19,487 research outputs found

    Hybrid FLUTE/DASH video delivery over mobile wireless networks

    Full text link
    This paper describes how FLUTE (File Delivery over Unidirectional Transport) and DASH (Dynamic Adaptive Streaming over HTTP) can be used to provide mobile video streaming services over broadcast wireless networks. FLUTE is a multicast protocol for multimedia file download. In this proposal, the protocol is adapted to provide video streaming services in crowded environments. Thus, video is delivered over a single connection to all viewers, reducing the traffic in the network. FLUTE incorporates an AL-FEC (Application Layered Forward Error Correction) mechanism in order to improve the reliability of the broadcast communication channel. For streaming applications, AL-FEC improves the relationship between the PSNR (Peak Signal-to-Noise Ratio) of the received video and the bandwidth allocated to the broadcast connection. The AL-FEC hereby presented applies simple unequal error protection schemes to favor the download of key frames. Furthermore, the proposal is based on the same video segmentation mechanism as DASH and therefore, clients can connect to a DASH repository to repair errors in the segments. This paper shows that FLUTE and DASH can be seamlessly integrated into a hybrid broadcast/unicast streaming technology, providing flexibility to trade off PSNR and bandwidth depending on the conditions of the mobile network.This work was supported by the 11012 ICARE (Innovative Cloud Architecture for Real Entertainment) project within the ITEA 2 Call 6 Program of the European Union.Belda Ortega, R.; De Fez Lava, I.; Fraile Gil, F.; Arce Vila, P.; Guerri Cebollada, JC. (2014). Hybrid FLUTE/DASH video delivery over mobile wireless networks. Transactions on Emerging Telecommunications Technologies. 25(11):1070-1082. doi:10.1002/ett.2804S107010822511ETSI TS 126 346 v11.3.0. Universal Mobile Telecommunications Systems (UMTS); LTE; Multimedia Broadcast/Multicast Service (MBMS); Protocols and Codecs 2013Lecompte, D., & Gabin, F. (2012). Evolved multimedia broadcast/multicast service (eMBMS) in LTE-advanced: overview and Rel-11 enhancements. IEEE Communications Magazine, 50(11), 68-74. doi:10.1109/mcom.2012.6353684Stockhammer T Luby MG DASH in mobile networks and services. Presented at IEEE Visual Communications and Image Processing (VCIP) , 2012Seeling, P., & Reisslein, M. (2012). Video Transport Evaluation With H.264 Video Traces. IEEE Communications Surveys & Tutorials, 14(4), 1142-1165. doi:10.1109/surv.2011.082911.00067Zhao, S., Tuninetti, D., Ansari, R., & Schonfeld, D. (2012). Multiple description coding over multiple correlated erasure channels. Transactions on Emerging Telecommunications Technologies, 23(6), 522-536. doi:10.1002/ett.2507Lin, C.-H., Wang, Y.-C., Shieh, C.-K., & Hwang, W.-S. (2012). An unequal error protection mechanism for video streaming over IEEE 802.11e WLANs. Computer Networks, 56(11), 2590-2599. doi:10.1016/j.comnet.2012.04.004Paila T Walsh R Luby M Roca V Lehtonen R FLUTE - file delivery over unidirectional transport. 2012Luby M Watson M Vicisano L Asynchronous layered coding (ALC) protocol instantiation. 2010Ameigeiras, P., Ramos-Munoz, J. J., Navarro-Ortiz, J., & Lopez-Soler, J. M. (2012). Analysis and modelling of YouTube traffic. Transactions on Emerging Telecommunications Technologies, 23(4), 360-377. doi:10.1002/ett.2546ISO/IEC 23009-1. Dynamic adaptive streaming over HTTP (DASH) - Part 1: media presentation description and segment formats 2012De Fez, I., Fraile, F., Belda, R., & Guerri, J. C. (2012). Analysis and Evaluation of Adaptive LDPC AL-FEC Codes for Content Download Services. IEEE Transactions on Multimedia, 14(3), 641-650. doi:10.1109/tmm.2012.2190392Jenkac, H., Stockhammer, T., & Wen Xu. (2006). Asynchronous and reliable on-demand media broadcast. IEEE Network, 20(2), 14-20. doi:10.1109/mnet.2006.1607891Neumann C Roca V Scalable video streaming over ALC (SVSoA): a solution for the large scale multicast distribution of videos. Presented at 1st Int. Workshop on SMDI , 2004Lederer S Müller C Timmerer C Dynamic adaptive streaming over HTTP dataset Proc. of the ACM Conference on Multimedia Systems (MMSys) 2012 89 94Blender Foundation webpage http://www.blender.org/blenderorg/Bai, H., & Atiquzzaman, M. (2003). Error modeling schemes for fading channels in wireless communications: A survey. IEEE Communications Surveys & Tutorials, 5(2), 2-9. doi:10.1109/comst.2003.5341334Ohm, J.-R. (2004). Multimedia Communication Technology. Signals and Communication Technology. doi:10.1007/978-3-642-18750-

    Saving Energy in Mobile Devices for On-Demand Multimedia Streaming -- A Cross-Layer Approach

    Full text link
    This paper proposes a novel energy-efficient multimedia delivery system called EStreamer. First, we study the relationship between buffer size at the client, burst-shaped TCP-based multimedia traffic, and energy consumption of wireless network interfaces in smartphones. Based on the study, we design and implement EStreamer for constant bit rate and rate-adaptive streaming. EStreamer can improve battery lifetime by 3x, 1.5x and 2x while streaming over Wi-Fi, 3G and 4G respectively.Comment: Accepted in ACM Transactions on Multimedia Computing, Communications and Applications (ACM TOMCCAP), November 201

    A Comparative Case Study of HTTP Adaptive Streaming Algorithms in Mobile Networks

    Full text link
    HTTP Adaptive Streaming (HAS) techniques are now the dominant solution for video delivery in mobile networks. Over the past few years, several HAS algorithms have been introduced in order to improve user quality-of-experience (QoE) by bit-rate adaptation. Their difference is mainly the required input information, ranging from network characteristics to application-layer parameters such as the playback buffer. Interestingly, despite the recent outburst in scientific papers on the topic, a comprehensive comparative study of the main algorithm classes is still missing. In this paper we provide such comparison by evaluating the performance of the state-of-the-art HAS algorithms per class, based on data from field measurements. We provide a systematic study of the main QoE factors and the impact of the target buffer level. We conclude that this target buffer level is a critical classifier for the studied HAS algorithms. While buffer-based algorithms show superior QoE in most of the cases, their performance may differ at the low target buffer levels of live streaming services. Overall, we believe that our findings provide valuable insight for the design and choice of HAS algorithms according to networks conditions and service requirements.Comment: 6 page

    Anticipatory Buffer Control and Quality Selection for Wireless Video Streaming

    Full text link
    Video streaming is in high demand by mobile users, as recent studies indicate. In cellular networks, however, the unreliable wireless channel leads to two major problems. Poor channel states degrade video quality and interrupt the playback when a user cannot sufficiently fill its local playout buffer: buffer underruns occur. In contrast to that, good channel conditions cause common greedy buffering schemes to pile up very long buffers. Such over-buffering wastes expensive wireless channel capacity. To keep buffering in balance, we employ a novel approach. Assuming that we can predict data rates, we plan the quality and download time of the video segments ahead. This anticipatory scheduling avoids buffer underruns by downloading a large number of segments before a channel outage occurs, without wasting wireless capacity by excessive buffering. We formalize this approach as an optimization problem and derive practical heuristics for segmented video streaming protocols (e.g., HLS or MPEG DASH). Simulation results and testbed measurements show that our solution essentially eliminates playback interruptions without significantly decreasing video quality
    corecore