 2012, 20, 5443-5452.

[74] de la Vega de León A., Bajorath J. Design of a three-dimensional multi-

target activity landscape. J. Chem. Inf. Model., 2012, 52 (11), 2876-2883.

[75] Hu Y., Wassermann A. M., Lounkine E., Bajorath J. Systematic analysis of

public domain compound potency data identi�es selective molecular sca�olds

across druggable target families. J. Med. Chem., 2010, 53, 752-758.

[76] Hu Y., Bajorath J. Polypharmacology-directed compound data mining:

identi�cation of promiscuous chemotypes with di�erent activity pro�les and

comparison to approved drugs. J. Chem. Inf. Model., 2010, 50, 2112-2118.

24



Chapter 1

Rationalizing three-dimensional

activity landscapes and the

in�uence of molecular

representations on landscape

topology and the formation of

activity cli�s

Introduction

Systematic structural similarity and activity relationships can be captured and

represented using the activity landscape concept. Activity landscapes are anal-

ogous to geographical maps and intuitively characterize the SARs underlying

sets of bioactive molecules. Various attributes of SAR have previously been

elucidated using theoretical 3D models. Nevertheless, such models have not

been generated for actual compound sets. In the following, generation of real

3D activity landscapes using a novel computational approach is reported. The

methodology has been applied to various activity-annotated compound sets in-

cluding a high-throughput screening data set. In addition, three conceptually

di�erent molecular representations have been used for landscape generation.
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Activity landscapes are defined by potency and similarity distributions of active compounds and reflect the
nature of structure-activity relationships (SARs). Three-dimensional (3D) activity landscapes are reminiscent
of topographical maps and particularly intuitive representations of compound similarity and potency
distributions. From their topologies, SAR characteristics can be deduced. Accordingly, idealized theoretical
landscape models have been utilized to rationalize SAR features, but “true” 3D activity landscapes have not
yet been described in detail. Herein we present a computational approach to derive approximate 3D activity
landscapes for actual compound data sets and to analyze exemplary landscape representations. These activity
landscapes are generated within a consistent reference frame so that they can be compared across different
activity classes. We show that SAR features of compound data sets can be derived from the topology of
landscape models. A notable correlation is observed between global SAR phenotypes, assigned on the basis
of SAR discontinuity scoring, and characteristic landscape topologies. We also show that different molecular
representations can substantially alter the topology of activity landscapes for a given data set and modulate
the formation of activity cliffs, which represent the most prominent landscape features. Depending on the
choice of molecular representations, compounds forming a steep activity cliff in a given landscape might be
separated in another and no longer form a cliff. However, comparison of alternative activity landscapes
makes it possible to focus on compound subsets having high SAR information content.

INTRODUCTION

The concept of activity landscapes plays a key role in
understanding structure-activity relationships (SARs).1-3

Activity landscapes are best rationalized as hypersurfaces
in biologically relevant chemical space, where biological
activity (compound potency) adds another dimension.3 The
interpretation of high-dimensional activity landscapes is
generally difficult and, consequently, two- and three-
dimensional (2D and 3D, respectively) representations of
activity landscapes have been taken into consideration. If
we envision a 2D projection of chemical space with
compound potency added as a third dimension, then activity
landscapes become reminiscent of geographical maps that
can readily be interpreted.2,3 Smooth regions that are
reminiscent of rolling hills1 correspond to areas where
gradual changes in chemical structure are accompanied by
moderate changes in biological activity. Compounds mapping
to such areas are related by so-called continuous SARs.3 By
contrast, rugged regions in activity landscapes that are
canyon-like1 correspond to areas where small chemical
changes have dramatic effects on the biological response,
and hence, compounds mapping to these areas form discon-
tinuous SARs.3 The strongest articulation of SAR disconti-
nuity are so-called activity cliffs1 that are formed by pairs
of structurally very similar compounds with large differences
in potency, i.e., small steps in chemical space are ac-
companied by large changes in activity.

Numerical analysis functions including the SAR index
(SARI)4 or the structure-activity landscape index (SALI)5

have been introduced to characterize global SAR features
present in compound data sets on a large scale4 and to
quantify SAR discontinuity.4,5 These analysis functions
systematically relate compound similarity and potency to
each other and can also be applied to quantify how well a
computational model fits a given activity landscape.6 In
combination with similarity-based molecular network repre-
sentations,5,7 these calculations make it possible to identify
and compare activity cliffs in compound data sets. Annotating
or combining network representations, such as SALI maps5

or network-like similarity graphs7 (NSGs), with potency and
SAR continuity and/or discontinuity score4,5 information
enables the 2D representation of activity landscapes, includ-
ing the identification of compounds that are related by
continuous or discontinuous SARs, and the comparison of
global and local SAR features. Systematic NSG analysis has
revealed that a significant degree of SAR heterogeneity exists
in most compound data sets, due to the presence of different
continuous and discontinuous local SARs.7,8 Activity cliffs
of varying magnitude can essentially be found in compound
data sets of any source, including raw screening data,
irrespective of the nature of the biological targets.7-9 It
follows that most activity landscapes are likely to display
variable topology, i.e., in terms of an idealized 3D landscape
model, they consist of smooth rolling hill-type regions that
are interspersed with cliff areas and canyons. Such variable
activity landscapes provide the basis for the identification
of structurally diverse compounds having similar activity (in
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smooth regions) and for the optimization of compound
potency (at activity cliffs).3

It is also well-appreciated that the nature of activity
landscapes is much influenced by chosen molecular repre-
sentations and the way compound similarity is assessed.2,3

The choice of molecular representations determines chemical
reference spaces. For example, compound similarity relation-
ships within a data set are expected to differ, dependent on
whether the molecules are represented as different binary
fingerprint vectors or arrays of numerical property descrip-
tors. These different types of molecular descriptors yield
distinct chemical reference spaces where given molecules
might be more or less similar to each other. Hence, the
topology of the corresponding activity landscapes is expected
to change. Accordingly, different chemical space representa-
tions have been investigated for compound data sets and
activity cliffs formed on the basis of different molecular
representations have been compared,10 giving rise to the
notion of consensus activity cliffs, i.e., activity cliffs that
are consistently observed when applying different molecular
descriptors and chemical similarity methods.10

For the visualization of activity landscapes, 2D representa-
tions have thus far predominantly been used. Activity
landscape representations originated with the introduction
of structure-activity similarity (SAS) maps,11 plots of
structural similarity versus calculated activity similarity that
delineate smooth landscape regions of high activity similarity
and low structural similarity and rugged regions of high
structural similarity and low activity similarity. In these plots,
each data point represents a comparison of a pair of
compounds in a data set. Prior to the introduction of SALI
maps and NSGs, as discussed above, 2D similarity/potency
correlation graphs were introduced4 that are reminiscent of
SAS maps but report 2D compound similarity relative to
differences in potency and color-code compound pairs
according to absolute potency values. These graphs were
designed to compare 2D similarity and potency relationships
of ligand sets, describe variable activity landscapes, and
identify continuous and discontinuous SAR regions.4 Another
recent derivative of SAS maps are so-called multifusion
similarity (MFS) maps12 that utilize different compound 2D
similarity measures and represent them following data fusion.

Although much information can be deduced from 2D
representations of activity landscapes, 3D representations that
are reminiscent of topographical maps are probably the most
intuitive and elegant way of visualizing activity landscapes.
Accordingly, this model has often been utilized to illustrate
eminent features of activity landscapes, such as smooth
regions and activity cliffs, and to rationalize conceptual
relationships to continuous, discontinuous, and heterogeneous
SARs.1-3 However, although this idealized 3D landscape
model has been widely discussed, actual 3D landscapes of
compound data sets, i.e., “true” activity landscapes, have thus
far not been described in detail.

Herein we present activity landscape representations of
different types of compound sets that are calculated from
potency data and pairwise compound distances in chemical
space. A methodological framework is introduced for a
consistent 3D approximation of activity landscapes of
different compound sets. These representations are generated
utilizing a conserved reference frame, which renders activity
landscapes of different data sets directly comparable and

makes it possible to study how different molecular repre-
sentations might change the topology of landscapes. Visu-
alization of 3D landscapes provides an intuitive access to
prominent activity cliffs and the compounds that form them.
In addition, activity landscapes of compound data sets having
different characteristics according to SAR discontinuity score
calculations can be compared.

METHODOLOGY

Activity Landscape Construction. First we outline the
approach to generate an activity landscape representation.
For a given compound data set, 2D molecular graphs and
potency measurements are required as basic input data.
Figure 1a shows a schematic representation of a similarity/
potency correlation graph as a prototypic 2D landscape
visualization. For this landscape view, molecular representa-
tions are calculated from 2D graphs, and their similarity is
calculated in a pairwise manner. Each data point represents
a pairwise comparison yielding structural similarity and
potency differences. In order to generate a 3D landscape
representation with intuitive topological features, as sche-
matically shown in Figure 1b, other types of calculations
are required. For such a 3D representation, molecules must
be projected into a 2D chemical reference space that is
spanned by two molecular descriptors defining the x- and
y-direction. These descriptors can be of a different type, for
example, selected or combined contributions from molecular
property descriptors or coordinates derived from molecular
fingerprint similarity. A primary feature of 3D activity
landscapes we need to capture are the activity cliffs that are
formed by structurally similar molecules having dramatic
potency differences. Figure 1c shows representative examples
of compounds forming steep activity cliffs of large magni-
tude. Three-dimensional landscape design also starts with
calculating molecular descriptors/representations. From a
chosen molecular representation (herein different fingerprints
are used), a coordinate-free chemical reference space is
generated by calculation of pairwise compound distances
(dissimilarities). The set of all pairwise distances defines this
reference space. Then, multidimensional scaling13 is used
to project these molecules from the coordinate-free reference
space onto an x/y-plane on the basis of their chemical
dissimilarities. The z-axis reports the potency values of the
molecules. In order to obtain a coherent potency surface that
is required to obtain an interpretable landscape topology, we
utilize a geostatistical technique termed Kriging14 to inter-
polate between data points. The individual steps involved
in 3D activity landscape generation are described in detail
in the following sections.

Compound Data Sets. For our analysis, we assembled
six classes of specific enzyme inhibitors with reported
potency values from the MDDR.15 As summarized in Table
1, these data sets include between 112 and 252 compounds.
The compound sets were assembled to span different
dissimilarity ranges, vary in their potency distributions and
display different SAR characteristics (as further described
below). In addition to these lead optimization sets, a high-
throughput screening (HTS) hit set was taken from Pub-
Chem16 that contained 2398 active compounds and had
consistently lower potency ranges, hence resulting in a very
low degree of SAR discontinuity (Table 1).
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Molecular Representation. Test compounds are initially
projected into a low-dimensional chemical reference space.
For this purpose, we define a coordinate-free reference space

based on Euclidean distances between molecular fingerprint
representations. Three conceptually different fingerprint
designs are applied: MACCS,17 TGT,18 and Molprint2D.19

Figure 1. Schematic activity landscape representations and activity cliffs. (a) Similarity-potency plot. Pairwise structural similarity of
active molecules is plotted against differences in logarithmic potency. Each data point represents a pairwise compound comparison and is
colored according to the sum of the respective potency values using a continuous gradient from black for the lowest to red for the highest
sum of potency values within a data set. Two characteristic regions are distinguished that contain pairs of molecules with low structural
similarity and low potency difference, populating smooth regions of an activity landscape, or molecules with high structural similarity and
large differences in potency, forming rough landscape regions. These regions contain activity cliffs. (b) Schematic 3D representation of an
activity landscape. The x/y-plane represents a 2D projection of chemical space spanned by two descriptors that can be derived from different
molecular representations, and the z-axis reports compound potency. The landscape contains idealized smooth and rugged (rough) regions
and activity cliffs and hence corresponds to a heterogeneous SAR phenotype. (c) Examples of activity cliffs. Two exemplary compound
pairs are shown from the LIP and FAR data sets, respectively, which have very similar structure but potency differences of several orders
of magnitude and thus form activity cliffs of large magnitude.

Table 1. Summary of the Analyzed Enzyme Inhibitor Classesa

MACCS Molprint2D TGT

activity class no. of compounds potency range avg max avg max avg /max

FAR 146 3.52-10.54 6.33 9.22 7.01 8.83 14.05 23.39
LIP 252 4.00-9.00 6.56 9.11 6.03 8.25 12.28 19.80
ACA 195 3.92-9.59 6.16 8.83 6.17 8.94 12.02 20.86
THR 172 4.25-11.72 6.05 9.27 6.87 9.79 15.23 26.15
ACH 112 4.07-10.70 5.91 8.72 6.06 8.00 11.30 18.57
5HT 129 5.57-11.00 5.68 8.54 6.06 7.94 11.36 20.03
HADH2 2398 4.40-7.60 6.53 9.49 6.00 8.60 12.04 23.17

a For the seven compound activity classes discussed in the text, the number of compounds, potency range, and average (avg) and maximum
(max) Euclidean fingerprint distances are reported. The minimum distance was 0 for all classes and fingerprint representations. Activity classes
are abbreviated as follows: protein farnesyltransferase inhibitors (FAR), lipoxygenase inhibitors (LIP), acyl-CoA:cholesterol acyltransferase
inhibitors (ACA), thrombin inhibitors (THR), acetylcholinesterase inhibitors (ACH), 5HT reuptake inhibitors (5HT), and human hydroxyacyl-
CoA dehydrogenase II (PubChem BioAssay ID 886).
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MACCS is a widely used structural key-type fingerprint that
monitors the presence or absence of predefined structural
features in a molecule. With 166 bit positions corresponding
to 166 distinct structural features, its structural “resolution”
is relatively low. By contrast, TGT represents a topological
three-point pharmacophore fingerprint that monitors all
triplets of predefined pharmacophore features with a given
bond distance in a molecule and consists of 1704 bits.
Molprint2D captures layered atom environments as a mea-
sure of the global topology of a molecule. Because it does
not rely on a catalogue of predefined substructures, its format
is flexible, and Molprint2D can generate a theoretically
unlimited number of features for a molecule. Thus, this
fingerprint representation is of high structural resolution.

Chemical Dissimilarity Assessment. A variety of similar-
ity or distance measures are available for the comparison of
molecular fingerprints.20 In this study, the dissimilarity of
two molecules is calculated as the Euclidean distance
between their fingerprint representations. For binary finger-
prints, the Euclidean distance is defined as follows:

where Ni and Nj denote the number of fingerprint features
present in molecules i and j, respectively, and Nij denotes
the number of features shared by both molecules. The
Euclidean distance is chosen here instead of the widely
applied Tanimoto similarity coefficient20 for two reasons.
First, the Tanimoto coefficient is calculated only on the basis
of features that are present in two molecules and does not
account for features that are absent. By contrast, the
Euclidean distance calculates molecular dissimilarity on
the basis of features that differ between two molecules. For
the purpose of landscape visualization, we found that simple
Euclidean distance calculations often better differentiated
between similar molecules than those of Tanimoto similarity
calculations, which is relevant with respect to data spread
and surface coverage. However, landscapes produced on the
basis of Tanimoto similarity and Euclidean distances were
often rather similar, suggesting that Tanimoto similarity could
also be utilized. Nevertheless, for our purposes, Euclidian
distance has a second principal advantage because it provides
a standard framework for the comparison of numerical
molecular descriptors, which might also be used for land-
scape generation, as an alternative to fingerprints.

Reference Space Construction. For computational analy-
sis, molecules are generally projected into a chemical
reference space that is defined by a set of molecular
descriptors or fingerprint vectors. Reference spaces are
typically high-dimensional and hence difficult to represent
in an intuitive and readily interpretable manner. To enable
the visualization of chemical space distributions of large
molecular data sets, various dimensionality reduction tech-
niques have been introduced that aim at mapping multidi-
mensional data into 2D or 3D reference spaces.21 These
reference spaces can either be coordinate-based or coordinate-
free, depending on the dimension reduction method that is
used. One of the most common techniques is principal
component analysis (PCA) that generates a low-dimensional
coordinate-based space from linear combinations of original
descriptors with minimal loss of data variance.22 An advan-
tage of this method is that novel molecules can easily be

mapped into principal components space. This provides the
basis for the ChemGPS method23 that utilizes principal
components precalculated on a set of active compounds to
generate coordinates of novel input molecules. By contrast,
methods like nonlinear mapping (NLM)24 or multidimen-
sional scaling (MDS)13 aim at preserving relative similarity
relationships between input data points by minimizing a stress
function (see below) and thus produce coordinate-free low-
dimensional reference spaces. These methods often reflect
close similarity relationships better than coordinate-dependent
approaches. However, they are computationally demanding
and not easily applicable to large data sets. This problem
can be overcome, for example, by combining MDS with
artificial neural networks.25 Another alternative is presented
by Kohonen networks that project data onto a 2D map using
a self-organizing learning algorithm.26

Here we apply a nonmetric multidimensional scaling
algorithm to visualize molecular dissimilarity relationships.
For a set of n molecules, the algorithm takes as input an
nxn matrix of pairwise Euclidean distances δij of molecular
fingerprints, as defined above, and calculates n points with
2D coordinates (xi,yi), whose pairwise Euclidean distances
dij best approximate the input dissimilarities δij. Specifically,
we aim to find n 2D vectors pi ) (xi,yi) such that Kruskal’s
stress function27 is minimal:

where dij denotes the Euclidean distance between points pi

and pj:

and δ̂ij denotes an optimal monotonic transformation of the
input dissimilarities δij that is determined by the optimization
algorithm.28 The optimization problem is solved by means
of an iterative steepest-descent algorithm implemented in the
“MASS” package29 of R.30 The resulting coordinates as-
signed to each molecule are then scaled to the range [0,1]
by subtracting the minimum and dividing by the range of
the x- and y-values. Subsequently, the scaled coordinates are
multiplied by the maximal chemical dissimilarity between
two molecules in the current data set. Thus, the range of the
planar coordinates (and hence the size of the landscape plots)
reflects the overall chemical dissimilarity within a data set.

Surface Interpolation. Multidimensional scaling generates
an embedding of active molecules in a 2D plane. Potency
values are then added as the third dimension for the activity
landscape model. In general, however, the data points are
sparse and unevenly distributed and must be interpolated to
obtain a coherent surface. For this purpose, a geostatistical
technique termed Kriging14 is applied to fit a coherent surface
to the data points. This method aims at estimating the value
of a random field, in our case the surface elevation, at
unobserved locations from observations at n data points, i.e.,
the n given molecules with their position on the x/y-plane
and their potency value on the z-axis. Based on the expected
value and a covariance function that describes the spatial
dependence of the given data points, the Kriging method

δij ) √Ni + Nj - 2Nij

stress ) �∑
i<j

(dij - δ̂ij)
2

∑
i<j

dij
2

dij ) d(pi, pj) ) √(xi - xj)
2 + (yi - yj)

2
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calculates the best linear unbiased estimator for the surface
elevation by minimizing the variance of the prediction error.
The surface is calculated on a regular grid consisting of 80
× 80 grid points. Because the molecules are in most cases
not evenly distributed on this grid, border regions occur
where no data points are present to support the interpolation.
These regions are omitted in the landscape plots, which can
sometimes result in irregularly shaped borders of the images.
We utilize the Kriging function as implemented in the
“fields” package of R.31

Graphical Display. The resulting activity landscapes are
displayed as perspective plots generated with R. To enable
the comparison of landscapes across different activity classes
and fingerprint representations, all landscape representations
have been generated from the same viewpoint (i.e., with an
azimuth of 45° and a colatitude of 25°). Moreover, a common
scale for the z-axis is applied for all data sets, ranging from
the lowest (3.72) to the highest (11.55) interpolated z-values
observed for all six MDDR activity classes. In addition, for
each fingerprint representation, a common scale is utilized
on the x- and y-axes to make the landscapes for a given
fingerprint comparable to each other. This scale ranges from
the lowest (0.00) to the highest values of chemical distances
for the respective fingerprints over all six MDDR classes
(MACCS - 9.27, Molprint2D - 9.79, and TGT - 26.15).
The surface facets are colored according to z-values. Areas
with a z-value below a lower threshold of 5.78 are colored
in green, and areas with a z-value above an upper threshold
of 8.75 are colored in red. These threshold values are
determined as the highest minimal and the lowest maximal
z-values of the six MDDR activity classes, respectively, and
make it possible to directly identify regions in a landscape
where interpolated potency values are above or below a given
value, which might be difficult to recognize on the basis of
surface elevation alone. Intermediate values are colored using
a continuous gradient from green via yellow to red. For the
HTS data, we set the thresholds for green and red coloring
to 4 and 7, respectively, in order to account for the narrow
potency range and the presence of large numbers of only
very weakly active molecules in this compound set. In
addition, coloring is designed to convey information about
the data sampling of the surface: colors fade with increasing
distance of a surface facet to a data point; hence, white areas
denote regions that are not populated by data points and
represent interpolated surface areas. The transparency (R)
value of each grid point p is determined from the Euclidean

distance d(p,(xi, yi)) of p to the closest data point (xi, yi),
representing the coordinates of a molecule i calculated by
multidimensional scaling:

Here, xmax and xmin denote the largest and smallest
x-coordinates of the landscape area, and k is a scaling factor
that determines the slope of the transparency gradient. In
our calculations, k was empirically set to 1800. With this
formulation, grid points that map close to a data point obtain
R values near 255, which corresponds to an opaque coloring,
whereas grid points whose distance to the closest data point
is large obtain low R values near 0, which results in fully
transparent (or white) representation. Negative R values are
set to 0. It follows from the equation that grid points whose
distance to the nearest data point is (255)/(k)(xmax - xmin)
or larger will obtain a minimal transparency value of 0 and
are displayed in white; these grid points form purely
interpolated surface areas. The percentage of these grid points
is reported in Table 2 for each activity class and for all three
fingerprint representations, which provides a quantitative
comparison of the landscape representations.

SAR Discontinuity Scores. To quantify the presence of
activity cliffs in a compound data set, we calculate the SARI
discontinuity score.4,7 This score has been introduced to
estimate the global SAR character of an activity class A and
computes the average potency difference between pairs of
similar compounds, scaled by pairwise similarity:

Here, Pi denotes the negative decadic logarithm of the
potency value of compound i, and δij is the Euclidean
fingerprint distance of compounds i and j; t denotes a
fingerprint distance threshold that was set to 4.90 for
MACCS, 8.31 for TGT, and 5.29 for Molprint2D. These
values were chosen to eliminate the same percentage (9.24%)
of pairwise compound distances from a set of 13 reference
classes originally used for MACCS Tc calculations.7 The
global discontinuity scores for each activity class and
fingerprint combination are given in Table 3. In addition,
Table 3 also reports the number of activity cliff markers in
landscapes that correspond to individual compounds partici-

Table 2. Evaluation of the Interpolated Activity Landscapesa

correlation between chemical and
geometric distances

correlation between interpolated and
original potency values

percentage of interpolated surface
area

activity class MACCS M2D TGT MACCS M2D TGT MACCS M2D TGT

FAR 0.73 0.51 0.81 0.98 0.96 0.85 23.2 28.7 27.7
LIP 0.75 0.71 0.68 0.97 0.92 0.88 6.0 10.4 20.4
ACA 0.78 0.80 0.79 0.96 0.92 0.94 12.3 7.7 15.7
THR 0.69 0.50 0.76 0.93 0.93 0.92 20.5 17.3 9.9
ACH 0.81 0.60 0.74 0.98 0.97 0.96 14.8 18.1 19.2
5HT 0.81 0.73 0.81 0.96 0.97 0.94 17.1 15.1 25.7
HADH2 0.55 0.27 0.69 0.77 0.66 0.61 6.8 9.1 13.7

a For the three fingerprint representations, MACCS, Molprint2D (M2D), and TGT, correlations between calculated Euclidean fingerprint
distances (chemical distances), and geometric distances between 2D molecular coordinates obtained by multidimensional scaling are reported.
Furthermore, correlations between the interpolated surface values and the original potency values are provided. In addition, the percentage of
grid points that are displayed fully transparent (white) and represent purely interpolated surface area is given (see text for details).

R(p) ) 255 - min
i

{d(p, (xi, yi)} · k
xmax - xmin

discraw(A) ) mean

{(i,j)∈A|δij<t,

|Pi-Pj|>1 }(|Pi-Pj|/1+δij)
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pating in at least one compound pair with fingerprint distance
less than the threshold specified above and the potency
differences of at least 3 orders of magnitude. If such
compound pairs are proximal on an activity landscape, then
they participate in the formation of an activity cliff region
consisting of multiple and in part overlapping cliffs.

Compound Clustering. In order to enable a detailed
analysis of compound classes forming different parts of
activity landscapes, in particular, activity cliffs, we also
clustered the molecules in a data set on the basis of pairwise
Euclidean fingerprint distances. For this purpose, the hier-
archical clustering scheme of Ward’s minimum-variance
linkage method was applied.32 The resulting dendrograms
were pruned at various heights to obtain a reasonable number
of clusters with balanced cluster composition. We also
calculated the discontinuity score for each resulting cluster
to evaluate local SAR features that might coexist within a
given data set. Cluster results for all seven activity classes
are provided in the Supporting Information.

The landscape display and analysis tools introduced herein
enable rotatable landscape views, molecule selection, and
interactive structure display. Upon publication, these tools
are made freely available via the following: http://www.
lifescienceinformatics.uni-bonn.de.

RESULTS AND DISCUSSION

Landscape Generation and Interpretation. We have
generated both 2D and 3D activity landscape models for
seven enzyme inhibitor sets, including six compound opti-
mization sets and one screening set, using three different
molecular fingerprint representations. Figure 2a shows a
representative example for the ACH data set and MACCS
fingerprints that is utilized to rationalize key features of
landscapes revealed by our analysis and to illustrate how
3D landscape representations should be interpreted in order
to identify key compounds. In the 2D representation of the
ACH landscape, molecules are represented by data points
whose coordinates were obtained by multidimensional scal-
ing, as used for the generation of the 3D landscape
representation. The interpolated surface elevation is repre-
sented by shading, using the same color code as in the 3D
landscape. Corresponding exemplary data points in the 2D
and 3D representations are connected by dashed lines. The
2D landscape representation is intuitive and mirrors the data
distribution, but the 3D landscape further emphasizes the
formation of activity cliffs and their spatial arrangement.

Only three major analysis criteria must be applied, as
indicated on the left in Figure 2a, to interpret activity
landscapes in a step-by-step manner, to evaluate characteristic
landscape features, and to focus on key compounds:
(i) Regions of interpolated surface area (white) are identified

that are particularly “smooth” but lack compound data.
These regions contribute to landscape topology but lack
interpretable local SAR information. Hence, this infor-
mation can be utilized to assess the sampling of a
compound data set and to identify chemical space regions
that have not been thoroughly explored.

(ii) Regions with green to yellow peaks of limited magnitude
are then identified that result from dense data sampling
but do not correspond to local regions of significant SAR
discontinuity, as we discuss in more detail below.
Therefore, these moderate surface elevations are termed
“data peaks”. This is an important point to be made
because not every peak on a 3D landscape represents an
activity cliff.

(iii) True activity cliffs become immediately apparent on a
3D landscape in regions of large-magnitude peaks that
are characterized by a red-yellow-green color spectrum.
These peaks are formed by groups of similar molecules
that map close to each other in the reference space but
have distinct potency levels. Hence, to identify prominent
activity cliffs, color-code information, indicating absolute
potency differences among similar molecules, must be
taken into account, as is also further discussed below.

In Figure 2b, the results of compound clustering and
landscape mapping are shown, revealing that different
chemotypes form spatially separated activity cliffs in the
ACH data set, as one would expect. The individual clusters
obtain discontinuity scores that span the entire range from 0
to 1, which indicates the coexistence of different local SAR
features within the compound set. Molecules belonging to
two clusters characterized by a notable degree of SAR
discontinuity are mapped on the 3D landscape view in Figure
2b, and the structures of two compound pairs forming
prominent activity cliffs are shown. Furthermore, representa-
tive data points that correspond to the most active compounds
in each cluster are displayed on the 3D surface in Figure
2b, and their structures are shown in Figure 2c. These
molecules represent different chemotypes and produce
distinct peaks in the activity landscape that are scattered
around the surface area. Similar observations were made for
all seven compound data sets, as shown in Supporting
Information, Figure S1.

Table 3. Discontinuity Scores and Activity Cliffsa

discontinuity score no. of activity cliff markers

activity class MACCS M2D TGT MACCS M2D TGT

FAR 0.79 0.64 0.77 39 (26.7%) 13 (8.9%) 30 (20.5%)
LIP 0.09 0.04 0.14 8 (3.2%) 11 (4.4%) 12 (4.8%)
ACA 0.23 0.34 0.18 24 (12.3%) 45 (23.1%) 20 (10.3%)
THR 0.59 0.69 0.56 71 (41.3%) 25 (14.5%) 7 (4.1%)
ACH 0.75 0.83 0.64 48 (42.9%) 41 (36.6%) 30 (26.8%)
5HT 0.24 0.33 0.27 24 (18.6%) 21 (16.3%) 18 (13.9%)
HADH2 0.05 0.06 0.07 48 (2.0%) 452 (18.8%) 37 (1.5%)

a SARI discontinuity scores calculated on the basis of Euclidean distance between MACCS, Molprint2D (M2D), and TGT fingerprints are
reported for the seven compound activity classes. In addition, we report the number and percentage (in parentheses) of “activity cliff markers”,
i.e., molecules that participate in at least one compound pair with fingerprint distance that is lower than the distance threshold applied for
discontinuity score calculations and potency differences of more than three orders of magnitude.
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Landscape Quality Assessment. The six lead optimiza-
tion sets produced characteristic 3D landscape topologies that

differed in part substantially depending on the choice of the
molecular representation. These differences are discussed

Figure 2. Interpretation of activity landscape representations. For the ACH data set and MACCS fingerprints, 2D and 3D activity landscape
representations are shown. (a) Comparison of 2D and 3D landscape. The 3D landscape (left) contains distinct regions that are discussed in
the text. These regions can be mapped onto a 2D representation of the same landscape (right) obtained by multidimensional scaling. In the
2D plot, the interpolated surface elevation is represented by shading, using the same color scheme as in the 3D landscape. Data points
representing molecules are also shown and colored according to their potency values, with green indicating potency values of 5.78 and
below and red indicating potency values of 8.75 and above. (b) Cluster analysis. The compounds in the data set were clustered using
Ward’s hierarchical clustering based on Euclidean fingerprint distances. In the 2D plot (left), data points representing molecules are colored
according to their cluster membership. SARI discontinuity scores calculated for each cluster are in the box (“Cluster disc”). The most
active compound in each cluster is encircled and also shown on the 3D landscape (right). In addition, two clusters are mapped onto the 3D
landscape. (c) Cluster representatives. Shown are the structures of the most potent compounds in each cluster marked in (b).
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below in detail. In order to evaluate the overall quality of
the models, we compared the modeled parameters for
molecular distance and surface elevation to the chemical
descriptor distance and measured potency data, respectively.
The correlation values are reported in Table 2. For distance
comparison, we calculated the pairwise Euclidean distances
between molecule coordinates obtained through multidimen-
sional scaling and correlated these geometric distances to
the Euclidean fingerprint distances. On average, geometric
and fingerprint distances correlated well (0.72) and exceeded
a correlation of 0.6, with the exception of only 2 of 18
compound class/fingerprint combinations (Molprint2D for
classes FAR and THR). However, geometric distances
calculated with a conventional multidimensional scaling
algorithm33 displayed consistently lower correlation with
fingerprint distances, which supported our choice of a
nonmetric approach to multidimensional scaling.

Comparison of interpolated surface elevation with mea-
sured potency values yielded correlations that were greater
than 0.85 for all activity class/fingerprint combinations (and
exceeded 0.9, except for FAR and LIP with TGT finger-
prints). Hence, according to parameter correlation analysis,
the 3D activity landscape models were generally of good
quality. Importantly, all activity landscapes studied here were
generated using a consistent data reference frame that made
it possible to compare landscapes across different activity
classes.

Global SAR Features of Lead Optimization Sets. The
SARI discontinuity scores reported in Table 3 are a global
measure of SAR characteristics. Discontinuity scores range
from 0 to 1. The higher the discontinuity score is the more
structurally similar compounds with significant potency
differences are contained in a data set (and the more activity
cliffs are formed). By contrast, low discontinuity scores
indicate the presence of only small potency differences
among structurally dissimilar compounds and the absence
of activity cliffs of large magnitude. Hence, these global
discontinuity scores should correlate with notable differences
in landscape topology. The scores were calculated with three
different fingerprints. As can be seen in Table 3, the values
differ in each case but are comparable in magnitude for each
class, indicating the presence of high SAR discontinuity for
the activity classes farnesyltransferase (FAR) and acetyl-
cholinesterase (ACH) inhibitors, intermediate discontinuity
for thrombin (THR) inhibitors, and low discontinuity for
inhibitors of lipoxygenase (LIP), acyl-CoA:cholesterol acyl-
transferase (ACA), and 5HT reuptake (5HT). Thus, these
activity classes cover a wide range of SAR discontinuity.
Table 3 also lists the number of prominent activity cliffs
contained in each compound set.

Landscape Topology and Molecular Representations.
The calculated FAR activity landscapes in Figure 3a clearly
reflect the high degree of SAR discontinuity contained in
this data set, which is particularly well illustrated by the
landscape calculated with Molprint2D. Here, compounds are
distributed over the entire landscape, resulting in the presence
of only small interpolated (white) surface regions. The
landscape is rugged and characterized by multiple cliffs,
some of which are not separated and form a plateau of highly
potent compounds (coherent red region). The MACCS- and
TGT-based landscapes also display a rugged topology.
Different from the landscape calculated with Molprint2D,

the MACCS-based landscape is characterized by a large
interpolated surface area, which is a consequence of clear
separation of highly (red areas) and weakly potent (green)
compounds. Similarly, the TGT-based landscape also con-
tains a large interpolated surface area, but the topology of
this landscape differs substantially from the others. This is
the case because the calculation of TGT pharmacophore
feature fingerprints results in clustering of different com-
pound subsets, rather than a separation of molecules accord-
ing to potency. Thus, the comparison of the three FAR
landscapes illustrates a strong influence of the chosen
molecular representation on landscape topology, although all
three landscapes capture the high degree of SAR discontinu-
ity within the FAR data set well. Similar observations can
be made for all activity landscapes studied here, as discussed
in the following.

SAR Discontinuity versus Continuity. Comparison of
activity landscapes for the different compound sets shows
that they all include a number of peaks and rugged regions,
despite differences in global SAR character. For example,
the LIP data set is characterized by a very low discontinuity
score for all three fingerprints. Inspecting its activity
landscapes, shown in Figure 3b, reveals that this large data
set evenly populates the landscapes, except for the TGT
representation where clustering effects also occur in this case.
The MACCS- and Molprint2D-based landscapes are rather
similar, despite minor differences in topology. In these
landscapes that are dominated by moderately potent mol-
ecules (green and yellow areas) prominent cliffs are absent;
however, many small peaks are scattered over the surface.
It should be noted, however, that these peaks primarily result
from the underlying data point distribution and are in this
case not indicative of SAR discontinuity. This is the case
because their height is rather limited and they are mostly
colored in similar green and yellow shades, which indicates
that the corresponding molecules have similarly weak
potency values and do not form activity cliffs. As illustrated
in the bottom part of Figure 3b, removing the 30 and 100
most active molecules from the LIP data set makes these
landscapes smoother. However, even after removal of 100
molecules (which limits logarithmic potency to the range
between 6.9 and 9), the landscape still contains a number of
small peaks. Hence, these peaks represent molecules whose
potency is only slightly higher than that of its neighbors.
By contrast, the classes FAR or ACH (see below) are
characterized by a high discontinuity score, and accordingly,
their landscapes contain rugged regions where peaks colored
in red that are formed by highly potent molecules are in close
proximity to valleys or canyons where weakly active
molecules are located. Thus, in order to detect SAR
discontinuity and activity cliffs in a 3D activity landscape,
the height and color of neighboring peaks and valleys must
be taken into account.

Similar to LIP, the ACA data set also contains many
weakly to moderately potent compounds but is characterized
by a higher degree of discontinuity, which becomes apparent
in its activity landscapes shown in Figure 3c. Here the
compounds are also well distributed over most of the surface
areas, but the landscapes consist of different regions that are
predominantly populated by either weakly or moderately to
highly potent compounds. In the latter regions, small- to
moderate-sized activity cliffs are formed.
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Different from LIP and ACA, the THR inhibitor set is
dominated by highly potent compounds. It yields intermedi-

ate discontinuity scores that indicate SAR heterogeneity,
which usually results from the presence of subsets of

Figure 3. Activity landscapes. For the six compound data sets according to Table 1, activity landscapes were calculated on the basis of
Euclidean fingerprint distances for three fingerprint representations, MACCS (top left), TGT (top right), and Molprint2D (bottom). The
surface is colored according to interpolated surface elevation, using a continuous spectrum from green for values smaller than or equal to
5.78 to red for values equal to or greater than 8.75. For all combinations of the six activity classes and three fingerprints, the same color
spectrum and a common coordinate reference frame are applied. Interpolated surface area not populated with molecules is colored white.
Activity landscape representations are shown for inhibitors of: (a) protein farnesyltransferase (FAR), (b) lipoxygenase (LIP), (c) acyl-CoA:
cholesterol acyltransferase (ACA), (d) thrombin (THR), (e) acetylcholinesterase (ACH), and (f) 5HT reuptake (5HT). The box in the lower
part of Figure 3b shows activity landscape representations for class LIP that were calculated after removal of the 30 (top) and 100 (bottom)
most active compounds from the data set. Relatively high peaks are smoothed out in the resulting landscapes, but small peaks are retained.
The comparison of these landscapes illustrates the effect of data sampling and the difference between peaks produced by dense data points
and actual activity cliffs (see text for details).
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compounds displaying different SAR characteristics. Given
the potency distribution within this compound set, its activity
landscapes, shown in Figure 3d, predominantly consist of
red and yellow regions. Here differences in landscape
topologies produced by different fingerprints are again rather
obvious, and depending on the fingerprint, different clustering
patterns are observed. Although the MACCS- and TGT-
based landscapes contain extended regions of interpolated
surface, all three landscapes are characterized, despite
topology differences, by smooth and relatively flat regions
and also by regions that are enriched with cliffs of varying
magnitude. The Molprint2D-based landscape has compounds
distributed over most of its surface, and best reflects these
features that are consistent with SAR heterogeneity. Taken
together, these findings illustrate that the topological details
of the individual activity landscapes of the four compound
data sets discussed so far are much influenced by the different
molecular representations. However, the results also show
that compound set characteristic features common to these
four activity landscapes are consistent with global SAR
phenotypes assigned on the basis of discontinuity scoring.

Variable Activity Cliffs. Activity cliffs represent the most
informative and characteristic features of activity landscapes.
Consistent with the previously observed predominance of
SAR heterogeneity in many compound data sets,4,7 we find
that essentially all activity landscapes, except those repre-
senting the most continuous SARs, contain activity cliffs of
varying magnitude.

Consistent with high discontinuity scores for all three
fingerprint representations, the landscapes for the ACH data
set, shown in Figure 3e, are dominated by pronounced
activity cliffs that are formed by compounds covering a large

potency range from subnanomolar to micromolar potencies.
However, the distribution of these cliff marker compounds
differs substantially in the three landscapes, depending on
the chosen fingerprint representation. Figure 4a shows four
exemplary molecules representing different potency levels,
whose positions on the landscapes in Figure 3e are indicated.
These molecules share a common tricyclic substructure and
mark activity cliffs. In the MACCS-based landscape, they
map to the same surface area that contains a prominent
activity cliff. The two highly potent molecules 1 and 2
contribute to a peak that is produced by a number of similarly
potent molecules that map to this surface region. By contrast,
the other two fingerprint representations clearly separate these
compounds. In the Molprint2D-based landscape, the mol-
ecule pairs 1-3 and 2-4 form two separate activity cliffs
of similar magnitude. By contrast, in the TGT-based
landscape, the least potent (and smallest) molecule 4 maps
to a different area distant from the location of the other three
selected molecules. Hence, the formation of activity cliffs
also varies with chosen molecular representations, more so
than overall landscape topology.

The 5HT data set is characterized by a lower discontinuity
score than ACH, which is due to the prevalence of highly
potent compounds in the 5HT set. The 5HT activity
landscapes in Figure 3f also include moderately sized activity
cliffs that are formed by neighboring molecules with high
and moderate (and, in a few cases, low) potency levels. Three
exemplary molecules are labeled in Figure 3f and shown in
Figure 4b. Molecules 1 and 2 are structurally very similar
and located close to each other in all three activity landscapes,
producing the highest peaks. Compound 3 is four to five
orders of magnitude less potent than these two compounds

Figure 4. Exemplary compounds. For (a) ACH and (b) 5HT molecules are shown that are labeled in the activity landscapes in Figure 2e
and Figure 2f, respectively. Depending on the chosen fingerprint representation, these molecules map to different regions of the landscapes
and form, or do not form, activity cliffs.
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and structurally distinct from them. However, due to the
presence of a common substructure, all three molecules map
proximal to each other in a contiguous region in the MACCS-
based landscape. By contrast, the other two higher-resolution
fingerprint representations clearly separate compound 3 from
the two highly potent molecules and place it into a more

distant region in the corresponding activity landscapes. In
this case, the higher-resolution fingerprints further emphasize
activity cliffs and separate them on their activity landscapes.

Activity Landscape Analysis of Screening Data. In
addition to compound optimization sets, we have also
analyzed HTS data, given their relevance for initial SAR

Figure 5. Activity landscape for HTS data. Activity landscape representations for a set of 2398 inhibitors of hydroxyacyl-CoA dehydrogenase
II taken from a screening set are shown for three different fingerprint representations. (a) 3D landscape representations for MACCS (left),
TGT (right), and Molprint2D (bottom) fingerprints. Representative molecules belonging to different clusters are indicated on the surface
and are colored according to cluster membership. (b) 2D representations of the same activity landscapes, arranged according to (a). (c)
Representative molecules belonging to different clusters marked in (a) are shown together with their potency values.
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exploration and hit selection. Screening data sets generally
present challenging cases for systematic SAR analysis
because their potency and similarity distributions differ
substantially from compound optimization sets. To account
for the narrow potency range, the color code applied for the
3D landscape representations has been modified: green
coloring now corresponds to an interpolated surface elevation
of 4 and lower, whereas red indicates a surface elevation of
7 and higher. This modification makes it possible to evaluate
small potency differences in the data set (but the landscape
coloring cannot be directly compared to the six MDDR data
sets). The hydroxyacyl-CoA dehydrogenase II (HADH2)
data set is characterized by the presence of many weakly or
borderline active molecules that dominate its SAR character
and lead to a very low degree of SAR discontinuity. Its
activity landscape representations, shown in Figure 5a, clearly
reflect this SAR phenotype. Many small green data peaks
are seen that arise from dense data sampling. As a conse-
quence of data density, purely interpolated surface area
(represented as white regions) is much reduced compared
to the compound optimization sets discussed above (Table
2). Data peaks are clearly distinguished from several notable
activity cliffs that are also contained in the screening set.
These cliffs become much more apparent in the 3D land-
scapes than the corresponding 2D representations shown in
Figure 5b, due to the large number of data points. Figure 5c
shows the structures of representative active compounds that
are mapped in Figure 5a. These compounds are structurally
diverse and include the most active molecules from selected
compound clusters. Taken together, these results illustrate
that 3D activity landscape representations are also applicable
to raw screening data and clearly help to quickly focus on
compound subsets that form activity cliffs and contain SAR
information.

CONCLUSIONS

Herein we have focused on generating activity landscape
views for actual compound data sets that can be compared
and analyzed in qualitative and quantitative terms. As we
expected, details of approximated “true” activity landscapes
depart from the idealized canyon/rolling hills landscape view
that we utilize to rationalize principal relationships between
activity landscapes and structure-activity relationships.
However, we have found that different compound data sets
produce different types of activity landscapes that are readily
interpretable, despite molecular representation-dependent
differences in their topology. Furthermore, we have found
that landscape features can be related to global SAR
characteristics of compound data sets deduced from system-
atic pairwise comparisons of compound similarity and
potency and quantified by SAR discontinuity scoring.
Visualizing similarity and potency relationships in three-
dimensional landscape representations makes it possible to
assess SAR characteristics of a compound data set and to
identify activity cliffs of varying magnitude. Activity land-
scapes of different compound sets mirror previous findings
that SARs are predominantly heterogeneous in nature and
that even largely continuous SARs contain elements of
discontinuity, which become apparent as shallow activity
cliffs in landscape models. However, activity cliffs that occur
in an activity landscape for a given molecular representation

might be modified or even leveled out in a different chemical
reference space. Hence, for a comprehensive description and
prioritization of activity cliffs in a data set, the choice of
molecular representations is rather critical. Furthermore,
activity landscape visualization also provides an intuitive way
to identify molecular representations that best separate highly
and weakly potent molecules in a given data. Such repre-
sentations are most suitable for many practical applications
of molecular similarity analysis.
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Summary

Herein, a novel computational approach for the generation of 3D activity land-

scapes has been reported. In addition, these 3D activity landscapes generated

for di�erent compound sets were analyzed in detail. Such true landscapes dis-

played substantial variations compared to conceptualized smooth/rugged views

frequently employed to explain SAR features. Moreover, the generated 3D

landscapes showed notable dependence on the chosen molecular representa-

tion and variation in their topologies. In order to enable direct comparisons,

the landscapes were represented within a consistent framework. Despite clear

di�erences, the overall SAR characteristics obtained after systematic pairwise

comparison of structural similarities and activity di�erences, correlated well

with the landscape features. In addition, the activity cli�s were readily identi-

�able, although, they were dependent on the chosen molecular representation.

The 3D activity landscapes also aided in the intuitive identi�cation of chemical

reference spaces that allowed the separation of compounds according to their

potency levels. Therefore, these landscape representations were well suited for

qualitative analysis of SAR.

Following the successful generation of 3D activity landscape representations for

real data sets, a follow-up study was performed to compare these with standard

2D representations reported in the next chapter.
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Chapter 2

Comparison of two- and

three-dimensional activity

landscape representations for

di�erent compound data sets

Introduction

The SARs associated with bioactive compound data are routinely investigated

with the help of the activity landscape concept as it is intuitive and fairly easy

to interpret. The important advantage provided by the landscape representa-

tions is the relative ease in the visual accessibility of characteristic SAR features

prevalent in various sets of active compounds. Indeed, several methodologies

for activity landscape modeling have been developed. The common objective

of these conceptually di�erent modeling approaches is to combine the pair-

wise chemical similarity and activity relationships existing in a given data set.

Herein, a comparative study has been outlined where exemplary 2D activity

landscape representations, i.e. NSGs, generated for data sets with di�erent

SAR phenotypes were compared with the 3D models. The study clearly re-

vealed that both 2D and 3D landscapes capture the overall SAR content of

the data sets used in an analogous manner, despite their distinctive topologies.

Additionally, it has also be observed that local SAR features are perceived

di�erently in these representations.
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Summary

A comparative analysis performed using the activity landscape representations

generated by two conceptually di�erent computational techniques has been re-

ported. The 2D representations, i.e. the NSGs, integrate systematic similarity

and potency relationships in data sets in the form of a network and therefore, do

not require dimension reduction. On the other hand, 3D activity landscapes are

contiguous surfaces generated after interpolation of activity information of con-

stituent compounds and their 2D projection obtained as a result of dimension

reduction. From the study, it was observed that in spite of their visual di�er-

ences, these representations perceived global SAR content in a similar manner.

In addition, 3D models demonstrated the in�uence exerted by the choice of the

molecular presentations on the underlying chemical spaces and as a result the

analysis of SAR. The 2D and 3D models provided di�erent perspectives dur-

ing the analysis of local SAR environments, as expected. Activity cli�s of large

magnitude that represent centers of SAR discontinuity information were readily

identi�able using 3D representations. However, SAR exploration in the vicinity

of such cli�s was better facilitated by NSGs. Prominent activity cli�s identi�ed

in NSGs were also found to be consistently represented in the 3D models. Thus,

this study clearly indicated that the complementarity of these representations

can be exploited during detailed exploration of activity cli�s. It is important

to note that the comparison of di�erent activity landscape representations pro-

vides valuable indicators as to how these models can be maximally utilized

during practical SAR investigations.

Pairwise comparisons of compound structures and activities form the core as-

pect of activity landscape models despite di�erences in their conceptual de-

sign. Accordingly, various landscape features (e.g. activity cli�s) are typically

characterized at the level of compound pairs. A computational approach that

resolves di�erent landscape features at the level of individual compounds has

been introduced in the following chapter.
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Chapter 3

Conditional probabilities of

activity landscape features for

individual compounds

Introduction

Activity landscape modeling is frequently utilized during SAR analysis of large

data sets as it combines pairwise chemical similarities and potency di�erences

between active compounds [1]. Various computational methodologies for the

construction of landscape representations to study single- as well as multi-

target SAR have been introduced, ranging from molecular networks and 2D

plots to 3D landscape models [1, 2]. In spite of their conceptual di�erences,

these approaches for activity landscape generation require systematic pairwise

comparisons of molecular similarities and potency di�erences. Therefore, the

resulting landscape features are often resolved at the level of compound pairs.

Activity cli�s, for instance, are formed by structurally related compound pairs

with large variation in their potencies and represent the most signi�cant land-

scape features [3, 4]. Additionally, structurally similar and dissimilar compound

pairs having equivalent potencies also constitute other landscape features rele-

vant for SAR analysis.

Various modeling techniques provide a qualitative description of activity

landscape features. In a recent study, these features have quantitatively been
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characterized using an information-theoretic approach [5]. Information entropy

calculations were performed to characterize the information associated with

di�erent landscape features and the results were compared with their SAR

information content.

On the basis of probability theory, a methodology has recently been intro-

duced for the quantitative assessment of prede�ned activity landscape features

[6]. Conditional probabilities for individual compounds to form these landscape

features were computed using their pairwise structural similarity and potency

di�erence data. This computational approach was applied to several data sets

and compounds with signi�cant feature probabilities were identi�ed. In addi-

tion, compounds were assigned to various feature categories on the basis of their

conditional probabilities. The conceptual advantages of conditional probabil-

ity calculations and the resulting compound assignments have been highlighted

with the help of graphical landscape representations [6]. The study reported

herein has been published in reference [6] of this chapter. My contributions

to this study included the systematic calculation of conditional feature proba-

bilities for di�erent data sets as well as the generation of exemplary graphical

representations.

Methodology

Similarity-Activity Similarity Maps

The activity landscape features have initially been categorized with the help

of SAS maps, the �rst 2D landscape representations [7]. SAS maps represent

activity landscapes at the level of compound pairs and are appropriately suited

for the classi�cation of landscape features. SAS maps were originally imple-

mented as 2D plots of structural versus activity similarity of molecules within

a data set obtained from systematic pairwise comparisons.

Typically, chemical relatedness is determined by comparing molecular �n-

gerprints using the Tanimoto coe�cient (Tc) [8] as the similarity metric and

activity similarity is expressed in terms of potency di�erences (normalized, if re-

quired) between all compound pairs. Structural similarity is represented along

the x-axis while the y-axis reports the absolute di�erences in activity. Di�erent
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SAS map variants have been proposed for various practical applications [9, 10].

Data points in the SAS map represent similarity and potency relationships be-

tween compound pairs. The map can be divided into four distinct regions on

the basis of prede�ned chemical similarity and activity di�erence thresholds.

Similarity and Activity Di�erence Thresholds

Clear de�nition of threshold values for structural similarity and potency di�er-

ence is a necessary requirement for the quantitative analysis of activity land-

scape features [1, 4]. The chemical similarity was assessed using extended con-

nectivity �ngerprints [11] with a bond diameter 4 (ECFP4) and a Tc value of

0.55 served as the similarity threshold while absolute potency di�erence thresh-

old was set to 2 pKi units corresponding to 2 orders of magnitude (OoM)

di�erence in activity [6]. These threshold values have often been used to de�ne

activity cli�s in various computational studies [4, 12]. Compound pairs with

ECFP4 Tc values of 0.55 or higher are typically structurally related [13] and

absolute potency di�erences of 2 OoM or more account for signi�cant activity

cli�s within a data set [12].

Activity Landscape Features

The prede�ned molecular similarity and potency di�erence thresholds divide

the SAS maps into four distinct sections that represent the di�erent activity

landscape features. The lower left portion is composed of compound pairs that

are chemically dissimilar but have similar potencies. Such pairs consist of com-

pounds having di�erent molecular sca�olds or otherwise dissimilar structures

and are referred to as similarity cli�s [5]. Therefore, molecule pairs forming

similarity cli�s are located far apart in the chemical reference space.

Pairs of compounds contained in the lower right region exhibit high chemical

similarity and low potency di�erences. These are typically associated with

smooth landscape areas and accordingly, known as smooth pairs. The upper

right part of the SAS map comprises of activity cli�s, i.e., structurally related

compound pairs having large potency di�erences. The entire right section of the

SAS map is composed of molecule pairs that are located in close proximity in the

chemical space due to their high structural similarities. The upper left section
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containing structurally dissimilar compound pairs with large potency di�erences

forms the nondescript region and has relatively low SAR information. Hence,

similarity cli�s, smooth pairs and activity cli�s were considered as principal

activity landscape features [6].

Characterization of the activity landscape features derived from SAS maps

using compound pair frequencies and information entropy calculations has been

performed in a previous study [5]. From a statistical perspective, activity cli�s

are considered most informative due to their sparse distribution. By contrast,

similarity cli�s have relatively low information as they occur with high fre-

quency. However, from an SAR point of view, similarity cli�s provide impor-

tant information about chemically dissimilar compounds with similar potencies.

Smooth pairs are observed less frequently than similarity cli�s and therefore,

have moderate information content.

Per-compound Feature Probabilities

The core objective of the approach described in [6] has been the derivation of

landscape feature probabilities for individual compounds. The propensities of

every compound in a data set to form activity cli�s, similarity cli�s or smooth

pairs have been determined as feature probabilities. Feature combinations have

also been considered. Compound-based or local SAS maps that report pairwise

similarity and potency relationships formed by speci�c molecules have been in-

troduced in support of this methodology. Thus, using the information present

in a local SAS map for a given molecule, the frequencies with which it partic-

ipates in the formation of activity cli�s, similarity cli�s or smooth pairs have

been determined [6].

Crisp and Fuzzy Boundaries

Using prede�ned thresholds, pairwise structural similarity and potency di�er-

ence relationships formed by a particular compound can be assigned to any

one of the four di�erent regions according to their values. Nevertheless, assign-

ments of compound pairs to speci�c map regions are prone to boundary e�ects

if precise bounds as mentioned previously are applied. For example, small vari-

ation in similarity might determine if a compound pair falls into activity cli� or
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nondescript region. Furthermore, minute changes in potency di�erences might

distinguish between pairs of compounds classi�ed as activity cli�s or smooth

pairs. Such dramatic shifts in classi�cation resulting from small transitions

about the thresholds are not chemically meaningful.

Therefore, crisp threshold values have been replaced with fuzzy boundaries,

in order to balance the boundary e�ects that negatively a�ect feature assign-

ments. Twilight zones or boundary intervals have been introduced in order to

assign a weighted joint membership for neighboring landscape regions to the

compound pairs falling into these areas [6]. Due to its mathematical foundation

in fuzzy set theory concept [14], this approach made it possible to adhere to

the original data partitioning scheme of local SAS maps while softening the

boundaries between the di�erent regions.

Thus, a Tc range of 0.45 to 0.65 represented the boundary interval for struc-

tural similarity while a range of one to two OoM marked the twilight region

for potency di�erence. The weighting schemes for compound pairs within the

similarity and potency di�erence twilight zones de�ned partial memberships to

neighboring regions and produced values that ranged between 0 and 1. Accord-

ingly, the fractional frequencies were also obtained for compounds when the

magnitude of partial memberships within the twilight regions was less than one

[6].

Conditional Probabilities for Fuzzy Landscape Features

An additional conditioning has been applied so that the ability of a given com-

pound to form similarity cli�s or activity cli�s is evaluated only with respect

to other compounds having similar potencies or similar structures, respectively.

The resulting conditional probabilities can be calculated from the probability of

a given feature by relating it to the frequencies of all compound pairs satisfying

the conditional relationship.

Hence, the respective conditional probabilities for a given compound k par-

ticipating in a set Vk of compound pairs have been generated as follows:
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1. For a pair of compounds having similar potencies,

a. the probability to form a similarity cli�, P (S̃<|Ã<, Vk), is given by:

P (S̃<|Ã<, Vk) =
|R̃00(k)|

|R̃00(k)|+ |R̃10(k)|

b. the probability to form a smooth pair, P (S̃≥|Ã<, Vk), is given by:

P (S̃≥|Ã<, Vk) =
|R̃10(k)|

|R̃00(k)|+ |R̃10(k)|

2. and for a structurally similar compound pair,

a. the probability to form a smooth pair, P (Ã<|S̃≥, Vk), is given by:

P (Ã<|S̃≥, Vk) =
|R̃10(k)|

|R̃10(k)|+ |R̃11(k)|

b. the probability to form an activity cli�, P (Ã≥|S̃≥, Vk), is given by:

P (Ã≥|S̃≥, Vk) =
|R̃11(k)|

|R̃10(k)|+ |R̃11(k)|

where |R̃00(k)|, |R̃10(k)| and |R̃11(k)| correspond to the feature proba-

bilities for the formation of similarity cli�s, smooth pairs and activity cli�s,

respectively [6].

Although the conditional probabilities given by equations 1b and 2a esti-

mate the ability of a compound to form smooth pairs, they are distinct because

the probability in the �rst case is calculated for all compound pairs with sim-

ilar potency di�erences while in the second, it is computed for all structurally

similar pairs of compounds [6].

If the denominators of the conditional probabilities speci�ed above become

very small, arti�cially high probabilities might be obtained. For example, this

situation would apply to the conditional probabilities calculated using equa-
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tions 2a and 2b if a compound had very few structural neighbors. Thus, de-

nominators (|R̃00(k)|+ |R̃10(k)| and |R̃10(k)|+ |R̃11(k)|) less than 2.0 were not

considered for probability calculations. In order to identify signi�cant probabili-

ties, thresholds PT (S̃<|Ã<, Vk), PT (S̃≥|Ã<, Vk), PT (Ã<|S̃≥, Vk), PT (Ã≥|S̃≥, Vk),

were determined at the 90th percentile using sorted conditional probabilities

P (S̃<|Ã<, Vk), P (S̃≥|Ã<, Vk), P (Ã<|S̃≥, Vk), P (Ã≥|S̃≥, Vk), respectively for a

representative collection of data sets. Probabilities greater than their corre-

sponding threshold values were considered signi�cant [6].

Assessment of the respective signi�cant conditional probabilities using a

large collection of data sets allows for the identi�cation of exceptional probabil-

ities without taking into account their absolute magnitudes. For instance, due

to the relatively rare occurrences of activity cli�s, only very few compounds

in a data set are expected to form activity cli�s with their structurally similar

neighbors. As a result, comparatively low probabilities might be signi�cant for

activity cli�s, although these probabilities would be substantially lower than

those for similarity cli�s that typically dominate activity landscapes.

Furthermore, the use of conditional feature probabilities is also conceptu-

ally advantageous, especially for data sets of small size. For example, the

conditional probability of a speci�c compound to form activity cli�s only takes

structural neighbors into consideration and the calculation is independent of

the dissimilarity relationships formed by this compound. The absolute feature

probabilities on the other hand are greatly a�ected by the number of dissimilar

compounds, making them di�cult to interpret. These also re�ect poorly on the

ability of a compound to form activity cli�s.

Re�ned Activity Landscape Features

The analysis of various landscape features can be re�ned further on the basis

of conditional probabilities. Since a compound can have high probability for

either category 1a or 1b and also for either category 2a or 2b, eight feature

(and feature combination) categories can be de�ned for SAR-relevant activity

landscape regions, as reported in Table 1. Utilizing the second conditioning,

probabilities can be assigned to a compound to form similarity cli�s, smooth

pairs, activity cli�s or di�erent combinations of these features. For instance,
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category 1a in Table 1 represents compounds having a high probability to form

similarity cli�s with similarly potent compounds.

Table 1. Activity landscape feature probability classi�cation

category type signi�cance criterion activity landscape feature probabilities

0 - - no signi�cance

1 1a P (S̃<|Ã<, Vk) > PT (S̃<|Ã<, Vk) similarity cli�s likely

2 1b P (S̃≥|Ã<, Vk) > PT (S̃≥|Ã<, Vk) smooth pairs likely/similarity cli�s unlikely

3 2a P (Ã<|S̃≥, Vk) > PT (Ã<|S̃≥, Vk) smooth pairs likely/activity cli�s unlikely

4 2b P (Ã≥|S̃≥, Vk) > PT (Ã≥|S̃≥, Vk) activity cli�s likely

5 1a, 2a P (S̃<|Ã<, Vk) > PT (S̃<|Ã<, Vk) similarity cli�s likely/activity cli�s unlikely

and

P (Ã<|S̃≥, Vk) > PT (Ã<|S̃≥, Vk)

6 1a, 2b P (S̃<|Ã<, Vk) > PT (S̃<|Ã<, Vk) similarity cli�s likely/activity cli�s likely

and

P (Ã≥|S̃≥, Vk) > PT (Ã≥|S̃≥, Vk)

7 1b, 2a P (S̃≥|Ã<, Vk) > PT (S̃≥|Ã<, Vk) similarity cli�s unlikely/activity cli�s unlikely

and

P (Ã<|S̃≥, Vk) > PT (Ã<|S̃≥, Vk)

8 1b, 2b P (S̃≥|Ã<, Vk) > PT (S̃≥|Ã<, Vk) similarity cli�s unlikely/activity cli�s likely

and

P (Ã≥|S̃≥, Vk) > PT (Ã≥|S̃≥, Vk)

Di�erent activity landscape feature categories are reported. Categories consist of single

features or combinations of features. For each category, the signi�cance criterion is given

and the corresponding landscape feature probabilities are described. (taken from Vogt et.

al[6])

The signi�cance criterion is satis�ed if the corresponding probability exceeds

the respective threshold. Likewise, compounds in category 2b have a high prob-

ability to form activity cli�s with immediate structural neighbors. Compounds

that are likely to form smooth pairs can be further di�erentiated depending on
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their inability to form similarity cli�s (category 1b) or activity cli�s (category

2a).

Four additional categories can be identi�ed using combinations of these fea-

tures, given that a compound has similar activity or is structurally related to

other compounds. For example, combined category 1a-2a characterizes com-

pounds that are likely to form similarity cli�s and unlikely to form activity

cli�s. The opposite case is accounted for by category 1b-2b, i.e. compounds

that are likely to form activity cli�s but unlikely to form similarity cli�s.

The per-compound conditional probabilities as well as their corresponding

combinations calculated for all the compounds in a data set provide a re�ned

view of the activity landscape features and their distribution. These are derived

using full or partial memberships to di�erent regions in the local SAS map [6].

Applications

Feature Probabilities and Thresholds

Conditional feature probabilities were calculated for 139 di�erent activity anno-

tated compound sets obtained from BindingDB [15]. The corresponding thresh-

olds, i.e. PT (S̃<|Ã<, Vk), PT (S̃≥|Ã<, Vk), PT (Ã<|S̃≥, Vk), PT (Ã≥|S̃≥, Vk), were

estimated from the combined conditional probabilities of all 139 data sets.

Compound Assignment

For each compound, assignment to a category was performed according to

the criteria outlined in Table 1 if the corresponding conditional probability

or a combination of conditional probabilities exceeded the respective thresh-

old. Few categories reported in Table 1 are mutually exclusive. For instance,

a compound cannot be assigned to categories 2a and 2b ( i.e. smooth pairs

likely/activity cli�s unlikely and activity cli�s likely). Other categories are not

exclusive and give rise to combined categories.

For example, a compound can be assigned to categories 1a and 2b (i.e. sim-

ilarity cli�s likely and activity cli�s likely), thus forming the combined category

1a-2b (i.e. similarity cli�s likely/activity cli�s likely). If a compound exceeded
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threshold values for single as well as a combination of features, it was assigned

to the combination.

Visualization and Exemplary Results

SAS maps can be utilized to visualize and characterize activity landscape fea-

tures as they provide a basis for the analysis described herein. However,

SAS maps are not suitable for analyzing feature probabilities of individual

compounds as these represent compound pairs. Network-like similarity graph

(NSG), a compound network-based activity landscape representation was uti-

lized for the visualization of feature probabilities and compound assignment as

the activity landscape is resolved at the level of individual compounds instead

of compound pairs [16].

In an NSG representation, compounds are depicted as nodes colored accord-

ing to their potency values from green (low potency) over yellow to red (high

potency) and edges denote similarity relationships. Compound pairs are con-

nected by an edge if their calculated ECFP4 Tc value is equal to 0.55 or greater.

In addition, nodes are scaled in size according to compound discontinuity scores

[16, 17].

Therefore, the larger the discontinuity introduced by the compound, the

larger the node. Activity cli�s represent extreme forms of SAR discontinuity in

an activity landscape [4]. Accordingly, in an NSG, the most prominent activity

cli�s present in a data set are displayed as combinations of large red and green

nodes connected by edges.

It should also be noted that the 2D arrangements of compounds and clusters

in an NSG have no chemical meaning. Instead, the placement of compounds

and the distances between them are determined by a graphical layout algorithm

such that densely connected subsets of similar compounds are separated for

clarity. In order to visualize compound feature probability information, nodes

are annotated with the assigned categories according to Table 1.
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Figure 1: Representative data sets. Complete NSG representation for data sets contain-
ing (a) serotonin receptor 7 and (b) endothelin receptor et-b ligands are shown. Compound
subsets in these representations are highlighted in blue. Enlarged views of these regions are
provided and the numbers of compounds in various categories are reported. (adapted from
Vogt et. al[6]) 63



Following the systematic derivation of feature probabilities for individual

compounds comprising all 139 data sets, signi�cant di�erences were observed

in conditional feature probability distribution. A number of data sets were

identi�ed that contained compounds belonging to one or two feature categories

while others were dominated by compounds belonging to diverse categories

without obvious preferences.

Varying numbers of compounds belonging only to categories 1 to 4 were

found in 27 data sets but no data set contained compounds belonging only to

feature combinations (categories 5 -8 ). Furthermore, it was also observed that

data sets typically contained di�erent numbers of compounds with probabilities

lower than the respective thresholds (category 0 ). These compounds were less

likely to yield interpretable SAR information.

Selected data sets focusing on each of the eight feature categories (1 -8 )

according to Table 1 have been discussed further and the distribution of com-

pounds within these categories has been reported. These exemplary compound

sets demonstrate the variety of distributions observed and focus on individual

feature categories. Complete NSGs for these data sets with enlarged highlighted

sections for a detailed inspection has been utilized in the following as illustrated

in Figures 1-4.

The serotonin receptor 7 data set in Figure 1a consists of 117 compounds

that have a high probability to form similarity cli�s (category 1 ). Several of

these compounds have intermediate potencies and are structurally similar to

a limited number of other compounds. Additionally, many category 0 com-

pounds are also present in this data set. The conditional probabilities for these

compounds do not reach their corresponding threshold values, including one

within the selected subset. Thus, only limited SAR information content can be

obtained from this structurally diverse ligand set.

By contrast, majority of compounds in the endothelin receptor data set

as seen in Figure 1b belong to category 2. These compounds are likely to

participate in the formation of smooth pairs and unlikely to form similarity

cli�s. The NSG for this data set is dominated by densely connected compound

clusters, consistent with this observation.
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Figure 2: Representative data sets. Ligand sets for (a) melanocortin receptor 3 and (b)
melatonin receptor 1b are shown according to the global versus local view used in Figure 1.
(adapted from Vogt et. al[6])
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Analogously, several compounds that are likely to form smooth pairs but

unlikely to form activity cli�s (category 3 ) are observed in the data set con-

taining melanocortin receptor 3 ligands as shown in Figure 2a. The graphical

representation is characterized by structurally distinct subsets of compounds

with di�erent SAR information content.

The melatonin receptor 1b data set contains 55 compounds that are most

likely to form activity cli�s (category 4 ). In the NSG and the densely connected

compound subset displayed in Figure 2b, prominent activity cli�s indicated

by combinations of large red and green nodes can be clearly identi�ed. The

data set also contains several category 0 compounds of intermediate potencies.

These compounds illustrated as nodes of small size introduce very little SAR

discontinuity, although they are structurally related to activity cli�s. Category

4 and 0 compounds can not be di�erentiated on the basis of graphical represen-

tation alone. In such instances, compounds having a signi�cant probability to

form activity cli�s can only be distinguished from others by taking into account

their conditional feature probabilities, thereby re�ning the activity landscape

view.

The data set containing plasmin inhibitors in Figure 3a includes com-

pounds belonging to category 5 that are likely to form similarity cli�s and un-

likely to form activity cli�s. A small subset of category 5 compounds connected

with those annotated as category 3, i.e. compounds likely to form smooth pairs

but unlikely to participate in activity cli� formation, is highlighted in the NSG.

The graphical representation does not support the distinction between these

compounds which can only be made on the basis of conditional probability

calculations.

The cathepsin k inhibitor set reported in Figure 3b consists of eight com-

pounds belonging to category 6 with signi�cant probabilities for the formation

of similarity cli�s and activity cli�s. The selected cluster includes four of these

inhibitors, three of which have relatively low potency. Two compounds within

the subset form an activity cli� but are structurally distinct from the other two

as indicated by the absence of edges.
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Figure 3: Representative data sets. Inhibitor sets for (a) plasmin and (b) cathepsin k
data sets are shown. The arragement is consistent with the scheme used in Figure 1. (adapted
from Vogt et. al[6])
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In addition, the weakly potent cli� partner participates in the formation of

similarity cli�s with the remaining three compounds.

This information is evident from the graphical representation. The two ac-

tivity cli� partners are also connected to a category 4 compound that is likely to

form activity cli�s. Furthermore, two compounds within the selection also form

activity cli�s with compounds having a high probability to form smooth pairs

(category 2 ) that exhibit chemical and activity similarity. Therefore, this com-

pound subset is an example of a highly di�erentiated SAR micro environment

that can be identi�ed on the basis of conditional probabilities.

The data set composed of furin inhibitors in Figure 4a contain 47 com-

pounds that are highly unlikely to participate in the formation of similarity

cli�s and activity cli�s. The densely connected cluster highlighted in Figure

4a contains all of these compounds. In addition, these inhibitors have compa-

rable potencies. Compounds within the subset belong to category 7, i.e. they

are structurally dissimilar to others in the data set and form smooth pairs with

each other.

Finally, as seen in Figure 4b, the cholecystokinin-1 receptor data set pre-

dominantly consists of compounds belonging to category 8 that are unlikely to

form similarity cli�s but likely to be involved in activity cli� formation.

Additionally, the subset also contains small numbers of category 0, 2 and

4 compounds. Many category 8 compounds in the cluster produce multiple

activity cli�s of large magnitude. Two weakly potent category 4 compounds

also participate in cli� formation with category 8 compounds in this cluster.

Overall, the cluster represents a rich source of SAR-relevant information as

indicated by the presence of many large red and green nodes.

Hence, the examples shown in Figures 1-4 clearly indicate that conditional

activity landscape feature probabilities provide a re�nement to the landscape

views and aid in the di�erentiation of active compounds with respect to the

associated SAR information.
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Figure 4: Representative data sets. Data sets containing (a) furin and (b)
cholecystokinin-1 receptor ligands are shown according to the scheme used in Figure 1.
(adapted from Vogt et. al[6])
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Summary

A novel approach for the assignment of activity landscape features at the level

of individual compounds has been introduced and the derivation of conditional

feature probabilities using fuzzy boundaries to delineate the di�erent activity

landscape regions formed the basis of this methodology. Utilization of fuzzy

boundaries results in partial feature memberships for compounds and balances

possible boundary e�ects. Conditional probabilities have been obtained from

pairwise chemical similarity and activity di�erence relationships between com-

pounds and the frequency derived feature analysis has been carried out for

individual compounds in a data set. Local SAS maps have been introduced

for this purpose. The resulting per-compound conditional feature probabilities

provides a conceptual advance in the analysis of activity landscape. Further-

more, conditional probability calculations have made it possible to derive eight

di�erent feature categories from the existing three compound pair-based SAR-

relevant landscape regions, i.e. activity cli�s, smooth pairs and similarity cli�s.

Assignment of compounds to these categories allows their further distinction in

local SAR environments. These localized SAR environments were di�cult to

interpret on the basis of graphical landscape representations alone, despite tak-

ing into account numerical SAR discontinuity measures. Herein, the emphasis

has been to demonstrate the di�erentiation of SAR micro environments using

compound conditional probabilities in these graphical representations. Thus,

the conditional probability calculations and the ensuing categorization scheme

further re�ne the current activity landscape views and aid in the systematic

SAR analysis at level of individual compounds.

The study reported herein has been published in reference [6] of this chap-

ter. My contributions to this study have been the systematic calculation of

conditional feature probabilities for the 139 data sets and the generation of

exemplary NSGs.
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Systematic SAR analyses using activity landscape representations focus on

the distribution of molecular similarities and activity data associated with

bioactive compounds. In the next chapter, the existing framework of landscape

modeling has been modi�ed to integrate mechanism of action information of

receptor ligands.
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Chapter 4

Molecular mechanism-based

network-like similarity graphs

reveal relationships between

di�erent types of receptor ligands

and structural changes that

determine agonistic,

inverse-agonistic and antagonistic

e�ects

Introduction

An important objective of SAR analyses is to examine the associations that

exist between chemical structures of bioactive compounds and their activity.

Biological targets may include di�erent enzymes or receptors. Receptors are

important targets for therapeutic drugs. Pharmacological theory postulates

that the types of functional responses produced by chemical agents are deter-

mined by their interactions with target receptors. Thus, ligands can be classi�ed
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as full agonists, partial agonists, antagonists or inverse agonists, depending on

their mechanism of action. However, the mechanisms of action of ligands have

not been considered during typical SAR analyses thus far. A modi�ed activity

landscape model has been introduced that accounts for the mechanistic infor-

mation of receptor ligands. This resulted in a graphical network representation

that combined systematic similarity and potency relationships in addition to

mechanism-related information. Simultaneous analysis of SAR and mechanism

of action is helpful in the identi�cation of structurally similar compounds with

di�erent mechanistic behavior. Following the inspection of such ligands, struc-

tural changes that lead to "mechanism hops" can be inferred.
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’ INTRODUCTION

Pharmacological effects of receptor ligands arise from diverse
mechanisms of action.1,2 For example, ligands might act as
agonists, partial agonists, inverse agonists, or antagonists. In
general terms, the mechanisms of these types of ligands can be
defined as follows: (1) An agonist binds to the physiological
ligand binding site of a receptor and activates it. (2) An antagonist
blocks this binding site and thereby prevents receptor activation
and signaling. (3) A partial agonist also competes with the natural
ligand but does not fully activate the receptor. (4) An inverse
agonist stabilizes an inactive conformation of a receptor and
thereby prevents activation and signal transduction.

Mechanistic effects are in general closely linked to different
conformational states, or conformational ensembles, of receptors
and their ability to interact with effector proteins. G protein-
coupled receptors (GPCRs), for which receptor�ligand inter-
actions are just beginning to be understood at the molecular level
of detail,3,4 are prime examples of receptors that engage in highly
complex mechanisms controlling functional effects.3 Differences
in the cellular context of GPCR-ligand interactions are also
known to alter pharmacological profiles of ligands,5 giving rise
to an intricate network of factors that ultimately determine
pharmacological effects. From amedicinal chemistry perspective,
it is often difficult to differentiate between different modes of
action of GPCR ligands and identify structural determinants of a
specific mechanism.6 Consequently, approaches that help to
reveal structural features that influence or determine the me-
chanism of action of GPCR or other receptor ligands are
particularly attractive for medicinal chemistry applications.

In recent years, molecular network representations have been
increasingly utilized to systematically account for ligand-target
interactions and predict targets of active compounds7 or analyze
structure�activity relationships (SARs).8 Such molecular net-
works make it possible to analyze large data sets using a
consistent representation frame and often provide graphical
access to unexpected ligand-target interactions7 or complex
SAR features.8 As such, they complement more traditional
approaches to analyze ligand-target interactions or SARs.

Given the often complex mechanistic spectrum of receptor
ligands, as discussed above, we have been interested in the design
of molecular network representations that help to compare
ligands with different mechanisms. Therefore, we have generated
similarity-based compound networks that incorporate mechan-
istic and SAR information. These graphical representations make
it possible to identify compounds that are related to each other
but act by different mechanisms and determine structural
features that lead to “mechanism hopping”.

’MATERIALS AND METHODS

Compound Data Sets. For five different GPCRs, ligand sets
were collected from the ChEMBL database.9 These data sets
were assembled to contain ligands having different mechanisms
of action including agonists, partial agonists, inverse agonists, and
antagonists. The composition of these compound sets is
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“mechanism hops”.
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summarized in Table 1. The sets contained between 148 (AM1)
and 307 (AA1) ligands. In two of five cases, S1A and AM1, no
inverse agonists were available. All mechanistic annotations for
ligands taken from ChEMBL were extracted from original
literature sources. Molecules with both agonist and partial
agonist annotations were classified as partial agonists, and mol-
ecules designated as full agonists were classified as agonists. In
addition, ligands with only inverse agonist or both antagonist and
inverse agonist annotations were classified as inverse agonists,
owing to the observation that compounds that are apparent
GPCR antagonists act in many cases by an inverse agonist
mechanism.6 Ligands designated only as antagonists were classi-
fied as antagonists. As potency annotations, only Ki (or pKi) were
considered. If multiple Ki values were reported for a ligand in
original literature sources, the geometric mean was calculated to
yield a final potency value.
Network-like Similarity Graphs. The network-like similarity

graph (NSG) data structure10 is a similarity-based molecular
network representation that is annotated with additional infor-
mation layers. Nodes are molecules and edges between them
indicate pairwise similarity relationships. Nodes are color-coded
using a continuous spectrum to reflect the potency distribution in
a compound data set and scaled in size according to the
distribution of per-compound discontinuity scores. The per-
compound discontinuity score indicates the amount of local
SAR discontinuity a compound introduces.10 Hence, a

compound that greatly differs in potency from its immediate
structural neighbors makes a large contribution to local SAR
discontinuity, and, accordingly, the corresponding node is large.
NSGs are generated utilizing the Java implementation in the
publicly available SARANEA program11 and applying a graphical
layout algorithm12 that places densely connected compound
subsets in close proximity and separates weakly interconnected
regions (compound clusters) from each other. NSGs are usually
generated for a set of compounds active (with different potencies)
against a given target, i.e. a compound activity class.
Mechanism-Based NSGs. In order to compare receptors

ligands with different mechanisms of action using a consistent
representation frame, we designed an NSG variant that incorpo-
rates mechanism of action information. Therefore, the NSG
data structure was modified in different ways, as further
detailed in the Results and Discussion section. Pairwise similarity
relationships were calculated using the stereochemistry-sensitive
Extended Connectivity Fingerprint with bond diameter 4
(ECFP4)13 as implemented in Pipeline Pilot.14 An ECFP4
Tanimoto coefficient (Tc) value of 0.4 was applied as the
similarity threshold for edges between nodes. This ECFP4 Tc
value roughly corresponds to a MACCS structural keys15

Tc value of 0.8 and indicates the presence of compounds with
visible structural similarity. Different from NSGs, nodes were
not calculated by potency, but rather by mechanism, using the
following color scheme: agonists, blue; partial agonists, green;
inverse agonists, gray; antagonists, red. For each mechanistic
class (compound subset), potency information was conveyed
by shading, i.e. for each mechanism color, a continuous shade
spectrum from transparent (lowest potency) to opaque (highest
potency) was applied. These graphs were implemented in Java,
further extending the SARANEA implementation,11 and termed
Mechanism-based NSGs (M-NSGs). Table 2 summarizes the
design elements of M-NSGs.

’RESULTS AND DISCUSSION

Graph Design.M-NSG generation involved different types of
calculations, either for an entire ligand set or for each separate
mechanism-based subset. First, the graph layout was computed
for a complete ligand set after calculating pairwise Tanimoto
similarity for all ligands, regardless of their mechanisms of action,
thus providing the similarity-based compound network, in
analogy to original NSGs. Then, however, similarity- and po-
tency-based discontinuity scores were separately calculated for
each ligand subset. On the basis of subset-specific discontinuity
scores, the nodes of ligands sharing the same mechanism were
scaled in size, hence providing SAR information for each
mechanism-based subset. Node scaling is interpreted in the
following manner: the larger a node, the higher the degree of
SAR discontinuity the compound introduces; combinations of
connected medium to large nodes represent discontinuous local
SARs and combinations of small nodes continuous local SARs.
Finally, mechanism and compound potency information was

Table 1. Receptor Ligand Setsa

pKi

target receptor

ligand

mechanism

no. of

compounds maximum minimum

adenosine A1

receptor (AA1)

agonist 107 9.8 4.9

partial agonist 54 8.7 5.3

antagonist 94 9.5 6.0

inverse agonist 52 9.4 4.2

muscarinic

acetylcholine

receptor M1 (AM1)

agonist 26 8.6 3.6

partial agonist 49 9.5 4.5

antagonist 73 10.0 4.5

dopamine D2

receptor (DD2)

agonist 40 9.0 5.6

partial agonist 44 9.7 6.2

antagonist 76 9.8 6.6

inverse agonist 13 11.5 6.1

histamine H3

receptor (H3R)

agonist 44 9.6 4.9

partial agonist 46 9.1 5.0

antagonist 92 10.0 6.8

inverse agonist 31 10.1 5.8

serotonin 1a

receptor (S1A)

agonist 46 10.2 5.4

partial agonist 78 10.1 4.9

antagonist 63 9.4 6.4
aReceptor abbreviations are used in the text to designate ligand sets.

Table 2. M-NSG Design Elements

mechanism color node size shading edge layout

agonist blue mechanism-specific per compound discontinuity score potency range Tanimoto similarity >0.4 connectivity-based

partial agonist green

antagonist red

inverse agonist gray
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incorporated through color and shade coding. Each ligand
mechanismwas assigned a specific color, and compounds sharing
the same mechanism were shaded according to their potency
level (within the potency range in the subset). Hence, combina-
tions of the largest transparent and opaque nodes sharing the
same color mark the most prominent activity cliffs that occur in
each subset. Activity cliffs are structurally similar compounds
with very different potency (representing the extreme form of
SAR discontinuity).8 On the basis of these design components,
M-NSGs provide similarity and mechanism information across
an entire receptor ligand set and, in addition, relative potency and
SAR information for each mechanism-specific subset. Thus,
M-NSGs also contain all the information provided by NSGs of
individual compound sets sharing a specific mechanism of action.
Because SAR information can also be obtained from NSGs of
individual mechanism-based ligand subsets, we predominantly
focus in the following on the exploration of mechanism hopping
and underlying structural changes, for which M-NSGs are
specifically designed.
Ligand M-NSGs. Figure 1 shows the M-NSG representations

for the five receptor ligand sets in Table 1. The M-NSG of the
AA1 ligand set in Figure 1a reveals a central graph component
(region 1) and several other densely connected compound
clusters. In many instances, these clusters mostly, or exclusively,
consist of ligands having the same mechanism, e.g. antagonist
clusters (red nodes). The central graph component contains
partial (green), full agonists (blue), a few inverse agonists (gray),
and many differently sized nodes. This indicates the presence of
substantial SAR information for agonists in this region. Similarly,
the mostly gray-scaled compound community (region 2) at the
bottom in Figure 1a contains many inverse agonists with
differently sized nodes and a few antagonists having small nodes.
Although the AA1 M-NSG displays a notable clustering of
compounds by mechanism, there are exceptions, in particular,
a densely connected community of ligands with all four mechan-
isms of action (region 3). Such densely connected mechanisti-
cally heterogeneous ligand communities represent prime
candidates for further analysis to explore the structural basis of
mechanistic changes among similar ligands. In addition, mechan-
istically more homogeneous regions such as the central graph
component in Figure 1a are a source of SAR information for
compounds sharing the same or similar mechanisms.
The DD2 M-NSG in Figure 1b represents the smallest of the

five data sets and is characterized by the presence of structurally
diverse compounds. Structural diversity is mirrored by the
low edge density in the graph. The most notable feature of the
DD2 M-NSG is its largest ligand community in the center of
Figure 1b (region 1) that also contains compounds with all four
mechanisms of action.
By contrast, the H3R M-NSG in Figure 1c is characterized by

the presence of a densely connected central graph component
that essentially consists of four separate ligand communities that
are connected via compound bridges. These include two antago-
nist communities (regions 1 and 2) with different node size and
potency distributions and, in addition, two other communities
that are characterized by distinct mechanistic heterogeneity
(regions 3 and 4). In particular, the community in the center
of Figure 1c (region 4) consists of very similar ligands that cover
the entire spectrum of mechanisms and thus provides a focal
point for further analysis.
Different from the ligand sets discussed so far the remaining

AM1 and S1A sets in Figure 1d and 1e, respectively, do not

contain inverse agonists. The AM1 M-NSG shows a notable
clustering of different series of compounds by mechanism.
However, in some cases, individual ligands with different me-
chanisms occur in an otherwise mechanistically homogeneous
cluster including, for example, a weakly potent antagonist found
in a partial agonist community (region 1 in Figure 1d), another
single antagonist in an agonist/partial agonist community (region 2),
and a weakly potent partial agonist within an antagonist com-
munity (region 3). Such observations might raise the question as
to whether the mechanisms of these individual ligands located in
an otherwise mechanistically homogeneous environment have
been correctly identified and might thus suggest further experi-
mental evaluation. In addition, another small community (region 4)
shows a sequence of agonists with increasing potency where
structural neighbors of potent agonists include partial agonists
and a weakly potent antagonist, which represents another inter-
esting and perhaps puzzling mechanistic pattern. Furthermore,
another ligand community is encircled in Figure 1d (region 5)
that contains multiple agonists, partial agonists, and antagonists
with different potencies.
The S1A M-NSG in Figure 1e also contains both mechan-

istically homogeneous and heterogeneous ligand communities.
For example, two densely connected ligand communities are
observed (regions 1 and 2) that each comprise multiple partial
agonists and multiple antagonists. Furthermore, region 3 in the
S1A M-NSG contains a pair of compounds representing an
agonist/antagonist hop and a small community of structurally
related ligands including an antagonist, an agonist, and two
partial agonists.
Mechanism Hopping. Selected mechanistically heteroge-

neous ligand communities were analyzed in detail to explore
structural modifications that lead to mechanistic changes.
M-NSG regions shown in Figure 2 are labeled with red numbers
in Figure 1. In each community, a series of analogs were identified
that revealed structural changes altering their mechanisms of
action.
The series of AA1 ligands in Figure 2a includes agonists, partial

agonists, inverse agonists, and an antagonist. All of these ligands
are analogs and only distinguished by different substituents at the
same site, i.e. a meta-position of the phenyl ring. An agonist
(ligand 1) contains a hydroxyl group at this position. Ligands
with a methoxy or methyl group (2 and 3) are partial agonists,
and the same mechanism is observed for a fluorine substituent
(4). However, changing the fluorine atom to a difluoromethy-
lether group converts an agonist (4) into an antagonist (5).
Moreover, changing this group to either a trifluoromethylether
or trifluoromethyl substituent generates inverse agonists (6 and
7). Thus, ligands taken from a mechanistically heterogeneous
region in the AA1M-NSG reveal substitutions at a single site that
alter the mechanism of action in different ways.
The largest ligand community in the DD2 M-NSG contains

three tetraline analogs with different mechanisms that are shown
in Figure 2b. These analogs include an agonist (ligand 1),
antagonist (2), and inverse agonist (3). Here substitutions at
multiple positions in both rings and different stereochemistry at
the aliphatic ring distinguish the inverse agonist and antagonist
from the agonist.
Five ligands from a mechanistically highly heterogeneous

region of the H3R M-NSG shown in Figure 2c include an
agonist, a partial agonist, two antagonists, and an inverse agonist.
Their structures are distinguished by the length of the aliphatic
linker between the imidazole ring and the terminal amine and, in
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Figure 1. M-NSGs. Graph representations are shown for each complete ligand set according to Table 1 (agonists, blue; partial agonists, green; inverse
agonists, gray; antagonists, red). Regions of the graph discussed in the text are encircled and numbered. Regions with red numbers are shown in detail in
Figure 2. (a) AA1, (b) DD2, (c) H3R, (d) AM1, (e) S1A. In each M-NSG, selected ligand communities are indicated.
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addition, by substitutions at this amino group. Comparison of
ligands 1�4 reveals that the linker length is not responsible for
agonistic versus antagonistic effects. Rather, the introduction of
an N,N-diethylamino group (in ligands 3 and 4) generates

antagonists. If the N,N-diethylamine is changed to an N-tertiary
butyl group, an inverse agonist is obtained. Clearly, mechanistic
changes can in this case be attributed to the substitutions at the
terminal amino group.

Figure 2. Ligand communities. For each data set, selected ligand communities are displayed (communities with red numbers in Figure 1). For each
community, a series of ligands is shown that include mechanism hops. In the community graphs, nodes representing pairs of these ligands that constitute
mechanism hops are connected by black edges. Compounds and the corresponding nodes are numbered. Structural modifications in ligands are
highlighted, and they are displayed on a background representing their node colors (mechanisms). (a) AA1, (b) DD2, (c) H3R, (d) AM1, (e) S1A.
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The series of AM1 ligands in Figure 2d contains five agonists
or partial agonists (ligands 1�5) and two antagonists (6 and 7).
Both agonists and antagonists contain two forms of a bridged
hetereoaliphatic ring, which can thus not be responsible for
changes in the mechanism of action. By contrast, mechanism
hopping from agonists to antagonists is caused by the introduc-
tion of a phenyl substituent at the ester moiety, instead of a small
aliphatic group or a cyclohexyl ring. Comparisons of ligands 2
and 6 and of ligands 5 and 7 reveal that the replacement of the
cyclohexyl by the benzene ring, i.e. the introduction of an
aromatic ring at this position, converts partial agonists into
antagonists, another well-defined chemical modification.
In Figure 2e, a pair of S1A ligands is shown (1 and 2) that are

also tetraline derivatives, similar to the ligands in Figure 2b.
This chemotype is active against both dopamine and serotonin
receptors. The two ligands in Figure 2e represent a mechanism
hop from an agonist to an antagonist. In both analog series in
Figure 2b and 2e, we observe that the stereochemistry at the
nitrogen is a differentiating feature between agonists and
antagonists. Ligands 1 and 2 in Figure 2e are further distin-
guished by a fluorine substituent. In addition, Figure 2e also
shows another series of S1A ligands (3 to 6) containing a
condensated ring system as their core structure. Here different
core ring stereochemistry is observed as well as modifications at
a phenyl moiety. The two partial agonists (ligands 3 and 4)
differ from the full agonist (5) in a ring stereoisomer and a
methyl-tetrahydrofuran fused to the phenyl moiety that is only
present in the full agonist. However, the agonist and the
antagonist (6) in this series are nearly identical; they only differ
in the stereoisomer of the methyl substituent at the tetrahy-
drofuran ring. Thus, in this case, a subtle stereochemical
difference involving a single methyl group in chemically com-
plex and rigid receptor ligands triggers a change in the mechan-
ism of action from an agonist to an antagonist.

’CONCLUSIONS

Herein we have introduced a graphical analysis tool that
incorporates molecular mechanism of action information. The
M-NSG data structure makes it possible to graphically analyze
sets of receptor ligands with different mechanisms of action and
identify mechanistically heterogeneous communities of structu-
rally similar compounds. In the M-NSG implementation, nodes
are directly associated with compound structures for interactive
display. Hence, compound subsets can be easily selected and
further analyzed to explore structural modifications that might
lead to mechanistic changes. M-NSG analysis has been carried
out for five sets of GPCR ligands acting by three or four different
mechanisms. In a number of instances, well-defined structural
changes were identified in analog series prioritized on the basis of
M-NSG analysis that distinguished between ligands with differ-
ent mechanisms. For closely related receptors (e.g., isoforms), it
might also be possible to pool active compounds by mechanism
and study these sets in M-NSGs in order to search for structural
changes that might be responsible for similar mechanistic effects
across multiple receptors.
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Summary

This chapter outlines a computational methodology to systematically analyze

the mechanism of action information associated with ligand sets for target

receptors in addition to their molecular similarity and activity distribution.

Chemical similarity is accessed using molecular �ngerprint representation dur-

ing the generation of these network-based activity landscapes. This results in

a graphical organization of both SAR and mechanism-speci�c content underly-

ing various receptor ligand sets. Such combined views highlight ligand subsets

with mechanistic homogeneity and heterogeneity. Further exploration of these

heterogeneous compound clusters reveal chemical substitutions that introduce

mechanistic transitions. In addition, SAR trends present in compounds with a

given mechanism of action help to identify structural modi�cations that lead

to improvements in potency.

A second activity landscape representation that incorporates mechanism of ac-

tion information is introduced in the next chapter.
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Chapter 5

Mechanism-based bipartite

matching molecular series graphs

to identify structural modi�cations

of receptor ligands that lead to

mechanism hopping

Introduction

Identi�cation of chemical substitutions that improve or adversely a�ect com-

pound potencies help in deducing SAR rules necessary for compound optimiza-

tion. Computational techniques based on molecular �ngerprint representations

require close examination of the 2D structures to identify such modi�cations.

However, the matched molecular pair (MMP) paradigm helps to readily identify

those structural changes that are favorably associated with activity. MMPs are

formed by pairs of compounds that di�er only by a single substructure exchange

[1]. MMP-based similarity criterion has recently been applied in the design of

a novel graphical tool with the objective of illustrating substructure relation-

ships within compound data sets. This approach has been extended to account

for mechanism of action information to highlight those chemical replacements

that lead to mechanistic switches or mechanism hops with relative ease. Fur-
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ther, organization of substructures in a hierarchy aids in the identi�cation of

increasingly smaller substructure changes involved in mechanism hopping.

[1] Kenny P. W., Sadowski J. Structure modi�cation in chemical databases.

In Oprea T. I. (Ed.), Chemoinformatics in Drug Discovery, Wiley-VCH,

Weinheim, Germany, 2004, 271-285.
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The rationalization of structural features that distinguish between different mechanisms of action of

ligands active against a given receptor is of high importance in medicinal chemistry and drug design.

We have adapted a bipartite molecular network structure that organizes compound datasets on the

basis of substructure relationships to incorporate mechanism of action information. The resulting data

structure readily identifies subsets of ligands with different mechanisms of action that display well-

defined structural relationships. From the structural subset organization of the graph, structural

changes that lead to mechanism hopping (i.e., a transition from one mechanism of action to another)

can be directly selected, as demonstrated for different classes of receptor ligands. For medicinal

chemistry applications, the ability to immediately access structural modifications that distinguish

ligands having different mechanisms of action is a key aspect of the methodology introduced herein.

The knowledge of substituents in receptor ligands that trigger mechanistic changes can be utilized for

compound design.

Introduction

Compounds that are active against a given receptor often display

different mechanisms of action that ultimately lead to receptor

activation or inactivation.1–3 The mechanistic spectrum of

receptor ligands and the ensuing functional effects are often more

complex, and even more difficult to understand, than mecha-

nisms of enzyme inhibitors, which might sterically block access to

a catalytic site or act as transition state analogs,4,5 or mechanisms

of allosteric enzyme activators.6 In medicinal chemistry, under-

standing structural features that determine the mechanisms of

action of different types of receptor ligands represents a chal-

lenging task of central relevance.2,3 For receptor ligands, it is

often very difficult to discern the molecular basis of different

mechanistic and functional effects.2

Mechanism of action studies are typically carried out in the

context of compound structure–activity relationship (SAR)

analysis. In order to extract SAR information from large and

chemically diverse compound datasets, numerical SAR analysis

functions and molecular network representations have increas-

ingly been used.7–9 Similarly, network representations have also

been utilized to systematically account for ligand–target associ-

ations and explore the molecular basis of compound

pharmacology.10,11

In order to further refine SAR investigations of receptor

ligands, similarity-based compound networks might also be

annotated with mechanistic information. For this purpose,

network-like similarity graphs (NSGs)12 have recently been

employed. The NSG structure captures compounds as nodes that

are connected by edges if pair-wise compound similarity reaches

a pre-defined threshold level. Nodes and edges can be annotated

with additional information. Typically, nodes are color-coded by

compound potency to provide a basis for graphical SAR anal-

ysis.12 However, in order to incorporate mechanistic information

into these network representations, a molecular mechanism-

based color code for nodes has also been introduced in the design

of an NSG variant.13 In this case, subsets of structurally similar

compounds with different mechanisms of action can be identified

in the graph representation and selected from ligand datasets.

A general feature of all similarity-based compound networks

introduced until recently is that they rely on calculated whole-

molecule similarity,8 typically Tanimoto similarity14 of chosen

molecular representations (such as fingerprints). While the

calculation of Tanimoto similarity is usually appropriate for

chemoinformatics tasks including network analysis, its use is

often insufficient for medicinal chemistry applications. This is the

case because in medicinal chemistry, a major focus is the iden-

tification of regions in molecules and structural modifications

that determine observed SAR characteristics of a compound

series or a specific mechanism of action. These ‘‘local’’ and

pharmacophore-type analyses are difficult to carry out on the

basis of calculated whole-molecule similarity relationships and

typically require subsequent structural comparisons.8 For

example, if compounds share 75% global structural similarity,
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they still need to be individually compared in order to deduce

structural changes that might determine their SAR and/or

mechanistic features. This general shortcoming of whole-mole-

cule similarity assessment also affects mechanistic comparisons

on the basis of NSGs.13 In this case, similar ligands with different

mechanisms of action must be selected from the network repre-

sentation and their structures must subsequently be analyzed in

order to understand modifications that lead to mechanism

hopping. Importantly, the network representation itself does not

reveal such changes.

In order to address limitations in structural interpretability

associated with calculated whole-molecule similarity values,

a molecular network structure termed bipartite matching

molecular series graph (BMMSG) has recently been intro-

duced.15 In this case, calculated similarity values are replaced

with defined substructure relationships. This is facilitated by

systematically determining all possible substructure relationships

between dataset compounds utilizing the matched molecular pair

(MMP) formalism.16 AnMMP is defined as a pair of compounds

that only differ by the exchange of a single substructure (or, in

other words, by a single chemical transformation), for example,

a specific R-group or ring.

In BMMSGs, structural relationships between MMP

compounds are also indicated by edges, in analogy to calculated

pair-wise similarity values utilized for other network represen-

tations. Compared to conventional similarity-based networks,

a major advance provided by the BMMSG data structure is that

this network immediately reveals structural modifications that

distinguish compounds from each other. This enhanced chemical

interpretability is also the major attraction of the MMP-based

compound network for medicinal chemistry applications.

Because a major goal of mechanism of action studies in

medicinal chemistry is the identification of structural features of

active compounds that are responsible for a specific mechanism,

we introduce an extension of the BMMSG structure that incor-

porates mechanism of action information and makes it readily

possible to determine structural changes implicated in mecha-

nism hopping. Structural subset hierarchies derived from the

graph representation provide high-resolution views of structural

modifications of compound frameworks that lead to different

mechanisms of action in pairs of molecules and analog series.

Methods

Matched molecular pairs

For dataset compounds, MMPs were systematically generated

using an in-house implementation of the algorithm of Hussain

and Rea.17 Following this approach, single bonds that are not

part of a ring system are systematically deleted. The process

yields a table of fragment pairs. Fragments shared by molecule

pairs are termed keys while distinguishing substructures are

recorded as values for these keys. If one single bond is deleted

(‘‘single cut’’), a compound yields two fragments. Each of these

fragments is then once indexed as a key and the other as the

associated value. If two single bonds (‘‘double cut’’) or three

single bonds (‘‘triple cut’’) are deleted, a core fragment and two

or three substituents are produced, respectively. These substitu-

ents are collectively stored as the key and the core fragment as the

corresponding value. All MMPs are identified from the index by

searching for keys having more than one value. In our imple-

mentation, compound pairs only qualify as MMPs if values do

not contain more heavy atoms than keys. However, this restric-

tion is not an essential feature and can easily be omitted if

compounds with small core structures (e.g., a single ring) are

under investigation. Routines to generate and display MMPs

were implemented in Java using the OpenEye chemistry toolkit.18

Bipartite graph representation

The MMP table is utilized as a source for the generation of

a bipartite graph consisting of two types of nodes, i.e., key nodes

and molecule nodes.15 Keys are displayed if they are associated

with more than one value. A key node is connected through edges

to all nodes of molecules that contain this key fragment.

Accordingly, edges correspond to values and are graphically

associated with value fragments.

A matching molecular series (MMS) is defined as a series of

compounds that only differ by a single structural change at

a specific site. Accordingly, each key node represents an MMS,

which can overlap because a compound that differs at one site

from a subset of molecules might differ at another site from

another subset. All molecules of a series that are only connected

to a single key node can be represented as a ‘‘super node’’. It

displays the key node as a rectangle that contains all compound

nodes shown as individual squares. If a key describes a subset of

a series represented by another, it is omitted from the graph to

reduce visual complexity. However, subset relationships between

all keys are displayed in a separate subset hierarchy (as further

detailed in the Results and discussion section). Because the

BMMSG structure captures all possible MMS in a dataset, its

edges (values) comprehensively represent all substructural rela-

tionships between dataset compounds. In the original BMMSG

implementation, all molecule nodes were colored according to

compound potency to enable SAR analysis.15

Molecular mechanism-based BMMSG

In our receptor ligand analysis, four different mechanisms of

action were considered: (1) agonist (activates a receptor through

Table 1 Receptor ligand setsa

Target Class
Ligand
mechanism

No. of
compounds

Potency (Ki)

Min/mM Max/nM

Adenosine A1
receptor

AA1 Agonist 107 12 0.2
Partial agonist 54 5 2
Antagonist 52 66 0.4
Inverse agonist 94 1 0.3

Muscarinic
acetylcholine
receptor M1

AM1 Agonist 26 282 2.5
Partial agonist 49 29 0.3
Antagonist 73 30 0.1

Histamine
H3 receptor

H3R Agonist 44 11 0.3
Partial agonist 46 10 0.9
Antagonist 31 2 0.08
Inverse agonist 92 0.2 0.1

a For three receptor ligand datasets, the target name, class abbreviation,
mechanisms of action, compound numbers, and minimum and maximum
potency values are reported.
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binding to its primary ligand binding site), (2) partial agonist

(also competes with the physiological receptor ligand but does

not exhibit full activation potential), (3) antagonist (prevents

receptor activation by blocking the primary ligand binding site),

and (4) inverse agonist (stabilizes an inactive conformation of the

receptor and thus prevents activation).

In order to incorporate mechanism of action information into

BMMSG representations, we introduced a mechanism-based

node coloring scheme as previously suggested for NSGs.13 Nodes

representing agonists were colored blue, nodes representing

partial agonists green, antagonists red, and inverse agonists gray.

Furthermore, compound potency information was accounted for

by shading such that darker shades indicate increasing and

lighter shades decreasing potency values (with the degree of

shading scaled according to the overall potency range within

each subset of ligands having a specific mechanism). In contrast

to molecule nodes, all key nodes were colored white. These graph

representations were implemented using the Java package

JUNG.19 The graph layout was generated separately for each

subgraph (see Results and discussion) using a JUNG imple-

mentation of an algorithm to display self-organizing maps.

Datasets

Compounds active against three G protein coupled receptors

(GPCRs) with different mechanisms of action were assembled

from ChEMBL.20 Mechanistic annotations for these receptor

ligands were taken from the original publications. Molecules

were classified as agonists, partial agonists, antagonists, and

inverse agonists, provided the mechanism was uniquely defined.

In the case of multiple annotations, the following rules were

applied. If agonist and partial agonist activities were reported,

ligands were classified as partial agonists. If antagonist and

inverse agonist activities were reported, ligands were classified as

inverse agonists (because apparent antagonists are often found to

be inverse agonists3). To ensure consistency in the use of potency

measurements, only Ki values were considered as potency

annotations. For compounds with multiple Ki measurements,

the geometric mean was calculated. The composition of the

receptor ligand datasets is summarized in Table 1.

Results and discussion

Exemplary graph representation

In Fig. 1, the design elements of the mechanism-based BMMSG

(M-BMMSG) are illustrated. Fig. 1a shows a graphical repre-

sentation with all key nodes (white) and molecule nodes (with

mechanism-based coloring) for a model dataset. Each key node

Fig. 1 Prototypic graph. A schematic representation of the mechanism-

based BMMSG structure is shown. (a) The graph for an exemplary

dataset that contains all possible key nodes is displayed. These key nodes

(numbered 1–9) are colored white whereas all molecule nodes are colored

according to their mechanisms of action (agonists: blue, partial agonists:

green, antagonists: red, and inverse agonists: gray) and shaded according

to the compound potency. The structures of correspondingmolecules and

keys (shared fragments) are shown in black and gray, respectively.

Substituent positions in key fragments are indicated by asterisks. (b) The

reduced graph is shown after removal of key nodes involved in subset

relationships. Keys 1 and 4 are now represented as (single compound-

containing) super nodes. In addition, values associated with keys, i.e., the

structures of substituents, are displayed (in brown) next to the edges

representing them. (c) The hierarchical subset relationship between keys 1

and 9 is displayed. Here, all compounds associated with these keys are

contained in super nodes.
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represents the common substructure (core) of all molecule nodes

connected to it. In key nodes, attachment points for substituents

are labeled with asterisks (the minimal structural modification

distinguishing a key and a molecule is the hydrogen substituent).

The set of molecules attached to each key node represents an

MMS. The graph also illustrates that individual molecules might

belong to different series based on their substitution patterns.

Fig. 1b shows the M-BMMSG following removal of three key

nodes (2, 3, and 9) that are involved in subset relationships and

introduction of super nodes. This reduced graph is utilized as the

standard representation for the display of compound datasets.

The structures of substituents that distinguish keys and mole-

cules from each other are shown next to their edges. In Fig. 1c, an

exemplary subset hierarchy involving keys 1 and 9 is shown. Key

9 was removed from the graph because the series it represents is

a subset of the one represented by key 1. As further discussed in

the following, subset hierarchies are displayed in separate tree

structures that complement the M-BMMSG representation and

help to elucidate structural changes implicated in mechanism

hops.

Dataset representations

Fig. 2 shows the final (reduced) M-BMMSGs for the three

different receptor ligand sets we analyzed. The graphs of the

complete datasets consist of different disjoint subgraphs.

Compounds in each subgraph do not form substructure rela-

tionships with compounds in other subgraphs. The topology of

the three M-BMMSGs in Fig. 2 notably differs, which indicates

the presence of different structural relationships and different

degrees of structural diversity among the ligands in these sets.

The AA1 set in Fig. 2a consists of 307 ligands and its M-

BMMSG contains a large subgraph that predominantly consists

of agonists (blue) and partial agonists (green) with varying

potencies. In addition, there is a medium-sized subgraph con-

sisting of a region with many highly potent inverse agonists (dark

gray) and another region with agonists and partial agonists along

with a few antagonists. These regions are only connected through

a single edge and key node. The AA1 graph also contains three

small subgraphs that consist of highly or weakly potent antag-

onists (red) and six individual compound series, each represented

by a super node, which form no structural relationships to

others. Thus, overall there is a clear separation of compounds by

mechanism of action across these subgraphs, with many struc-

tural relationships formed between compounds sharing the same

mechanism. Similar observations are made for the M-BMMSG

of the AM1 set in Fig. 2b that is approximately half the size of the

AA1 set (148 compounds). However, in this case, six subgraphs

of comparable size are formed and 11 individual compound

series, thus indicating an overall higher degree of structural

diversity among these receptor ligands. Moreover, as further

discussed below, three of the six subgraphs consist of compounds

having three different mechanisms of action. In contrast to the

AM1 set, the M-BMMSG of the H3R set in Fig. 2c (with 213

compounds) consists of a major and in part densely connected

graph component and five individual series, thus indicating the

presence of many substructure relationships between these

ligands (corresponding to a higher degree of structural homo-

geneity than in the previous cases). In the major graph

Fig. 2 Mechanism-based BMMSGs. Shown are M-BMMSG represen-

tations for (a) AA1 (consisting of 11 separate subgraphs), (b) AM1

(17 subgraphs) and (c) H3R (6 subgraphs). Selected regions containing

ligands with multiple mechanisms of action are displayed on a gray

background. Compound nodes are colored according to Fig. 1 and white

nodes are key nodes. For clarity, selected key nodes are displayed as super

nodes.
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Fig. 3 Key subset relationships. Hierarchical subset relationships between keys are shown for the mechanism hopping regions highlighted in Fig. 2.

Super nodes representing keys associated with compounds having the same mechanism of action are shown in black. For the remaining super nodes, the

shared substructure (core) is displayed and molecule nodes are color-coded according to their mechanisms. Nodes containing mechanism hops are

numbered. (a) AA1, (b) AM1, and (c) H3R.
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component, there are regions predominantly populated with

antagonists. However, the most densely connected region in the

center of this large subgraph contains compounds with all four

mechanisms including many partial agonists.

Mechanism hopping regions

The clustering of structurally related compounds by mechanism

that is observed at varying degrees in M-BMMSGs in Fig. 2 is

a characteristic feature of these graphical representations.

However, it is not the only one; rather, all three M-BMMSGs

also contain subgraphs, or parts of subgraphs, that are composed

of structurally related yet mechanistically distinct ligands (indi-

cated by different node colors), which are easily identified

through visual inspection of the graph representations. These

regions are prime candidates for the exploration of mechanism

hops. In each of the three M-BMMSGs in Fig. 2, one exemplary

mechanism hopping region is highlighted. These regions are

further analyzed in the following.

Critical structural modifications

Mechanism hopping regions are explored in order to identify

structural modifications of ligands that lead to mechanistic

changes. In Tanimoto similarity-based graph representations

such as M-NSGs,13 mechanism hopping regions can also be

identified. However, compound subsets comprising such regions

must then be selected and separately analyzed. By contrast, for

the identification of critical structural modifications leading to

mechanism hops, the M-BMMSG structure with its intrinsic

subset hierarchy is ideally suited. In Fig. 3, the complete subset

hierarchies for the mechanism hopping regions highlighted in

Fig. 2 are displayed. These subset hierarchies contain all keys

that are relevant for mechanism hopping as super nodes

including those that are omitted from the final M-BMMSG

representations (but are a part of the underlying graph struc-

ture). Each super node within a hierarchy is associated with the

shared substructure and the molecules it contains are associated

with the distinguishing structural fragments (substituents). As

shown in Fig. 3, following the subset hierarchies from the top to

the bottom, super nodes are associated with key structures of

increasing size and continuously smaller ligand subsets. Impor-

tantly, within these compound subsets, there is increasing sepa-

ration of ligands by mechanism along the tree structure, as also

illustrated in Fig. 3. Nodes that exclusively contain compounds

sharing the same mechanism are colored black because they are

not relevant for mechanism hopping analysis. However, all other

super nodes within the hierarchy contain mechanism hops and

nodes at the bottom of the tree represent pairs of ligands with

individual mechanism hops. From these super nodes, substitu-

ents that lead to mechanistic changes can be directly selected, as

illustrated in Fig. 4. This figure shows the substituents of

compounds from all super nodes containing mechanism hops.

Each super node is associated with a key structure having

a defined substitution site (if the corresponding MMPs result

from a single cut; see Methods) or two or three sites (if the cor-

responding MMPs result from double or triple cuts, respectively,

and the resulting keys consist of two or three fragments). Hence,

in addition to conventional R-groups, central structural moieties

Fig. 4 Value fragments associated with mechanism hops. For super

nodes numbered according to Fig. 3, substituents are shown that lead to

mechanism hopping (and are color-coded accordingly). (a) AA1,

(b) AM1, and (c) H3R.
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can also be replaced in ligands with different mechanisms. This

spectrum of possible structural transformations is illustrated in

Fig. 4a showing substituents of the subset hierarchy of AA1

ligands according to Fig. 3a. For example, in node 1, all

substituents contain, with one exception, a conserved phenyl

moiety with a single R-group at the ring. The presence of

different substituents in the meta or para position at these phenyl

rings characterizes ligands with different mechanisms. In node 2

in Fig. 4a, substructures with two substitution sites are

exchanged (because the corresponding key consists of two frag-

ments; see Fig. 3a). Smaller ligand and corresponding substituent

sets at subsequent nodes reveal increasingly specific structural

modifications. For example, in node 5, hydrogen, methyl, fluoro,

secondary amino, or methoxy groups at the single substitution

site are characteristic of partial AA1 agonists, whereas di- or tri-

fluoro substituents are found in inverse agonists or antagonists.

At the bottom, substituent pairs in nodes 6 and 7 reveal that the

introduction of a fluorine at the single site of the largest key

structures (effectively yielding a tri-fluoro-ether or -methyl

group) converts AA1 antagonists within this series into inverse

agonists.

In Fig. 4b, substituent sets for the nodes of the AM1 hierarchy

in Fig. 3b also reveal well-defined replacements leading to

mechanistic changes. For example, in nodes 3 and 4, exchanges

of differently substituted pyrazine rings convert partial agonists

or agonists into antagonists. Moreover, the substituent pair in

node 6 (one of the terminal nodes of the hierarchy) reveals that

a change in the relative position of the pyrazine ring in this series

of compounds is sufficient to cause an agonist-to-antagonist

switch. Equivalent observations are also made for the H3R

substituent sets in Fig. 4c. For example, the substituent pair in

the terminal node 7 indicates that the introduction of a methyl

group (replacing a hydrogen) at the single substituent site of the

corresponding key structure is sufficient to convert a partial H3R

agonist into an antagonist. Thus, taken together, these findings

illustrate that subset hierarchies of mechanism hopping regions

in M-BMMSGs reveal structural modifications that cause

mechanism hops.

Mechanism hopping in analog series

These structural transformations can also be directly traced back

to the compounds fromwhich they originate.Accordingly, a series

of ligands with multiple mechanism hops can be selected fromM-

BMMSGs,which is particularly attractive formedicinal chemistry

applications. Fig. 5 shows examples of analog series taken from

mechanism hopping regions where substitutions at a single site

change the mechanism of action in different ways. In Fig. 5a,

a series of AA1 ligands is shown. Here, the presence of a hydroxyl

group at the para position of the phenyl moiety characterizes an

agonist. Replacement of this hydroxyl group with a methoxy

group leads to a partial agonist.However, the introduction of a di-

or tri-fluoro-methoxy group at this position converts the partial

agonist into an antagonist or inverse agonist, respectively. In the

series of AM1 ligands in Fig. 5b, changing the 1,2-substitution

pattern at the pyrazine ring to a 1,3-substitution pattern (i.e.,

facilitating a positional shift) leads to an elongated analog struc-

ture and converts the agonist and partial agonist into an antago-

nist. Finally, in the series of H3R ligands in Fig. 5c, extending the

linker length of the di-methyl-amine substituent transforms an

agonist into a partial agonist. However, replacing the di-methyl-

amine group in the agonist with an isopropyl- or isobutyl-amine

converts it into an antagonist or inverse agonist, respectively.

Thus, the hierarchical analysis of structural transformations that

occur in mechanism hopping regions identified in M-BMMSGs

also makes it possible to select a series of analogs with defined

structural modifications that lead to mechanistic changes.

Conclusions

Herein we have introduced a graphical method to study the

structural basis of mechanism hopping in sets of receptor ligands.

Fig. 5 Selected compounds. For each dataset, exemplary compounds

are shown that are distinguished by single chemical transformations and

have different mechanisms of action (indicated by the mechanism-based

color code). (a) AA1, (b) AM1, and (c) H3R.
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Central features of this approach include the ability to identify

local mechanism hopping regions in M-BMMSGs and directly

select structural modifications that are responsible for mecha-

nistic changes from corresponding key node subset hierarchies.

These subset hierarchies provide high-resolution views of

mechanism hops and underlying structural changes because

there often is an increasing separation of ligands by mechanism

along the tree structure. At each level of the tree, the corre-

sponding structural modifications are immediately accessible. In

practical applications, one initially generates an M-BMMSG

representation of an entire dataset and then selects mechanism

hopping regions, if available, for subset hierarchy display and the

identification of important structural modifications. Subset

hierarchies of mechanism hopping regions often describe series

of ligands with multiple mechanism hops. The M-BMMSG

representations of the original datasets then also offer the

opportunity to further analyze the neighborhood of such series

and their structural organization. Thus, the M-BMMSG

approach facilitates the analysis of mechanism hopping at

multiple levels.
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Summary

This chapter reports the modi�cation of an existing graphical landscape repre-

sentation that integrates systematic SAR information to include the mechanism

of action of receptor ligands. This data structure organizes compounds using

clearly de�ned substructure relationships that facilitates a smooth transition

from SAR and mechanistic explorations to the identi�cation of structural mod-

i�cations associated with mechanism hops. In addition, subset hierarchies allow

inspection of these chemical changes at various levels of resolution ranging from

analog series to compound pairs. Separation of ligands with respect to their

mechanism of action increases with increase in the hierarchical levels. Informa-

tion obtained after exploration of substitutions that bring about mechanistic

transitions can be utilized in various compound design and optimization appli-

cations.

A common feature of the approaches reported thus far is that these have

been designed to focus on compound activities against a single target. However,

methodologies that can be applied to compound sets with activities against mul-

tiple targets are also of interest, especially in the study of polypharmacology. A

novel multi-target graphical representation is reported in the following chapter.
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Chapter 6

Representation of multi-target

activity landscapes through target

pair-based compound encoding in

self-organizing maps

Introduction

Systematic SAR investigations are often performed using activity landscape

modeling as it provides a framework for the integration of structural similar-

ity relationships with potency information. Traditional SAR analyses focus

on compounds with activity annotations against individual targets. Attempts

have been made to design selectivity landscape representations to investigate

potency distributions for two targets. However, activity landscapes that con-

sistently account for pair-wise compound similarities and multi-target activities

are necessary to study polypharmacological compounds, i.e. compounds that

interact with di�erent targets. For this purpose, a novel multi-target activity

landscape has been introduced where the chemical similarities were projected

into 2D space using self-organizing maps (SOMs) [1]. Compounds with re-

ported activities against multiple targets were represented as arrays of cells

colored according to binned pairwise target potency di�erences. Using this

landscape model, it was possible to rationalize discontinuity in multi-target ac-
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tivity space. This multi-target landscape representation has successfully been

applied to ligand sets with activities against three to �ve targets.

[1] Kohonen T. Self-organizing maps, Springer, Heidelberg, Germany, 1996.
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Representation of Multi-Target Activity
Landscapes Through Target Pair-Based
Compound Encoding in Self-Organizing Maps
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Activity landscape representations provide access
to structure-activity relationships information in
compound data sets. In general, activity landscape
models integrate molecular similarity relation-
ships with biological activity data. Typically, activ-
ity against a single target is monitored. However,
for steadily increasing numbers of compounds,
activity against multiple targets is reported,
resulting in an opportunity, and often a need, to
explore multi-target structure-activity relation-
ships. It would be attractive to utilize activity
landscape representations to aid in this process,
but the design of activity landscapes for multiple
targets is a complicated task. Only recently has a
first multi-target landscape model been intro-
duced, consisting of an annotated compound net-
work focused on the systematic detection of
activity cliffs. Herein, we report a conceptually
different multi-target activity landscape design
that is based on a 2D projection of chemical refer-
ence space using self-organizing maps and
encodes compounds as arrays of pair-wise target
activity relationships. In this context, we intro-
duce the concept of discontinuity in multi-target
activity space. The well-ordered activity landscape
model highlights centers of discontinuity in activ-
ity space and is straightforward to interpret. It has
been applied to analyze compound data sets with
three, four, and five target annotations and iden-
tify multi-target structure-activity relationships
determinants in analog series.

Key words: activity landscapes, data mining, graphical representations,
multi-target SARs, self-organizing maps, structure-activity relationships

Received July 25, 2011, revised August 24, 2011, and accepted for pub-
lication August 27, 2011

Graphical representations of activity landscapes have become increas-
ingly popular for the qualitative analysis of structure-activity relation-
ships (SARs), identification of activity cliffs, characterization of local
SAR environments, and extraction of SAR information from large

compound data sets (1–3). In general, an activity landscape is best
rationalized as a hypersurface in chemical space that accounts for
the biological activity of a compound set. If one envisions a 2D (x, y-)
projection of chemical space in which distances between compounds
indicate molecular (dis-)similarity relationships, compound potency
can be added as the third (z-) dimension to this representation. Then,
a potency surface can be interpolated, giving rise to intuitive 3D
landscape representations (1,3) that are reminiscent of geographical
maps. Such 3D landscapes have often been discussed in idealized
form (3) but can also be approximated for actual compound data sets
(4). In addition to 3D activity landscapes, a variety of different 2D
landscape representations have been generated (3,5–7). In fact, the
first landscape views of compound data sets were 2D representa-
tions, beginning with the introduction of so-called structure-activity
similarity maps (7), for which a number of derivatives have been
reported (8,9). In addition to such graphs, which systematically
account for similarity and potency relationships on the basis of pair-
wise compound comparisons, annotated molecular network represen-
tations have become popular for 2D landscape design (5,6).

Regardless of their dimensionality or design characteristics, conven-
tional activity landscapes monitor the activity of compound data
sets against individual targets (3). However, with mounting evidence
of polypharmacological compound behavior and network pharmacol-
ogy (10–12), multi-target compound activity profiles are increasingly
considered in SAR analysis (13–15). Ideally, one would also like to
employ activity landscape models for the evaluation of multi-target
SARs. An extension of conventional activity landscape models has
been introduced where network-like similarity graphs, a molecular
network–based 2D landscape representation (5), have been trans-
formed into dual-target selectivity landscapes by considering
potency ratios instead of single-target potency values (16). On this
basis, the concept of selectivity cliffs has been introduced (16).
However, the design of activity landscape representations for three
or more targets has proven to be a difficult task. Recently, a first
design of a multi-target activity landscape (MTAL) has been intro-
duced (17), which captures compound potency relationships across
multiple targets in a formally consistent manner by introducing
numerical codes for multi-target activity profiles. These codes were
mapped onto compounds (nodes) in similarity-based compound data
set layouts where edges indicate the presence of single- or multi-
target activity cliffs formed by pairs of compounds (17).

We have continued to explore alternative ways to generate MTAL
models and present herein a conceptually different approach, which
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departs from molecular network representations. A neural network–
based projection of chemical reference space is utilized to provide a
similarity-based 2D organization of compounds with multiple target
annotations. Then, compounds are represented as arrays of pair-
wise target potency relationships, which add a new data structure
to the self-organizing map (SOM)-based structural organization. Ele-
ments of the arrays are color-coded according to the degree of activ-
ity discontinuity a compound displays. The resulting data structure is
straightforward to analyze and reveals multi-target SAR hotspots.

Methods and Materials

Data sets
Compound data sets with multiple target annotations were extracted
from ChEMBLa (18). Only potency measurements (Ki or, if not available,
IC50 values) with defined endpoints and designated maximum confi-
dence level were considered. Other less well-defined potency measures
such as '% inhibition' or reported ranges of Ki or IC50 values were not
considered because of their intrinsic accuracy limitations. Data sets with
reported activity against three, four, and five targets were obtained, as
summarized in Table 1. These sets include 342 adenosine receptor
antagonists with reported activity against three different adenosine
receptors (designated 3AR), 98 opioid-like receptor antagonists with
activity against three different opioid receptors and the nociceptin
receptor (4OR), and 53 inhibitors of five thrombin-related serine prote-
ases (5PR). In currently available public domain compound data, it is dif-
ficult to find significant numbers of compounds that share five or more
target annotations (17). Therefore, the compound sets studied herein
reflect the current spectrum of multi-target activity data.

Molecular representation
For all compounds, the stereochemistry-sensitive form of the
Extended Connectivity Fingerprint with bond diameter 4 (ECFP4)b

(19) was calculated as an input representation for compound classi-
fication. ECFP4 monitors layered atom environments in test com-
pounds and is generally considered a high-resolution fingerprint.

Chemical reference space projection
Pair-wise Tanimoto coefficient (Tc) values were calculated for all
compound fingerprints to constitute a low-complexity co-ordinate-
free reference space. A 2D projection of this chemical reference
space was obtained through the calculation of a SOM (20) using
the SONNIA programc (20). Self-organizing map is a neural network
method that facilitates dimension reduction in chemical space rep-
resentations and assigns compounds to neurons organized in a

plane. This 2D projection mirrors similarity relationships by cluster-
ing compounds such that similar ones are assigned to the same or
adjacent neurons. Hence, distance between compounds in a SOM
is a measure of (dis-)similarity (i.e., the shorter the distance
between compounds is, the more similar they are). Pair-wise Tc val-
ues were used as input for SOM calculation. The dimension for
neuron generation was set to the size of each data set. SONNIA
default parameters were applied to derive the neuron grid.

Multi-target activity landscape
The grid of neurons of each SOM was used as the template for
activity landscape design. Neurons to which compounds were
assigned were shown with black borders and 'empty' neurons with
gray borders. Compounds were represented as follows: (i) For each
compound, all possible pairs of targets were enumerated (i.e., for
activity against three targets 1, 2, and 3, three pairs 1_2, 1_3, and
2_3 were obtained). (ii) Each compound was represented by n
squares, each accounting for a target pair, drawn on a light blue
background (to distinguish different compounds from each other).
Each square was labeled with the corresponding target pair (e.g.,
1_2) (iii) For each pair, the logarithmic potency difference in the
compound was calculated. Potency differences were assigned to
five bins, and the squares were color-coded according to the magni-
tude of the difference: DpKi (or DIC50) < 1 (green), 1 £ DpKi < 2
(light green), 2 £ DpKi < 3 (yellow), 3 £ DpKi < 4 (orange), and
DpKi ‡ 4 (red). Thus, squares with smallest target pair-wise
potency differences within one order of magnitude were colored
green, and squares with largest potency differences in four or more
orders of magnitude were colored red. For interactive display and
navigation, the activity landscape design was implemented in Java.

Results and Discussion

The analysis of multi-target SARs generally is a complicated task.
Here, we present a model of a MTAL that is designed to provide
an intuitive access to local multi-target SAR components with a
particular focus on regions that are characterized by high disconti-
nuity in multi-target activity space. However, as shown in the fol-
lowing, regions of multi-target SAR continuity can also be identified
in these representations. In MTALs, regions of continuity correspond
to compounds having similar activity against each target. Hence,
such regions are less informative for the analysis of multi-target
SARs than regions of significant discontinuity. This is the case
because discontinuity is introduced by compounds that display dif-
ferential activity against multiple targets, and from such com-
pounds, SAR determinants might be deduced.

Table 1: Compound data sets
with multi-target activity

Class Activity Size
No of
targets Targets

3AR Adenosine receptor antagonists 342 3 Adenosine receptors A1, A2a, A3
4OR Opioid-like receptor antagonists 98 4 d-, j-, l-Opioid receptors, Nociceptin receptor
5PR Urokinase-type plasminogen

activator-like inhibitors
53 5 Thrombin, Plasminogen, Coagulation factor X,

Urokinase-type plasminogen activator, Matriptase

For the three data sets assembled from ChEMBL, the class abbreviation, activity, size, and target information are
provided.

Multi-Target Activity Landscape
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Methodological concept and design elements
The generation of activity landscape models principally requires the
integration of molecular similarity relationships and compound
potency information. For activity against individual targets (or at
most two targets), potency (selectivity) information can be directly
added to chemical space representations or systematically moni-
tored pair-wise compound similarity relationships. For activity
against three or more targets, other approaches are required. For
MTAL design, the chemical space ⁄ similarity relationship display is
analogous to single-target landscapes (i.e., compound similarity
relationships are independent of the number of target annotations).
By contrast, a key question is how to best represent compounds in
multi-target activity space. For the MTAL model reported herein, we
utilize a SOM-based 2D projection of a co-ordinate-free fingerprint
space. By computing SOMs, structurally similar compounds are
assigned to the same or neighboring neurons resulting in a cluster-
ing effect. It should be stressed that the SOM projection provides
the initial well-ordered structural reference frame for compound
representation. However, to represent a MTAL, a new data struc-
ture must be added to it. Hence, to account for multi-target activity,
each compound is represented as an array of pair-wise target com-
binations. Each element (square) of the array is then color-coded
according to the potency difference in the compound against the
two targets. This design strategy is illustrated in Figure 1. To repre-
sent potency differences in a consistent manner throughout the
activity landscape, logarithmic potency differences are assigned to
five bins. The elements are then color-coded according to the mag-
nitude of the potency difference in a compound against a target
pair, from green (potency difference within an order of magnitude)
over light green (one to two orders of magnitude), yellow (two to
three), and orange (three to four) to red (potency difference in more
than four orders of magnitude). As illustrated in Figure 1, this com-
pound representation scheme produces color patterns that reflect
differential potency against pairs of targets. In Figure 2A, B, we
represent an MTAL model of a largely discontinuous and continuous
SAR region, respectively. The region of discontinuity in Figure 2A is
characterized by the dominance of mixed color patterns, as dis-
cussed in more detail later. Here, it should be noted that the cells
in our MTAL model do not convey information about potency direc-
tionality (i.e., against which target a compound is highly or weakly
potent) because pair-wise potency differences are not directional.
However, this information is relevant for the subsequent analysis of
strongly discontinuous regions. Therefore, once a discontinuous

region of interest has been identified in an MTAL representation,
the compound subset forming this region can be displayed together
with directional potency differences, as suggested previously for
the analysis of multi-target activity cliffs (21). In contrast to discon-
tinuous regions, the region of continuity in Figure 2B is mostly col-
ored in green, reflecting small pair-wise target potency differences.
Green regions in MTALs are characteristic of multi-target SAR conti-
nuity. To further differentiate between small potency differences
resulting from either high or low compound potencies in regions of
SAR continuity, the color code can be modified, as illustrated in Fig-
ure 2C. For this purpose, absolute potency values are divided into a
high (pKi ⁄ IC50 > 8), intermediate (pKi ⁄ IC50 between 8 and 6), and
low (pKi ⁄ IC50 < 6) potency category. Cells representing differences
between high, intermediate, and low values are then color-coded in
dark blue, blue, and light blue, respectively, which replaces the
standard green coloring of cells corresponding to low-potency differ-
ences within an order of magnitude. For cells representing potency
differences within two orders of magnitude, the standard green col-
oring scheme still applies, as also illustrated in Figure 2C. However,
in our analysis, we predominantly focus on the regions of multi-tar-
get SAR discontinuity, as rationalized earlier. Accordingly, the fur-
ther refined color-coding scheme for continuous MTAL regions is
not applied in the examples discussed in the following to limit the
complexity of the activity landscape representations.

Interpretation of MTAL patterns
Figure 3A shows the complete MTAL representation for the 4OR
data set. The figure illustrates the well-ordered structure of the
neuron grid and the compound clustering effect. The grid layout
provides an easy access to compound information. The 4OR MTAL
reveals different color patterns and a separation of predominantly
green compounds from compounds with mixed color patterns. If
arrays are colored green, the corresponding compounds display sim-
ilar potency against multiple targets and hence no apparent selec-
tivity. By contrast, yellow-to-red squares reflect 100- to more than
10 000-fold potency differences against target pairs. As can be
seen in Figure 3A, there are no antagonists that consistently display
large potency differences against all pairs of targets. Rather, orange
and ⁄ or red squares usually occur in combination with green
squares. This means that a compound displays comparable potency
against two or more targets and significantly different potency
against at least one or more others. Therefore, such mixed color

A B C

Figure 1: Multi-target activity landscape (MTAL) design. (A) A schematic self-organizing map-based MTAL consisting of only four neurons
is shown. From the top left in clockwise direction, the neurons contain four, two (encircled), three, and no compounds (with three hypothetical
activity annotations). The target pair array representing each compound is depicted on a light blue background. Neurons containing com-
pounds are shown with black borders and empty neurons with gray borders. (B) The neuron containing two compounds encircled in (A) is
enlarged (one of the compounds is encircled). Squares are color-coded by binned potency differences and labeled with the corresponding
target pairs. (C) The compound encircled in (B) is shown in a close-up view.
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Figure 2: Exemplary regions of
multi-target structure-activity rela-
tionships (SAR) discontinuity and
continuity. For an exemplary
compound data set with activity
against three targets, enlarged
multi-target activity landscape
views of a highly (A) discontinuous
and (B) continuous SAR region are
shown. In (C), a variant of the
standard representation of the con-
tinuous region in (B) is shown with
modified color code to further dif-
ferentiate between small potency
differences resulting from different
levels of compound potency, as
explained in the text.
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patterns indicate that a compound introduces a high level of discon-
tinuity in multi-target activity space.

Extracting SAR information
What type of SAR information can be obtained from the SOM-based
MTAL? A major focal point of activity landscape analysis usually is
the identification of prominent activity cliffs in the regions of high
local SAR discontinuity (1,3). The multi-target landscape concept pre-
viously introduced by Dimova et al. (17) specifically aimed at a com-
prehensive account of single- and multi-target activity cliffs in
compound data sets. A multi-target activity cliff is formed by a pair
of structurally similar compounds that show significantly different
potency against two or more targets. In SAR analysis, one would
then compare the structures of these compounds to identify the mod-
ification(s) that are responsible for cliff formation. Activity cliffs can
also be identified in the newly introduced MTAL design by comparing
the colors of corresponding squares in similar compounds. For exam-
ple, the '2_3' squares of the two adjacent compounds in Figure 1B
form a yellow ⁄ green combination. Accordingly, one compound has
comparable potency against the target pair and the other a 100- to
1000-fold difference in potency. Thus, this compound pair forms an
activity cliff. Upon close inspection, a number of such examples
become apparent in the landscape view in Figure 3A. However, the
detection of activity cliffs is not the primary focal point of our new
MTAL method. Rather, its major purpose is the identification of com-
pound subsets (or individual compounds) that are responsible for the
introduction of significant discontinuity in multi-target activity space.
For example, understanding the basis of such discontinuity is of criti-
cal importance for exploring the design of target-selective com-
pounds. In our landscape views, such regions are indicated by mixed
color patterns, as illustrated in Figure 1, and become immediately
apparent. In Figure 3A, a discontinuous region ⁄ compound subset
consisting of three adjacent neurons is marked. The rationale for
focusing on such regions is as follows: by comparing similar mole-
cules that do or do not introduce discontinuity in multi-target activity
space, substitution sites can be identified that substantially influence
or determine multi-target SARs, as further discussed later.

Opioid-like receptor antagonists
In Figure 3B, the discontinuous three-neuron region outlined in Fig-
ure 3A is depicted, revealing a systematic mixed pattern. The com-
pounds in this region show pronounced potency differences against
targets 2 and 4 and very similar potency against targets 1 and 3
and, in part, 1 and 4. Furthermore, significant differences are
observed in the behavior of compounds against targets 3 and 4. In
Figure 3C, the nine compounds comprising this region are shown
(with neuron grid indices defining their origin and position). As can
be seen, these compounds form an analog series. In all cases stud-
ied here, we have observed that compounds mapping to the same

or neighboring neurons were structurally very similar, often series
of analogs, which assigns confidence to the SOM-based structural
classification underlying the MTAL design. The comparison of the
analogs in Figure 3C reveals the presence of two substitution sites
at adjacent phenyl moieties (highlighted in Figure 3C) where differ-
ent R-groups are responsible for the introduction of discontinuity in
multi-target activity space. Thus, substitutions at these sites play a
major role in determining multi-receptor SARs on the basis of cur-
rently available compound data and can be further explored.

Adenosine receptor antagonists
In Figure S1, the complete MTAL of the large adenosine receptor
antagonist data set is shown. In this case, distinct clustering of pat-
terns is also observed and the landscape representation identifies
several centers of marked discontinuity. One of these centers is out-
lined in Figure S1 and shown in detail in Figure 4A. Here, system-
atic trends can also be identified. The potencies of all 10
compounds comprising this center of discontinuity are very similar
against two of three receptors ('1_2'), but greatly differ against
receptor 3. It follows that this region does not contain notable
activity cliffs because the compounds display very similar potency
patterns. However, in this case, the obvious discontinuity in activity
space directly points at compound selectivity determinants. As
shown in Figure 4B, these compounds also form an analog series
and are only distinguished by R-groups at a single site of a phenyl
moiety (in one instance, the phenyl ring is replaced with a pyridine).
These substitutions differentiate one adenosine receptor subtype
from two others, leading to potency changes of two to more than
four orders of magnitude.

Serine protease inhibitors
In Figure S2, the complete MTAL of the inhibitor set with activity
against five related serine proteases is displayed. In this smaller data
set, many compounds have similar (green) potency patterns. Two
regions are outlined, region 1 with little apparent discontinuity and
region 2 the most discontinuous region in this set. Region 1 is
formed by four compounds mapping to a single neuron and shown in
Figure 5A. Region 2 includes three neighboring neurons with a total
of nine compounds (Figure 5B). These two regions contain two simi-
lar yet distinct series of analogs, shown in Figure 5C, D, respectively.
The analogs in Figure 5C are distinguished by bioisosteric replace-
ments at a single site, consistent with the presence of only low to
moderate discontinuity in the activity landscape. By contrast, the
analog series in Figure 5D is characterized by substitutions at two
sites including bioisosteric replacements in para-position at the
piperidine ring and less conservative substitutions at the sulfonamide
group. In this case, large changes in potency profiles are observed,
leading to the formation of activity cliffs and the introduction of sub-
stantial discontinuity in multi-target activity space (Figure 5B).

Figure 3: Multi-target activity landscape of the 4OR data set. (A) The complete activity landscape representation of 4OR is shown. Here,
each compound is active against four targets and hence represented as an array of six target pair potency differences. A region with neurons
representing a high level of multi-target structure-activity relationships discontinuity is outlined in red. (B) The three adjacent neurons outlined
in (A) are shown. (C) The nine compounds assigned to these three neurons are shown, which represent a series of analogs. Structural modifi-
cations at specific substitution sites are highlighted in gray. Compounds are labeled with their source neurons referring to the respective neu-
ron position in the grid representation of the complete activity landscape (e.g., [1 0 1]).
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Conclusions

Herein, we have reported the design of a SOM-based MTAL model that
is, different from other activity landscape representations, primarily
focused on the identification of discontinuity in multi-target activity
space. For this purpose, the target pair potency-based compound repre-

sentation introduced herein is a key design element. From compound
subsets forming regions of high discontinuity, substitution sites and R-
group patterns can be deduced that substantially influence multi-target
SARs. Different compound data sets with three to five target annota-
tions have been analyzed to illustrate the design and analysis princi-
ples. The concept of discontinuity in multi-target activity that is

A

B

Figure 4: Subset of the activity
landscape of 3AR. (A) Neurons
forming a region of high disconti-
nuity are shown that is outlined in
red in Figure S1. (B) Compounds
forming this region are shown. The
representation is according to
Figure 3C.
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Figure 5: Subsets of the activity landscape of 5PR. (A) Neurons forming a region of low discontinuity (region 1 in Figure S2) are shown.
(B) Another highly discontinuous region is shown (region 2 in Figure S2). (C) Compounds forming region 1 in (A) are shown. (D) Compounds
forming region 2 in (B) are shown. The representation is according to Figure 3C.
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embedded in the MTAL design is distinct from, yet complementary to,
the study of SAR discontinuity in activity landscapes, which is associ-
ated with the presence of activity cliffs. As we have demonstrated, the
presence of discontinuity in activity space might or might not correlate
with the presence of activity cliffs. Among other aspects, the analysis
of discontinuity in multi-target activity space is often critical for rational-
izing compound selectivity. The newly introduced MTAL model is only
the second representation of multi-target landscapes reported thus far
and conceptually unique. As such, the MTAL design reported herein fur-
ther extends the spectrum of available activity landscape representa-
tions and the knowledge that can be derived from them.
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Summary

A new multi-target activity landscape representation has been reported in this

chapter. Pair-wise similarities obtained from molecular �ngerprints for data set

compounds were projected into 2D space with the help of SOMs. Thus, the

compounds were organized into a grid-like landscape. Individual compounds

were displayed as arrays of pair-wise target activity relationships over all the

targets. Such an arrayed arrangement of compounds was suitable for the identi-

�cation of multi-target discontinuous regions. Inspection of ligand subsets that

formed these centers of discontinuity provides important insights into substruc-

tural changes responsible for di�erential activity in multi-target activity space.

It should also be noted that multi-target discontinuity is di�erent from SAR

discontinuity in single-target activity landscapes.

The landscape model described herein provides a unique perspective for study-

ing SAR in multi-target activity space. Nevertheless, such models cannot be

generated for ligands with incomplete activity annotations. In addition, in-

terpretation of these landscapes with increasing numbers of targets becomes

di�cult. These limitations have been addressed in a second multi-target land-

scape representation reported in the following chapter.
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Chapter 7

Navigating high-dimensional

activity landscapes: design and

application of ligand-target

di�erentiation map

Introduction

Compound pro�ling experiments serve as fundamental sources of potency in-

formation in the �eld of chemical biology and medicinal chemistry where com-

pound libraries are simultaneously tested against several biological targets [1].

G protein coupled receptors and protein kinases are considered important drug

targets due to their involvement in many physiological and biochemical pro-

cesses [2, 3]. Therefore, pro�ling approaches often involve members of these

therapeutically relevant protein families [4, 5]. Compound sets evaluated during

pro�ling analyses can either show structural diversity or be chemically homoge-

neous. Moreover, the panels of selected targets often constitute representative

members of the chosen target family. The outcome of these studies consists of

a data matrix that contains multiple activity annotations for individual com-

pounds.

Rationalization of these multi-dimensional bioactivity spaces and their ex-

ploration can be challenging. Nevertheless, such activity spaces provide a wide
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variety of information regarding the compound activity pro�les and ligand-

target interaction patterns. The knowledge obtained from these analyses can

often be utilized for the identi�cation of molecular probes that di�erentiate be-

tween related members of a target family [6] as well as in compound design and

optimization processes [5].

The activity landscape concept is often utilized for generating SAR mod-

els that combine pairwise similarity and potency di�erence distribution within

compound data sets [7]. These landscape representations aid in SAR analysis

as they are interpretable and intuitive in nature. However, these landscapes

primarily focus on compound sets with activity against single targets. Molecu-

lar network-based activity landscape models for two [8] or more targets [9] have

been recently introduced to assess the degree of selectivity within active ligands

or the ability to form multi-target activity cli�s.

In addition to the originally reported network-based multi-target activity

landscape representation, chemical similarity and activity di�erence maps gen-

erated using compound activity versus structural similarity plots [10] and mod-

els based on SOMs described in the previous section [11] have recently been

reported. Nevertheless, these multi-target landscape representations account

for activity data derived from limited number of targets (i.e. up to �ve) in

an interpretable manner. Formalisms based on the activity landscape concept

that describe actual high-dimensional activity spaces involving over 50 or more

targets have yet to be introduced.

Availability of compound pro�ling data in the public domain is a limitation

for the design of such multi-dimensional activity landscapes. Large scale pro�l-

ing experiments are usually carried out by pharmaceutical companies for many

therapeutically implicated targets, but the results are considered proprietary.

However, a pro�ling study from Abbott Laboratories has recently been made

public [12]. With the help of the resulting data set, design of a high-dimensional

activity landscape representation has been attempted. This study has been pub-

lished in reference [13] of this chapter. My contributions to the study reported

herein have been to aid in the design of the novel multi-dimensional activity

landscape representation and its implementation [13].
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Methodology

Data Set

Metz et al. analyzed 3858 compounds against 172 diverse kinases spanning the

kinome with the objectives of generating a kinase interaction map and analyzing

various polypharmacological patterns [12]. A part of these results containing

the chemical structures and bioactivity information for 1496 compounds was

reported publicly. From this inhibitor set, 1473 compounds with unique 2D

molecular representations [14] were retained.

Activity information for these 1473 compounds against all the 172 kinases

was available in the form of negative logarithms of inhibitory constant endpoints

or thresholds values. The activity matrix for these compounds was incomplete,

i.e. of 172 kinases, pKi values for one to 122 targets were available for these

compounds. The maximum overlap between the activity pro�les of individual

compounds was detected for 101 kinases. The incomplete yet multi-dimensional

nature and several instances of partial overlaps among compound activity pro-

�les were the challenging aspects that needed to be addressed during the activity

landscape design. In this case, a di�erence of one order of magnitude between

pKi values was set as the activity threshold.

Assessment of Chemical Similarity

Incorporation of pairwise structural similarity among the constituent com-

pounds within a ligand data set is a fundamental requirement for the generation

of activity landscape representations. During the analysis, two conceptually

di�erent approaches were utilized to evaluate chemical similarities between the

data set compounds. MACCS structural keys [15], a molecular �ngerprint rep-

resentation was used to calculate pairwise whole molecule similarities using the

Tanimoto coe�cient (Tc) [16] as the similarity measure. Compound pairs with

a Tc value of at least 0.8 were considered to be structurally similar. Addition-

ally, MMP analysis was applied to assess direct substructural changes within

compounds [17]. Thus, all compound pairs forming MMPs, i.e. di�ering by

single site chemical modi�cations, were identi�ed.
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Motivation for Novel Design

Activity landscape representations combine the information originating from

systematic pairwise structural similarities and potency di�erences within lig-

and sets. Thus, in addition to assessing single and multi-target SAR relevant

features, a high-dimensional activity landscape model must provide complete

coverage of activity data as well as handle its sparseness.

Initial attempts were made to assess activity similarity using nonbinary Tc

(nbTc) [18] for all compound pairs. The nbTc value was calculated using the

activity data for all targets shared by a given compound pair (A,B) as:

nbTc(A,B) =

n∑
i=0

potiA ∗ potiB
n∑

i=0

[(potiA)2 + (potiB)2 − potiA ∗ potiB]

where nbTc denotes the activity similarity value while potiA and potiB rep-

resent the potencies of the ith shared target for compounds A, B, respectively.

Systematic pairwise comparison of activity similarities within the data set re-

vealed that a single nbTc value corresponded to a range of overlapping targets

while a given number of shared targets was associated with several nbTc val-

ues. Examination of nbTc distribution for shared targets with more than one

order of magnitude potency di�erence showed that high similarity values were

obtained by small number of shared targets exceeding the ten fold activity dif-

ference and low activity similarity was observed when the number of shared

targets with signi�cant activity di�erences was high. These observations were

consistent with the expectation associated with a similarity measure. However,

several instances were also observed when high nbTc values were obtained from

large number of shared targets with potency di�erences greater than one order

of magnitude and low nbTc values were produced by small number of overlap-

ping targets with more than ten fold activity di�erence. The high-dimensional

activity landscape design also needed to address this ambiguity observed with

respect to the calculated activity similarities.
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Ligand-Target Di�erentiation Map

A novel activity landscape representation, the ligand-target di�erentiation (LTD)

map, has been designed keeping in mind the aforementioned objectives. The

core elements of LTD map are compound pairs and these are analyzed from

three perspectives [13]. Firstly, numbers of compound pairs with varying de-

grees of target overlaps are reported. As a second aspect, the numbers of com-

pound pairs within the �rst subset having more than ten fold activity di�erences

for the overlapping targets are analyzed. Structurally similar compound pairs

within the �rst two subsets comprise the third layer of information. The LTD

map and its various design elements are reported in [13].

A grid representation forms the framework of the LTD map. Bivariate data

containing the numbers of overlapping targets and those with potency di�erence

over one order of magnitude are plotted along x- and y- axes, respectively.

These values are binned to produce unit cells with a constant dimension of

�ve by �ve. Therefore, these squared unit cells account for the entire range of

possible pairwise target and target activity di�erence relationships underlying

the data set. Compound pair frequencies present within the cell bounds are

calculated and a color spectrum from light pink over magenta to black is applied

to assess the magnitude of their occurrence. Thus, black colored cells contain

one compound pair while those with increasing numbers are shown in various

shades of magenta and the cell containing the largest number of pairs is depicted

in lightest pink color. Absence of any compound pairs within respective data

intervals produce �empty� cells [13].

Structural similarity information has been added using inlays. The fre-

quency of compound pairs participating in structural relationships is monitored

by an inverse color spectrum from light(est) blue over dark blue to black. Thus,

lighter shades of blue correspond to smaller number of chemically related com-

pound pairs and darker blue shades indicate larger frequencies while the black

cell contains the highest number of compound pairs. For the Abbott data set,

LTD maps were generated for two complementary similarity assessment ap-

proaches, MACCS Tc and MMP, respectively, and shown in Figure 1a and

1b. The LTD maps were implemented in R environment [19].
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Figure 1: LTD map for kinase inhibitor data set. Two LTD maps for the data set con-
sisting of 1473 kinase inhibitors using alternate structural similarity assessment approaches
are shown. Whole molecular similarity relationships determined using MACCS Tc are illus-
trated in (a) while substructure based relationships obtained using MMP analysis are depicted
in (b). Compound pairs participating in MMP formation share a common core structure.
(taken from Iyer et. al[13])

Results

As shown in Figure 1, information associated with high-dimensional activity

space can be readily viewed using the LTD map [13]. For the kinase inhibitor
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data set with activity annotations against 172 kinases, the maximum target

overlap between individual compound pairs was found to be 101 kinases and

for 69 kinases, the potency di�erence was greater than one order of magnitude.

Majority of the compound pairs were found to lie within the data intervals of

0 to ∼20 shared targets and 0 to ∼10 shared targets with qualifying activity

di�erences, as portrayed by cell colors. Furthermore, it was also observed that

the number of compound pairs showed a sharp decline with rise in the inter-

val of shared targets and shared targets with signi�cant potency di�erences.

Cells comprising the leftmost (pseudo-diagonal) region consisted of compound

pairs for which almost all the targets showed signi�cant di�erences in activ-

ity while cells spanning the bottom rows displayed small activity variations.

Additional information regarding the pairwise similarity relationships with re-

spect to MACCS Tc and substructure equivalences determined by MMP, was

obtained by the examination of the inlays in Figure 1a and 1b, respectively. It

was noted that such similarity relationships were prevalent within compounds

having low target overlap. Moreover, chemically similar compound pairs with

up to ∼50 shared targets and ∼10 shared targets with potency di�erences above
the activity threshold were also relatively frequent. Closely related compounds

with similar potency against all kinase targets were found in the cells forming

lower rows of the LTD map. Di�erent from these pairs, compound pairs that

were structurally similar but showed signi�cant deviation in activity against

nearly all the shared targets were associated with the diagonally situated cells.

The cells located in the upper right rows consisted of structurally unrelated

compound pairs as inlays were rarely observed. Thus, structural similarity and

activity distributions in multi-dimensional activity space could be navigated

with the help of the LTD map [13].
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Summary

The ligand-target di�erentiation map, a novel data structure has been intro-

duced that integrates high-dimensional activity data with chemical similar-

ity relationships present between various compounds in a systematic manner.

Thus, the LTD map constitutes a multi-dimensional graphical activity land-

scape model providing access to multi-target SAR information content. Lim-

ited public availability of pro�ling results has been an important challenge faced

during the design of high-dimensional landscape representations. Recently, a

kinase inhibitor data set containing over 1400 compounds evaluated against

172 kinases was made publicly accessible. Subsequent analysis made possible

by this data set led to the design of the LTD map. The scaling down of the

complexity associated with incomplete multi-dimensional activity information

serves as the key element of the computational methodology described in this

analysis. This simpli�cation has been achieved by systematically determining

pairwise di�erences between overlapping targets. Further, bivariate binning

of the numbers of shared targets and shared targets with signi�cant activity

di�erences to form unit cells of constant size has been carried out for the pur-

pose of visualization. Addition of pairwise chemical similarities completes the

landscape view that facilitated navigation of various multi-target SAR relevant

regions. The relative ease of generation and �exibility in application to lower

dimensional activity spaces make LTD map an invaluable tool to carry out

multi-target SAR analysis.

The study reported herein has been published in reference [13] of this chap-

ter. My contributions to this study have been to aid in the design of the LTD

map and its implementation [13].
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In the following chapter, analysis performed using the data obtained from

a second pro�ling experiment has been reported.
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Chapter 8

Assessing the target di�erentiation

potential of imidazole-based

protein kinase inhibitors

Introduction

Compound pro�ling experiments to evaluate ligand sets against a panel of

protein targets are frequently performed for comprehensive characterization of

ligand-target interactions. Such studies are prominent sources of multi-target

activity information and provide valuable insights during SAR and selectivity

analyses. Systematic exploration of activity data obtained from a pro�ling ex-

periment consisting of 484 imidazole-based inhibitors tested against 24 di�erent

kinases was carried out to identify compounds with high di�erentiation poten-

tial. The di�erentiation potential served as a measure to evaluate the ability of

these inhibitors to distinguish between the various kinases.
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ABSTRACT: A library of 484 imidazole-based candidate inhibitors was tested against 24 protein kinases. The resulting activity
data have been systematically analyzed to search for compounds that effectively differentiate between kinases. Six imidazole
derivatives with high kinase differentiation potential were identified. Nearest neighbor analysis revealed the presence of close
analogues with varying differentiation potential. Small structural modifications of active compounds were found to shift their
inhibitory profiles toward kinases with different functions.

■ INTRODUCTION

Profiling of compound collections against target families is an
important source of activity data for chemical biology and drug
discovery.1 Profiling has become a popular approach to
characterize ligand-based relationships between targets2 and
identify new active compounds, especially for high-profile
therapeutic targets such as G protein coupled receptors3,4 or
protein kinases.5,6 Target profiling experiments are frequently
carried out in pharmaceutical research environments, but these
proprietary results are rarely disclosed, with occasional
exceptions.7,8 Exemplary profiling studies have substantially
advanced our understanding of structure−activity relationships
(SARs) and selectivity patterns within important target families.
For example, profiling of kinase inhibitors against different
subfamilies of the kinome revealed unexpected cross-reactivity
of many kinase inhibitors,7 hence providing insights into
polypharmacological behavior of clinically relevant inhibitors.
In addition, molecular network analysis has been applied to
analyze kinase profiling data and rationalize activity patterns.8

On the basis of kinase profiling data,8 matched molecular pair
analysis has also been carried out to propose inhibitors with
increased kinase selectivity.9 However, kinase profiling is a
laborious and expensive part of medicinal chemistry programs,
as it requires large assay efforts and high costs. Consequently, in
silico support or guidance in study design and data analysis,
even if approximate, should be of considerable help for the
community. Several computational studies have analyzed
available kinase activity data. For example, machine learning
models have been derived to search for kinase inhibitors on a
large scale10 or process profiling data and predict cross-
reactivity of kinase inhibitors.11

Herein, we report a kinase profiling experiment using a
library of imidazole-based adenosine triphosphate (ATP) site-
directed kinase inhibitors. Different from previous investiga-

tions, much emphasis has been put on the exploration of kinase
differentiation potential of candidate inhibitors. The concept of
kinase differentiation potential is distinct from kinase selectivity
of inhibitors. Compounds with differentiation potential must
display significantly varying potency levels against multiple
kinases.

■ METHODS AND MATERIALS
Kinases, Inhibitors, and Profiling Assays. A set of 484

pyridinylimidazole based inhibitors with general structure I (Scheme
1) were tested for kinase inhibition using 24 different kinases (AKT1,

ARK5, Aurora-A, Aurora-B, BRAF VE, CDK2/CycA, CDK4/CycD1,
COT, AXL, EGF-R, EPHB4, ERBB2, FAK, IGF1-R, SRC, VEGF-R2,
CK2-α1, JNK3, MET, p38-α, PDGFR-β, PLK1, SAK, TIE2). These
kinases were selected because they are implicated in different forms of
cancer. The 484 different derivates were synthesized and characterized
(including their purity) as described previously.12−17 Kinase activity
data were generated with the ProQinase free choice biochemical kinase
assay system. Activities were determined as residual activities (% of
control).18

Initially, compounds were screened at a single concentration of 10
μM. Subsequently, titration curves were generated for clearly active
compounds. Then the coefficient of variation (CV) between the initial
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screen and subsequent assays was determined for each kinase. The
average CV was only 7.7% (for only 3 of 24 kinases, values of 10−12%
were obtained), thus indicating that activity data for the initial single-
point experiments were reliable.
Analysis of Kinase Differentiation Potential. Residual activities

for single-point measurements were logarithmically transformed into a
numerically stable data format for subsequent analysis, as illustrated in
Figure 1. According to this transformation, a logarithmic value of 2

indicates (nearly) full inhibition and a value of 0 no inhibition. On the
basis of these transformed activity values, a raw target differentiation
potential score was calculated as follows (see also Figure 1):

∑= | − |
≤ ≤
>

T Traw ra log ra log
i j

j i

i jdiffPot(A)
1 , 24

Here, the logarithmic terms refer to the transformed activity of a
compound to targets Ti and Tj, respectively. For each compound, all
possible target pairs were formed and activity differences were
summed. Thus, according to this formalism, compounds have high
differentiation potential if they display large activity differences against
many target pairs. Raw scores were then transformed into standard Z-
scores and normalized through mapping onto a cumulative
distribution function assuming a normal distribution, yielding final
scores between 0 (lowest differentiation potential) and 1 (highest
potential). This scoring scheme represents a further refined and
generalized version of a binned cumulative differentiation score
previously used to characterize ligands of different target families.19

Nearest Neighbor Analysis. For selected active compounds,
nearest structural neighbors were identified on the basis of systematic
pairwise comparisons. For this purpose, Tanimoto similarity20 was
calculated using MACCS structural keys21 as a molecular representa-
tion. As a nearest neighbor criterion, a threshold value of more than
80% MACCS Tanimoto similarity was applied.
Activity Profiles. For preferred inhibitors and their nearest

neighbors, activity profiles were generated using the activity-based
color code shown in Figure 1. In these profiles, each bin corresponds
to the activity against a specific kinase.

■ RESULTS AND DISCUSSION
Kinase Inhibitor Data. The complete matrix reporting

activities for all 484 compounds against the 24 kinases is
provided in Table S1 of the Supporting Information. All
residual activities were transformed into a logarithmic format
(as described above) and subjected to computational analysis.

Compound Differentiation Potential. Figure 2 shows
the distribution of normalized Z-scores for all test compounds.

The score distribution directly reflects the kinase differentiation
potential of the inhibitors. The distribution reveals that most of
the compounds fell within the range of low (red) to
intermediate (yellow) differentiation potential, as one might
expect for ATP site-directed inhibitors. However, the
distribution also contained a notable tail toward high (green)
differentiation potential. Hence, a small subset of test
compounds displayed a much higher than average potential
to differentiate between the selected cancer-relevant kinases.

Preferred Inhibitors. On the basis of the score distribution
in Figure 2, we selected the imidazole derivatives with the
highest differentiation potential, falling into the scoring interval
[0.78, 1.00]. The structures of these in part closely related
analogues are shown in Figure 3 with their activity profiles.
In the next step, nearest structural neighbors of each of the

six top-scoring compounds were identified in the data set and
their differentiation potential was compared, as reported in
Figure 4. Here, notable differences were observed. For example,
the top-scoring inhibitor with the highest differentiation
potential had only one nearest neighbor, the fourth-ranked
compound (Figure 4a). Equivalent observations were made for
inhibitors at rank 3 (Figure 4c) and 4 (Figure 4d). By contrast,
the inhibitor at rank 2 (Figure 4b) had a total of 12 nearest
structural neighbors with variable differentiation potentials.
Similar observations were made for inhibitors at ranks 5 (Figure
4e) and 6 (Figure 4f), having four and six neighbors,
respectively. These compounds also displayed low to
intermediate differentiation potential. From these compound
series, SAR patterns emerged, as discussed in the following.

Figure 1. Scoring scheme. Measured residual activities (ra) were
initially converted into logarithmic values used for the calculation of
the raw differential potential (rawdiffPot) of each compound.
Logarithmic values were adjusted such that 2 indicated (nearly)
complete inhibition and 0 no inhibition and aligned with the original
experimental binning scheme. Color code is as follows: dark blue,
≤20%; blue, >20%, ≤60%; light blue, >60%, ≤80%; white >80%
residual wild-type activity.

Figure 2. Distribution of compound differentiation potential. The
histogram shows the distribution of Z-scores for all test compounds. Z-
scores were normalized to the value range between 0 (lowest
differentiation potential) and 1 (highest potential) and binned on the
X-axis into 10 equally sized score intervals. The Y-axis reports the
number of compounds falling into each interval. The differentiation
potential of the compounds (normalized Z-scores) was color-coded
using a spectrum ranging from red (lowest differentiation potential)
over yellow (intermediate) to green (highest differentiation potential).
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SAR Analysis. All tested compounds were initially designed
as potential p38α MAP kinase inhibitors. The major novelty of
these imidazole-based series is the 2-thio substitution, which
greatly reduces their ability to bind to cytochrome P450 (CYP)
enzymes by complexing the iron in the active site. This CYP
interaction presented a general problem associated with first-
generation imidazole-based inhibitors. Kinase profiles of a large
set of structurally closely related inhibitors have not yet been
described. However, the results reported herein demonstrate
how even minor structural modifications of closely related
inhibitors can alter the inhibition profile toward kinases other
than p38, including representatives of kinase families with
rather different functions such as receptor tyrosine kinases.
The computational approach designed for the analysis of the

kinase profiling matrix did not take structural information about
the kinase ATP binding site into account. Nevertheless, it
detected activity differences between compounds that were
consistent with structural data of p38−inhibitor interactions.
Figure 5 shows an outline of p38 bound to the ATP site-
directed pyridinylimidazole inhibitor SB203580,22 as revealed
by the X-ray structure of the complex.23 A critically important
hydrogen bond is formed between the pyridin-4-yl group and
the backbone NH of Met109. Another hydrogen bond is
formed between Lys53 and N-3 of the imidazole core. In
addition, there is a π−π stacking between Tyr35 and the phenyl
ring of the inhibitor. The 4-fluorophenyl ring is accommodated
in hydrophobic region I, while hydrophobic region II is not
occupied. On the basis of these interaction patterns, structural
modifications of imidazole-based inhibitors that led to changes
in their differentiation potential according to Figure 4 can be
rationalized. For example, the compounds in Figure 4b,c very
well reflect the relevance of the π−π interaction of the S-
residues at the R3 position with Tyr35 in p38, as indicated in
Figure 5. In Figure 4b, 2 with an acetonitrile group at this
position had overall highest differentiation potential, whereas
smaller or larger (aromatic) substituents at this position led to a
gradual loss of this potential. Phenyl-based substituents such as

π−π interactors were generally more difficult to accommodate
than the acetonitrile group because they required a coplanar
orientation for best interactions. As illustrated in Figure 4c, loss
of R-group flexibility to adopt a favorable geometry for the π−π
interaction also resulted in a penalty and altered the
differentiation potential observed for a compound with a
conformationally unrestricted phenyl group.
In our kinase panel, JNK3 was most closely related to p38.

The only difference in the ATP-binding site of these kinases is
the gatekeeper residue, which is Thr in p38 and Met in JNK3.
Met is larger but has a flexible side chain and can
conformationally adapt. Given the similarity of these kinases,

Figure 3. Top-ranked kinase inhibitors. Shown are the six top-ranked
compounds with highest differentiation potential (labeled with their
ranks) together with their activity profiles (color-coded according to
Figure 1). In the activity profile, each bin is assigned to one of the 24
kinases.

Figure 4. Top-ranked inhibitors and nearest neighbors. In (a) to (f),
the six compounds with highest differentiation potential are shown
together with their nearest structural neighbors (i.e., all other
compounds having at least 80% 2D structural similarity). In the
center, each of the six top-ranked compounds is represented as the
root node and nearest neighbors form leaves. The nodes are color-
coded according to differentiation potential as in Figure 2. The activity
profile of the root compound is displayed, and compound structures
are drawn proximal to their nodes. Multiple nearest neighbors are
arranged according to decreasing differentiation potential from the left
to the right.
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many compounds inhibited them comparably. However,
nearest neighbor analysis also revealed interesting exceptions.
For example, 2 with its acetonitrile substituent was highly active
against p38 and JNK3. By contrast, 15, a structural neighbor of
2 with a phenyl group at the corresponding position, retained
high activity against p38 but was not active against JNK3.
Similarly, 25, another structural neighbor with an additional
methylene group in the linker presenting the phenyl
substituent, showed reduced activity against P38 and was also
inactive against JNK3. Both of these compounds had overall
only low differentiation potential. In the panel, AKT1 was the
kinase most distantly related to p38. Accordingly, many of the
p38-directed compounds did not inhibit AKT1. However, there
were exceptions among compounds with high differentiation
potential. For example, 1 and 4 strongly inhibited p38 but also
displayed weak activity against AKT1.
Furthermore, very small structural changes between com-

pounds with high differentiation potential preferentially affected
certain subsets of kinases. For example, 1 and 4 were only
distinguished by the presence of a double bond in the linker
between the imidazole core and a phenyl substituent (thus
slightly reducing the conformational flexibility of 4). This
minute change led to overall higher activity of 4 against the
kinase panel than 1. In particular, it affected binding to cyclin-
dependent kinases, against which 4 was active but 1 only
weakly active or inactive. In addition, the presence of a
hydrophilic group in this region of the inhibitors, for example,
in 6, led to a complete loss of activity against these kinases.
Another interesting example was inhibition of PLK1. Among
compounds with significant differentiation potential, only 4, 7,
and 10 inhibited this kinase; all others were inactive.
Compounds 4 and 7 were structurally highly similar, but in
10, the conformationally restricted phenyl substituent was
replaced by an unrestricted naphthalene group. Despite this
change, the activity profiles of all three compounds were overall
similar and distinct from many others.
Differentiation Potential versus Selectivity. Differ-

entiation potential as assessed herein is related to but distinct
from compound selectivity, for which other measures have been
introduced in the kinase inhibitor field. These include, among
others, the Ambit selectivity score24 and the thermodynamic
partition index.25 The latter coefficient reflects the partitioning
of inhibitor binding across a panel of kinases at thermodynamic
equilibrium and should thus be calculated on the basis of
equilibrium constants (i.e., Ki or Kd). Hence, it is not applicable

to residual activities or other approximate measurements. The
Ambit score (AS) is calculated as the fraction of n tested
kinases that are inhibited by a compound at a given threshold
value of residual activity. Hence, a score of 0 indicates a
compound that is inactive at the selected threshold and a score
of 1 a compound that is consistently active and nonselective. By
contrast, a target-selective compound obtains a score of 1/n
(close to 0). We have calculated AS values for all compounds
for a threshold value of less than 60% residual activity, as
reported in Table S2 of the Supporting Information. The mean
and standard deviation of the AS distribution are 0.31 and 0.22,
respectively. For 1−6 with the highest target differentiation
potential, scores range from 0.54 and 0.83. Hence, these
compounds would not be considered on the basis of simple
selectivity scoring. At lower levels of residual activity (e.g.,
30%), the scores consistently decrease and equivalent
conclusions are drawn. These results reflect the conceptual
difference between target differentiation potential and target
selectivity of inhibitors. Compounds with differentiation
potential are often rich in multitarget SAR information.

■ CONCLUSIONS
Herein we have reported a compound profiling experiment on
a set of cancer-relevant kinases using ATP site-directed
imidazole derivatives, combined with a computational study
to identify compounds with kinase differentiation potential.
Several structurally closely related inhibitors with high
differentiation potential were identified, and SAR features
were explored on the basis of nearest neighbor analysis. In a
number of instances, small structural modifications of closely
related compounds led to substantial alterations of their
inhibitory profiles, in part involving kinases with different
functions. On the basis of these results, the evaluated
compound series should merit further consideration in the
development of selective kinase inhibitors. Furthermore, the
computational approach reported herein is readily applicable to
the analysis of other compound profiling experiments and the
identification of active small molecules with target differ-
entiation potential.
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Figure 5. p38−inhibitor complex. Shown is the structure of the ATP
binding site in p38 in complex with the pyridinylimidazole inhibitor
SB203580.
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Summary

Pro�ling data obtained after testing 484 ATP-site directed imidazole deriva-

tives against 24 cancer-associated kinases was systematically analyzed to iden-

tify ligands with extremely variable inhibition pro�les. Alterations in inhibi-

tion pro�les were measured by quantifying activity di�erences over all possible

target pairs expressed as compound di�erential potential. Six ligands with

highest variation in their inhibitory pro�les were identi�ed after ranking com-

pounds according to their di�erential potentials. Nearest neighbor analysis of

these compounds revealed structurally related analogs with di�erential poten-

tials of varying magnitude. Many instances where minor chemical modi�cations

produced large variations in compound inhibitory pro�les were also identi�ed.

Therefore, di�erent structural features relevant to selectivity could be readily

identi�ed and the information might be further utilized in designing highly se-

lective kinase inhibitors. The �exibility of the computational approach outlined

in this chapter makes it suitable for the analysis of other pro�ling experiments

with the goal of identifying active compounds that exhibit substantial variation

in their activity pro�les against di�erent target proteins.
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Conclusion

Medicinal chemists often have to perform the non-trivial task of identifying var-

ious structural determinants within compound sets that in�uence their bioac-

tivity. Systematic analysis of pair-wise molecular similarities and potency dif-

ferences also helps to deduce SAR trends and formulate rules in order to guide

di�erent compound design or optimization attempts. The activity landscape

concept is often employed to rationalize SARs in three dimensions, the �rst two

depicting the chemical space followed by the addition of activity information

as the third dimension. Thus, an activity landscape represents a hypersurface

combining chemical similarity and biological activity data that is very similar

to geographical maps in its topology.

The generation of 3D activity landscape models for real ligand sets has been one

of the objectives of this dissertation. The resulting landscape representations

largely depart from the idealized versions. However, the global SAR character-

istics of bioactive compound sets are well preserved and intuitively accessible

using these 3D views. Since, the topology of the landscapes is greatly in�uenced

by the choice of the molecular representation, 3D landscape modeling can also

be utilized to study the magnitude of alterations in SAR features brought about

by alternative chemical spaces. Moreover, SAR relevant features like activity

cli�s of varying magnitudes can also be identi�ed.

An important characteristic of 3D activity landscapes is that proximity be-

tween ligands in the 2D projection correlates with their structural relatedness.

By contrast, in 2D graphical landscape models like NSGs, placement of com-

pounds and subsequent clustering is based on layout algorithms and has no

chemical relevance. Therefore, the various conceptual di�erences in generating

NSGs and 3D activity landscape representations make their comparison infor-
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mative. Indeed, simultaneous examination of the visualizations obtained by

these conceptually di�erent methodologies has provided useful insights regard-

ing the complementary global and local SAR information content associated

with compound sets.

A computational approach has been introduced to calculate feature probabil-

ities for individual compounds on the basis of their various SAR feature fre-

quencies. By using fuzzy thresholds to derive these conditional probabilities,

the existing SAR features have been used to generate eight feature categories.

It has been demonstrated that subsequent assignment of compounds to these

categories aided in their di�erentiation in local SAR environments when SAR

analysis was performed using graphical activity landscape representations.

Typically, while analyzing SARs, one accounts for systematic structural simi-

larity and potency distribution within ligand data sets. However, for ligands

active against a receptor, information pertaining to its mechanism of action

is also considered relevant. Routine approaches to analyzing SAR do not dis-

tinguish between ligands with di�erent mechanisms of action. Adaptation of

existing SAR analysis-driven data structures to incorporate mechanism related

data has also been addressed in this dissertation. Graph-based landscape repre-

sentations like NSGs are well suited for large-scale computational analysis and

visualization of SAR as they are easy to navigate and interpretable. Introduc-

tion of a new color scheme su�ciently modi�ed this activity landscape model to

allow SAR as well as mechanism of action related analysis. The clear outcome

of using M-NSGs is that compound subsets with either mechanistic homogene-

ity or heterogeneity can be readily identi�ed. In addition, subsequent close

inspection of structurally related ligand communities that are mechanistically

heterogeneous can help characterize structural determinants that are responsi-

ble for switching the mechanism of action or �mechanism hops�.

An inherent property of activity landscape representations based on chemical

similarity calculated using molecular �ngerprints is their �black box� nature.

Thus, substructures or R-groups associated with compound potency are not

apparent without the inspection of compound 2D structures. MMP-based ap-

proaches are better suited for the direct determination of chemical modi�cations

resulting in potency improvement. Therefore, in order to facilitate assessment
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of substructure changes accompanied by mechanism hops, an MMP-derived

data structure was suitably modi�ed. Application of M-BMMSGs to exem-

plary receptor ligand sets also demonstrated the ability of this approach to

resolve mechanism hop inducing chemical replacements within these ligands at

multiple levels.

Exploring relationships between chemical structure and bioactivity is commonly

carried out for compound sets that are active against single targets. However,

it is often necessary to monitor SAR trends in ligand data sets with activity

annotations against multiple members of a target family so that compound

selectivity patterns and o�-target e�ects may be identi�ed. Due to the in-

trinsic di�culty in navigating these high dimensional spaces, design of activity

landscape representations that simplify access to multi-target relevant SAR in-

formation has also been attempted. Using a SOM-based 2D chemical space

projection, a multi-target landscape model was generated in which compounds

were represented in terms of binned pair-wise target activity di�erences. Such

an encoding of compounds aided in the identi�cation of continuous as well

as discontinuous regions in multi-dimensional activity spaces. Examination of

compounds within these regions revealed chemical replacements that retained

or altered compound selectivity pro�les.

Pro�ling experiments to perform simultaneous testing of compound libraries

against many targets, especially high pro�le targets like protein kinases, have

recently experienced increasing interest. Such pro�ling studies have made ma-

jor contributions to the growth of multi-target activity data. A novel activity

landscape model was designed to analyze the high-dimensional data generated

from one such publicly available kinase pro�ling study. Ability to handle bioac-

tivity annotations for very large numbers of targets and at the same time deal

with incomplete activity matrix are two important features of this newly de-

scribed landscape model.

The data obtained from another kinase pro�ling experiment was utilized to ex-

amine the ability of structurally related inhibitors to distinguish between vari-

ous therapeutically relevant kinases. The di�erentiation potential was used as a

measure to quantify the di�erential activity of these compounds against kinase

targets. Compound ranking prioritized six inhibitors with very high di�eren-
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tiation potential. Variation in the di�erentiation potential among the nearest

neighbors of these top ranked compounds was also investigated. In addition,

chemical modi�cations that produced alterations in the inhibition pro�les of

these compounds could be identi�ed.

In conclusion, this dissertation reports novel approaches for the design of

2D and 3D activity landscapes to facilitate SAR analysis and visualization.
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