1,556 research outputs found

    Clique-Stable Set separation in perfect graphs with no balanced skew-partitions

    Get PDF
    Inspired by a question of Yannakakis on the Vertex Packing polytope of perfect graphs, we study the Clique-Stable Set Separation in a non-hereditary subclass of perfect graphs. A cut (B,W) of G (a bipartition of V(G)) separates a clique K and a stable set S if K⊆BK\subseteq B and S⊆WS\subseteq W. A Clique-Stable Set Separator is a family of cuts such that for every clique K, and for every stable set S disjoint from K, there exists a cut in the family that separates K and S. Given a class of graphs, the question is to know whether every graph of the class admits a Clique-Stable Set Separator containing only polynomially many cuts. It is open for the class of all graphs, and also for perfect graphs, which was Yannakakis' original question. Here we investigate on perfect graphs with no balanced skew-partition; the balanced skew-partition was introduced in the proof of the Strong Perfect Graph Theorem. Recently, Chudnovsky, Trotignon, Trunck and Vuskovic proved that forbidding this unfriendly decomposition permits to recursively decompose Berge graphs using 2-join and complement 2-join until reaching a basic graph, and they found an efficient combinatorial algorithm to color those graphs. We apply their decomposition result to prove that perfect graphs with no balanced skew-partition admit a quadratic-size Clique-Stable Set Separator, by taking advantage of the good behavior of 2-join with respect to this property. We then generalize this result and prove that the Strong Erdos-Hajnal property holds in this class, which means that every such graph has a linear-size biclique or complement biclique. This property does not hold for all perfect graphs (Fox 2006), and moreover when the Strong Erdos-Hajnal property holds in a hereditary class of graphs, then both the Erdos-Hajnal property and the polynomial Clique-Stable Set Separation hold.Comment: arXiv admin note: text overlap with arXiv:1308.644

    The Erd\H{o}s-Hajnal Conjecture for Paths and Antipaths

    Get PDF
    We prove that for every k, there exists ck>0c_k>0 such that every graph G on n vertices not inducing a path PkP_k and its complement contains a clique or a stable set of size nckn^{c_k}

    On hereditary graph classes defined by forbidding Truemper configurations: recognition and combinatorial optimization algorithms, and χ-boundedness results

    Get PDF
    Truemper configurations are four types of graphs that helped us understand the structure of several well-known hereditary graph classes. The most famous examples are perhaps the class of perfect graphs and the class of even-hole-free graphs: for both of them, some Truemper configurations are excluded (as induced subgraphs), and this fact appeared to be useful, and played some role in the proof of the known decomposition theorems for these classes. The main goal of this thesis is to contribute to the systematic exploration of hereditary graph classes defined by forbidding Truemper configurations. We study many of these classes, and we investigate their structure by applying the decomposition method. We then use our structural results to analyze the complexity of the maximum clique, maximum stable set and optimal coloring problems restricted to these classes. Finally, we provide polynomial-time recognition algorithms for all of these classes, and we obtain χ-boundedness results

    Erdos-Hajnal-type theorems in hypergraphs

    Get PDF
    The Erdos-Hajnal conjecture states that if a graph on n vertices is H-free, that is, it does not contain an induced copy of a given graph H, then it must contain either a clique or an independent set of size n^{d(H)}, where d(H) > 0 depends only on the graph H. Except for a few special cases, this conjecture remains wide open. However, it is known that a H-free graph must contain a complete or empty bipartite graph with parts of polynomial size. We prove an analogue of this result for 3-uniform hypergraphs, showing that if a 3-uniform hypergraph on n vertices is H-free, for any given H, then it must contain a complete or empty tripartite subgraph with parts of order c(log n)^{1/2 + d(H)}, where d(H) > 0 depends only on H. This improves on the bound of c(log n)^{1/2}, which holds in all 3-uniform hypergraphs, and, up to the value of the constant d(H), is best possible. We also prove that, for k > 3, no analogue of the standard Erdos-Hajnal conjecture can hold in k-uniform hypergraphs. That is, there are k-uniform hypergraphs H and sequences of H-free hypergraphs which do not contain cliques or independent sets of size appreciably larger than one would normally expect.Comment: 15 page
    • …
    corecore