32,569 research outputs found

    Joint single-cell DNA accessibility and protein epitope profiling reveals environmental regulation of epigenomic heterogeneity.

    Get PDF
    Here we introduce Protein-indexed Assay of Transposase Accessible Chromatin with sequencing (Pi-ATAC) that combines single-cell chromatin and proteomic profiling. In conjunction with DNA transposition, the levels of multiple cell surface or intracellular protein epitopes are recorded by index flow cytometry and positions in arrayed microwells, and then subject to molecular barcoding for subsequent pooled analysis. Pi-ATAC simultaneously identifies the epigenomic and proteomic heterogeneity in individual cells. Pi-ATAC reveals a casual link between transcription factor abundance and DNA motif access, and deconvolute cell types and states in the tumor microenvironment in vivo. We identify a dominant role for hypoxia, marked by HIF1α protein, in the tumor microvenvironment for shaping the regulome in a subset of epithelial tumor cells

    The Car Resequencing Problem with Pull-Off Tables

    Get PDF
    The car sequencing problem determines sequences of different car models launched down a mixed-model assembly line. To avoid work overloads of workforce, car sequencing restricts the maximum occurrence of labor-intensive options, e.g., a sunroof, by applying sequencing rules. We consider this problem in a resequencing context, where a given number of buffers (denoted as pull-off tables) is available for rearranging a stirred sequence. The problem is formalized and suited solution procedures are developed. A lower bound and a dominance rule are introduced which both reduce the running time of our graph approach. Finally, a real-world resequencing setting is investigated.mixed-model assembly line, car sequencing, resequencing

    A branch-and-bound algorithm for stable scheduling in single-machine production systems.

    Get PDF
    Robust scheduling aims at the construction of a schedule that is protected against uncertain events. A stable schedule is a robust schedule that will change little when variations in the input parameters arise. This paper proposes a branch-and-bound algorithm for optimally solving a single-machine scheduling problem with stability objective, when a single job is anticipated to be disrupted.Branch-and-bound; Construction; Event; Job; Robust scheduling; Robustness; Scheduling; Single-machine scheduling; Stability; Systems; Uncertainty;

    Regulation of bistability in the std fimbrial operon of Salmonella enterica by DNA adenine methylation and transcription factors HdfR, StdE and StdF

    Get PDF
    Bistable expression of the Salmonella enterica std operon is controlled by an AND logic gate involving three transcriptional activators: the LysR-type factor HdfR and the StdE and StdF regulators encoded by the std operon itself. StdE activates transcription of the hdfR gene, and StdF activates std transcription together with HdfR. Binding of HdfR upstream of the std promoter is hindered by methylation of GATC sites located within the upstream activating sequence (UAS). Epigenetic control by Dam methylation thus antagonizes formation of the StdE-StdF-HdfR loop and tilts the std switch toward the StdOFF state. In turn, HdfR binding hinders methylation of the UAS, permitting activation of the StdE-StdF-HdfR loop and concomitant formation of StdON cells. Bistability is thus the outcome of competition between DNA adenine methylation and the StdE-StdF-HdfR activator loop.Ministerio de Ciencia, Innovación y Universidades [BIO2016–75235-P

    Exaggerated CpH methylation in the autism-affected brain.

    Get PDF
    BackgroundThe etiology of autism, a complex, heritable, neurodevelopmental disorder, remains largely unexplained. Given the unexplained risk and recent evidence supporting a role for epigenetic mechanisms in the development of autism, we explored the role of CpG and CpH (H = A, C, or T) methylation within the autism-affected cortical brain tissue.MethodsReduced representation bisulfite sequencing (RRBS) was completed, and analysis was carried out in 63 post-mortem cortical brain samples (Brodmann area 19) from 29 autism-affected and 34 control individuals. Analyses to identify single sites that were differentially methylated and to identify any global methylation alterations at either CpG or CpH sites throughout the genome were carried out.ResultsWe report that while no individual site or region of methylation was significantly associated with autism after multi-test correction, methylated CpH dinucleotides were markedly enriched in autism-affected brains (~2-fold enrichment at p < 0.05 cutoff, p = 0.002).ConclusionsThese results further implicate epigenetic alterations in pathobiological mechanisms that underlie autism

    Genetic Basis of Self-Incompatibility in the Lichen-Forming Fungus Lobaria pulmonaria and Skewed Frequency Distribution of Mating-Type Idiomorphs: Implications for Conservation

    Get PDF
    Fungal populations that reproduce sexually are likely to be genetically more diverse and have a higher adaptive potential than asexually reproducing populations. Mating systems of fungal species can be self-incompatible, requiring the presence of isolates of different mating-type genes for sexual reproduction to occur, or self-compatible, requiring only one. Understanding the distribution of mating-type genes in populations can help to assess the potential of self-incompatible species to reproduce sexually. In the locally threatened epiphytic lichen-forming fungus Lobaria pulmonaria (L.) Hoffm., low frequency of sexual reproduction is likely to limit the potential of populations to adapt to changing environmental conditions. Our study provides direct evidence of self-incompatibility (heterothallism) in L. pulmonaria. It can thus be hypothesized that sexual reproduction in small populations might be limited by an unbalanced distribution of mating-type genes. We therefore assessed neutral genetic diversity (using microsatellites) and mating-type ratio in 27 lichen populations (933 individuals). We found significant differences in the frequency of the two mating types in 13 populations, indicating a lower likelihood of sexual reproduction in these populations. This suggests that conservation translocation activities aiming at maximizing genetic heterogeneity in threatened and declining populations should take into account not only presence of fruiting bodies in transplanted individuals, but also the identity and balanced representation of mating-type genes

    Optical-inertia space sextant for an advanced space navigation system, phase B

    Get PDF
    Optical-inertia space sextant for advanced space navigation syste
    • …
    corecore