17,070 research outputs found

    Maximizing Maximal Angles for Plane Straight-Line Graphs

    Get PDF
    Let G=(S,E)G=(S, E) be a plane straight-line graph on a finite point set SR2S\subset\R^2 in general position. The incident angles of a vertex pSp \in S of GG are the angles between any two edges of GG that appear consecutively in the circular order of the edges incident to pp. A plane straight-line graph is called ϕ\phi-open if each vertex has an incident angle of size at least ϕ\phi. In this paper we study the following type of question: What is the maximum angle ϕ\phi such that for any finite set SR2S\subset\R^2 of points in general position we can find a graph from a certain class of graphs on SS that is ϕ\phi-open? In particular, we consider the classes of triangulations, spanning trees, and paths on SS and give tight bounds in most cases.Comment: 15 pages, 14 figures. Apart of minor corrections, some proofs that were omitted in the previous version are now include

    Bandwidth, expansion, treewidth, separators, and universality for bounded degree graphs

    Get PDF
    We establish relations between the bandwidth and the treewidth of bounded degree graphs G, and relate these parameters to the size of a separator of G as well as the size of an expanding subgraph of G. Our results imply that if one of these parameters is sublinear in the number of vertices of G then so are all the others. This implies for example that graphs of fixed genus have sublinear bandwidth or, more generally, a corresponding result for graphs with any fixed forbidden minor. As a consequence we establish a simple criterion for universality for such classes of graphs and show for example that for each gamma>0 every n-vertex graph with minimum degree ((3/4)+gamma)n contains a copy of every bounded-degree planar graph on n vertices if n is sufficiently large

    A Local Algorithm for the Sparse Spanning Graph Problem

    Get PDF
    Constructing a sparse spanning subgraph is a fundamental primitive in graph theory. In this paper, we study this problem in the Centralized Local model, where the goal is to decide whether an edge is part of the spanning subgraph by examining only a small part of the input; yet, answers must be globally consistent and independent of prior queries. Unfortunately, maximally sparse spanning subgraphs, i.e., spanning trees, cannot be constructed efficiently in this model. Therefore, we settle for a spanning subgraph containing at most (1+ε)n(1+\varepsilon)n edges (where nn is the number of vertices and ε\varepsilon is a given approximation/sparsity parameter). We achieve query complexity of O~(poly(Δ/ε)n2/3)\tilde{O}(poly(\Delta/\varepsilon)n^{2/3}), (O~\tilde{O}-notation hides polylogarithmic factors in nn). where Δ\Delta is the maximum degree of the input graph. Our algorithm is the first to do so on arbitrary bounded degree graphs. Moreover, we achieve the additional property that our algorithm outputs a spanner, i.e., distances are approximately preserved. With high probability, for each deleted edge there is a path of O(poly(Δ/ε)log2n)O(poly(\Delta/\varepsilon)\log^2 n) hops in the output that connects its endpoints

    Embedding nearly-spanning bounded degree trees

    Full text link
    We derive a sufficient condition for a sparse graph G on n vertices to contain a copy of a tree T of maximum degree at most d on (1-\epsilon)n vertices, in terms of the expansion properties of G. As a result we show that for fixed d\geq 2 and 0<\epsilon<1, there exists a constant c=c(d,\epsilon) such that a random graph G(n,c/n) contains almost surely a copy of every tree T on (1-\epsilon)n vertices with maximum degree at most d. We also prove that if an (n,D,\lambda)-graph G (i.e., a D-regular graph on n vertices all of whose eigenvalues, except the first one, are at most \lambda in their absolute values) has large enough spectral gap D/\lambda as a function of d and \epsilon, then G has a copy of every tree T as above

    Ising critical exponents on random trees and graphs

    Get PDF
    We study the critical behavior of the ferromagnetic Ising model on random trees as well as so-called locally tree-like random graphs. We pay special attention to trees and graphs with a power-law offspring or degree distribution whose tail behavior is characterized by its power-law exponent τ>2\tau>2. We show that the critical temperature of the Ising model equals the inverse hyperbolic tangent of the inverse of the mean offspring or mean forward degree distribution. In particular, the inverse critical temperature equals zero when τ(2,3]\tau\in(2,3] where this mean equals infinity. We further study the critical exponents δ,β\delta, \beta and γ\gamma, describing how the (root) magnetization behaves close to criticality. We rigorously identify these critical exponents and show that they take the values as predicted by Dorogovstev, et al. and Leone et al. These values depend on the power-law exponent τ\tau, taking the mean-field values for τ>5\tau>5, but different values for τ(3,5)\tau\in(3,5)
    corecore