6 research outputs found

    Large Scale Content Distribution Protocols

    Get PDF
    This paper introduces large scale content distribution pro- tocols, which are capable of scaling to massive numbers of users and providing low delay end-to-end delivery. Delivery of files and static objects is described, with real-time con- tent streaming being outside the scope of this paper. The focus is on solutions provided by the IETF Reliable Multi- cast Transport Working Group. More precisely, the paper explains FLUTE, ALC and the associated building blocks. Then it discusses how these components are used in the Multimedia Broadcast Multicast Service (MBMS) for 3G systems and in the IP Datacast (IPDC) service for Digital Video Broadcast for Handheld devices (DVB-H)

    Service Platform for Converged Interactive Broadband Broadcast and Cellular Wireless

    Get PDF
    A converged broadcast and telecommunication service platform is presented that is able to create, deliver, and manage interactive, multimedia content and services for consumption on three different terminal types. The motivations of service providers for designing converged interactive multimedia services, which are crafted for their individual requirements, are investigated. The overall design of the system is presented with particular emphasis placed on the operational features of each of the sub-systems, the flows of media and metadata through the sub-systems and the formats and protocols required for inter-communication between them. The key features of tools required for creating converged interactive multimedia content for a range of different end-user terminal types are examined. Finally possible enhancements to this system are discussed. This study is of particular interest to those organizations currently conducting trials and commercial launches of DVB-H services because it provides them with an insight of the various additional functions required in the service provisioning platforms to provide fully interactive services to a range of different mobile terminal types

    Hybrid Contribution of JPEG200 Video Files for Professional Production Centers Reliability and Non-Reliability Transmission File Based in Image Quality Needed

    Get PDF
    ATM, SDH or satellite have been used in the last century as the contribution network of Broadcasters. However the attractive price of IP networks is changing the infrastructure of these networks in the last decade. Nowadays, IP networks are widely used, but their characteristics do not offer the level of performance required to carry high quality video under certain circumstances. Data transmission is always subject to errors on line. In the case of streaming, correction is attempted at destination, while on transfer of files, retransmissions of information are conducted and a reliable copy of the file is obtained. In the latter case, reception time is penalized because of the low priority this type of traffic on the networks usually has. While in streaming, image quality is adapted to line speed, and line errors result in a decrease of quality at destination, in the file copy the difference between coding speed vs line speed and errors in transmission are reflected in an increase of transmission time. The way news or audiovisual programs are transferred from a remote office to the production centre depends on the time window and the type of line available; in many cases, it must be done in real time (streaming), with the resulting image degradation. The main purpose of this work is the workflow optimization and the image quality maximization, for that reason a transmission model for multimedia files adapted to JPEG2000, is described based on the combination of advantages of file transmission and those of streaming transmission, putting aside the disadvantages that these models have. The method is based on two patents and consists of the safe transfer of the headers and data considered to be vital for reproduction. Aside, the rest of the data is sent by streaming, being able to carry out recuperation operations and error concealment. Using this model, image quality is maximized according to the time window. In this paper, we will first give a briefest overview of the broadcasters requirements and the solutions with IP networks. We will then focus on a different solution for video file transfer. We will take the example of a broadcast center with mobile units (unidirectional video link) and regional headends (bidirectional link), and we will also present a video file transfer file method that satisfies the broadcaster requirements

    Effect of the FDT transmission frequency for an optimum content delivery using the FLUTE protocol

    Full text link
    File Delivery over Unidirectional Transport (FLUTE) is the standard protocol used in unidirectional environments to provide reliability in the transmission of multimedia files. The key element of this protocol is the use of the File Delivery Table (FDT), which is the in-band mechanism used by FLUTE to inform clients about the files (and their characteristics) transmitted within a FLUTE session. Clients need to receive the FDT in order to start downloading files. Thus, the delivery of FDT packets and the proper configuration of their parameters have a great impact on the Quality of Experience perceived by the users of FLUTE content download services. This paper presents a complete analysis about how the FDT transmission frequency affects the download time of files. Moreover, results show which are the optimum values that minimize this download time. An appropriate configuration of the FDT transmission frequency as well as the use of AL-FEC mechanisms provides an optimum content delivery using the FLUTE protocol.This work is supported in part by the Ministerio de Economia y Competitividad of the Government of Spain under project COMINN (IPT-2012-0883-430000) and by the PAID-05-12 program of the Universitat Politecnica de Valencia.De Fez Lava, I.; Fraile Gil, F.; Guerri Cebollada, JC. (2013). Effect of the FDT transmission frequency for an optimum content delivery using the FLUTE protocol. Computer Communications. 36(12):1298-1309. https://doi.org/10.1016/j.comcom.2013.04.008S12981309361

    A personalized system for scalable distribution of multimedia content in multicast wireless networks

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-014-2139-3This paper presents a novel architecture for scalable multimedia content delivery over wireless networks. The architecture takes into account both the user preferences and context in order to provide personalized contents to each user. In this way, third-party applications filter the most appropriate contents for each client in each situation. One of the key characteristics of the proposal is the scalability, which is provided, apart from the use of filtering techniques, through the transmission in multicast networks. In this sense, content delivery is carried out by means of the FLUTE (File Delivery over Unidirectional Transport) protocol, which provides reliability in unidirectional environments through different mechanisms such as AL-FEC (Application Layer Forward Error Correction) codes, used in this paper. Another key characteristic is the context-awareness and personalization of content delivery, which is provided by means of context information, user profiles, and adaptation. The system proposed is validated through several empirical studies. Specifically, the paper presents evaluations of two types that collect objective and subjective measures. The first evaluate the efficiency of the transmission protocol, analyzing how the use of appropriate transmission parameters reduces the download time (and thus increasing the Quality of Experience), which can be minimized by using caching techniques. On the other hand, the subjective measures present a study about the user experience after testing the application and analyze the accuracy of the filtering process/strategy. Results show that using AL-FEC mechanisms produces download times until four times lower than when no protection is used. Also, results prove that there is a code rate that minimizes the download time depending on the losses and that, in general, code rates 0.7 and 0.9 provide good download times for a wide range of losses. On the other hand, subjective measures indicate a high user satisfaction (more than 80 %) and a relevant degree of accuracy of the content adaption.This work is supported in part by the Ministerio de Economia y Competitividad of the Government of Spain under project COMINN (IPT-2012-0883-430000) and by the project PAID/2012/313 from the PAID-05-12 program of the Vicerrectorado de Investigacion of the Universitat Politecnica de Valencia.De Fez Lava, I.; Gil Pascual, M.; Fons Cors, JJ.; Guerri Cebollada, JC.; Pelechano Ferragud, V. (2014). A personalized system for scalable distribution of multimedia content in multicast wireless networks. Multimedia Tools and Applications. 1-27. https://doi.org/10.1007/s11042-014-2139-3S127AdAdge (2013) A majority of U.S. mobile users are now smartphone users. Available at: http://adage.com/article/digital/a-majority-u-s-mobile-users-smartphone-users/241717 . Accessed November 2013Adomavicius G, Tuzhilin E (2005) Toward the next generation of recommender Systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17:734–749Adomavicius G, Tuzhilin A (2010) Context-aware recommender systems. Recommender Systems Handbook (Chapter 7): 217–253Androjena, Jena Android Porting (2013). Available at: https://code.google.com/p/androjena . Accessed December 2013Anind KD (2001) Understanding and Using Context. Personal Ubiquitous Comput 5:4–7Assad M, Carmichael DJ, Kay J, Kummerfeld B (2007) PersonisAD: distributed, active, scrutable model framework for context-aware services. Proc. of Pervasive Computing, Toronto, Canada:55–72Bai H, Atiquzzaman M (2003) Error modeling schemes for fading channels in wireless communications: a survey. IEEE Communications Surveys and Tutorials 5(2):2–9Baldauf M, Dustdar S, Rosenberg F (2007) A survey on context-aware systems. Int. J. AdHoc and Ubiquitous Computing, Springer-Verlag 2:263–277Barquero D, Bria A (2007) Forward Error Correction file delivery in DVB-H. Proc. of IEEE Vehicular Technology Conference (VTC), Dublin, Ireland:2951–2955Bright A, Kay J, Ler D, Ngo K, Niu W, Nuguid A (2005) Adaptively recommending museum tours. Proc. of the UbiComp Workshop on Smart Environments and their Applications to Cultural Heritage, Tokyo, Japan:29–32Chatfield C, Carmichael D, Hexel R, Kay J, Kummerfeld B (2005) Personalisation in intelligent environments: managing the information flow. Proc. of the OZCHI Computer-human interaction, Canberra, Australia:1–10Chen YFR, Jana R, Stern D, Wei B, Yang M, Sun H, Dyaberi J (2010) Zebroid: using IPTV data to support STB-assisted VoD content delivery. Multimedia System Journal 16(3):199–214Chen G, Kotz D (2000) A survey on context-aware mobile computing research. Technical Report TR2000-381, Dartmouth Computer ScienceCommunity Research and Development Information Service (CORDIS) – Seventh Framework Programme (FP7). Available at: http://cordis.europa.eu/fp7/home_en.html . Accesed October 2013de Fez I, Fraile F, Belda R, Guerri JC (2011) Performance evaluation of AL-FEC LDPC codes for push content applications in wireless unidirectional environments. Multimedia Tools and Applications 60(3):669–688de Fez I, Fraile F, Belda R, Guerri JC (2012) Analysis and evaluation of adaptive LDPC AL-FEC codes for content download services. IEEE Transactions on Multimedia 14(3):641–650de Fez I, Fraile F, Guerri JC (2013) Effect of the FDT transmission frequency for an optimum content delivery using the FLUTE protocol. Computer Communications 36(12):1298–1309de Fez I, Guerri JC (2014) An adaptive mechanism for optimal content download in wireless networks. IEEE Transactions on Multimedia 16(4):1140–1155Du R, Safavi-Naini R, Susilo W (2003) Web filtering using text classification (2003). Proc. of the Int Conf on Networks (ICON), Sydney, Australia:325–330ETSI TS 102 034 (2008), Transport of MPEG-2 TS Based DVB Services over IP based Networks (and associated XML), v1.4.1, available online: www.etsi.org/deliver/etsi_ts/102000_102099/102034/01.04.01_60/ts_102034v010401p.pdfETSI TS 102 472 (2009), Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content Delivery Protocols, v1.3.1, available online: www.etsi.org/deliver/etsi_ts/102400_102499/102472/01.03.01_60/ts_102472v010301p.pdfETSI TS 126 346 (2013), Universal Mobile Telecommunications System (UMTS); LTE; Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs (release 10), v11.3.0, available online: www.etsi.org/deliver/etsi_ts/126300_126399/126346/11.03.00_60/ts_126346v110300p.pdfFelfernig A, Jeran M, Ninaus G, Reinfrank F, Reiterer S (2013) Toward the next generation of recommender systems: applications and research challenges. Multimedia Services in Intelligent Environments 24 (Chapter 5): 81–98Fraile F, de Fez I, Guerri JC (2009) Modela-TV: service personalization and business model management for mobile TV. Proc. of 7th European Interactive TV Conference (EuroITV), Leuven, Belgium:1–6Fraile F, de Fez I, Guerri JC (2014) Evaluation of background push content download services to mobile devices over DVB networks. IEEE Transactions on Broadcasting 60(1):1–15Gallager RG (1962) Low density parity check codes. IRE Transactions on Information Theory 8(1):21–28Gil M, Giner P, Pelechano V (2012) Personalization for unobtrusive service interaction. Personal Ubiquitous Comput 16(5):543–561Guillen J, Miranda J, Berrocal J, Garcia-Alonso J, Murillo J, Canal C (2014) People as a service: a mobile-centric model for providing collective sociological profiles. IEEE Software 31(2):48–53Hrvoje J, Stockhammer T, Xu W, Abdel Samad W (2006) Efficient video-on-demand services over mobile datacast channels. Journal of Zhejiang University 7(5):873–884Hsieh CC, Lin CH, Chang WT (2009) Design and implementation of the interactive multimedia broadcasting services in DVB-H. IEEE Transactions on Consumer Electronics 55(4):1779–1787Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems. SpringerKorpipaa P, Malm EJ, Rantakokko T, Kyllonen V, Kela J, Mantyjarvi J, Hakkila J, Kansala I (2006) Customizing user interaction in smart phones. IEEE Pervasive Computing 5:82–90Kuppusamy KS, Aghila G (2012) A personalized web page content filtering model based on segmentation. Int Journal of Information Sciences and Techniques (IJIST) 2(1):41–51Kutscher D, Greifenberg J, Loos K (2007) Scalable DTN distribution over uni-directional links. Proc. of the SIGCOMM workshop on networked systems in developing regions (NSDR), Kyoto, Japan: article no. 6Lewis JR (1995) Ibm computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int J Hum Comput Interact 7(1):57–78Liang L, Cruichkshank H, Sun Z, Kulatunga C, Fairhurst G (2010) The integration of TESLA and FLUTE over satellite networks. Proc. of the IEEE Global Telecommunications Conference (Globecom), Miami, FL, USA:1–6Lohmar T, Huschke J (2009) Radio resource optimization for MBMS file transmissions. Proc. of the IEEE Int Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Bilbao, Spain:1–7Neumann C, Roca V, Walsh R (2005) Large scale content distribution protocols. ACM Computer Communication Review 35(5):85–92Paila T, Walsh R, Luby M, Roca V, Lehtonen R (2012) FLUTE – File Delivery Over Unidirectional Transport. IETF RFC 6726Paolini E, Varrella M, Chiani M, Matuz B, Liva G (2008) Low-complexity LDPC codes with near-optimum performance over the BEC. Proc. Adv Satellite Mobile Systems (ASMS), Bologna, Italy:274–282Papastergiou G, Psaras I, Tsaoussidis V (2009) Deep-space transport protocol: a novel transport scheme for space DTNs. Computer Communications 32(16):1757–1767Peltotalo J, Harju J, Saukko M, Väätämöinen L, Bouazizi I, Curcio I (2008) Personal mobile broadcasting based on the 3GPP MBMS System. Proc. of MoMM, Linz, Austria:156–162Peltotalo J, Peltotalo S, Harju J, Walsh R (2007) Performance analysis of a file delivery system based on the FLUTE protocol. Int Journal of Communication Systems 20(6):633–659Podlipnig S, Böszörmenyi L (2003) A survey of web cache replacement strategies. ACM Computing Surveys 35(4):374–398Roca V, Neumann C, Furodet D (2008) Low density parity check (LDPC) staircase and triangle forward error correction (FEC) schemes. IETF RFC 5170Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software engineering. Empir Softw Eng 14(2):131–164Schiller JH, Voisard A (2004) Location-based services. Kaufmann, MorganSerral E, Gil M, Valderas P, Pelechano V (2013) Automating unobtrusive personalized services in ambient media environments. Multimedia Tools and Applications, Springer US, available online, doi: 10.1007/s11042-013-1634-2Serral E, Valderas P, Pelechano V (2010) Towards the model driven development of context-aware pervasive systems. Pervasive and Mobile Computing 6(2):254–280Streefkerk JW, van Esch-Bussemakers MP, Neerincx MA (2006) Designing personal attentive user interfaces in the mobile public safety domain. Comput Hum Behav 22:749–770Valtonen M, Vainio AM, Vanhala J (2009) Proactive and adaptive fuzzy profile control for mobile phones. Proc. of the IEEE Int Conf on Pervasive Computing and Communications (PerCom), Galveston, Texas, USA:1–3van Woensel W, Gil M, Casteleyn S, Serral E, Pelechano V (2012) Adapting the obtrusiveness of service interactions in dynamically discovered environments. Proc. of MobiQuitous, Beijing, China:250–262W3C (2012), OWL 2Web Ontology Language Document Overview, Recommendation 11. Available at: http://www.w3.org/TR/owl2-overview. Accesed: November 2013Weld DS, Anderson C, Domingos P, Etzioni O, Gajos K, Lau T, Wolf S (2003) Automatically personalizing user interfaces. Proc. of the Int Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico:1613–1619Xu J, Hu Q, Lee W, Lee DL (2004) Performance evaluation of an optimal cache replacement policy for wireless data dissemination. IEEE Transactions on Knowledge and Data Engineering 16(1):125–139Yetgin Z, Çelik T (2012) Efficient progressive downloading over multimedia broadcast multicast service. Computer Networks 56(2):533–547Zheng Q, Zhu P, Wang Y, Xu M (2010) EPSP: Enhancing network protocol with social-aware plane. Proc. of IEEE/ACM Int Conference on Green Computing and Communications (GreenCom) and Int Conference on Cyber, Ohysical and Social Computing (CPSCom), Hangzhou, China:578–58

    Video Broadcast for Handheld devices (DVB-H).

    No full text
    This paper introduces large scale content distribution protocols, which are capable of scaling to massive numbers of users and providing low delay end-to-end delivery. Delivery of files and static objects is described, with real-time content streaming being outside the scope of this paper. The focus is on solutions provided by the IETF Reliable Multicast Transport Working Group. More precisely, the paper explains FLUTE, ALC and the associated building blocks. Then it discusses how these components are used in the Multimedia Broadcast Multicast Service (MBMS) for 3G systems and in the IP Datacast (IPDC) service for Digita
    corecore